JPS62115346A - Method and instrument for measuring impurity concentration in semiconductor crystal - Google Patents
Method and instrument for measuring impurity concentration in semiconductor crystalInfo
- Publication number
- JPS62115346A JPS62115346A JP25540985A JP25540985A JPS62115346A JP S62115346 A JPS62115346 A JP S62115346A JP 25540985 A JP25540985 A JP 25540985A JP 25540985 A JP25540985 A JP 25540985A JP S62115346 A JPS62115346 A JP S62115346A
- Authority
- JP
- Japan
- Prior art keywords
- measured
- semiconductor crystal
- light
- impurity concentration
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔概要〕
光吸収とフォトルミネッセンス (以下略してPLと記
す)の2つの測定法の利点を有効に生かし、半導体結晶
中の不純’Th濃度分布を非破壊で測定できる方法と装
置を提起する。[Detailed Description of the Invention] [Summary] By effectively utilizing the advantages of two measurement methods: light absorption and photoluminescence (hereinafter abbreviated as PL), impurity 'Th concentration distribution in semiconductor crystals can be measured non-destructively. The method and apparatus are presented.
本発明は半導体結晶の評価方法に係り、とくにIII
−V族化合物半導体中の不純物濃度分布を非破壊で測定
する方法と装置に関する。The present invention relates to a method for evaluating semiconductor crystals, particularly III.
- A method and apparatus for non-destructively measuring impurity concentration distribution in a group V compound semiconductor.
半導体結晶の評価方法の1つに不純物濃度分布の測定が
あるが、非破壊で、定量性に優れ、検出感度の高い測定
方法が望まれる。One method for evaluating semiconductor crystals is to measure impurity concentration distribution, but a non-destructive measurement method with excellent quantitative properties and high detection sensitivity is desired.
従来の半導体結晶中の不純物濃度分布を非破壊で測定す
る方法として、光吸収とPLがある。Conventional methods for non-destructively measuring impurity concentration distribution in semiconductor crystals include optical absorption and PL.
■ 光吸収法
この方法は、不純物の吸収波長が分がっているとき、そ
の波長の光を被測定半導体結晶に照射して吸収をみるも
ので、光吸収が強いとその不純物濃度は高い。従って濃
度の定量性に優れている。■ Light absorption method In this method, when the absorption wavelength of an impurity is known, the semiconductor crystal to be measured is irradiated with light of that wavelength and the absorption is observed.The stronger the light absorption, the higher the impurity concentration. Therefore, it has excellent concentration quantitative properties.
しかし、被測定半導体結晶は厚さ500μm以下の薄い
ウェハであるため、光をあまり吸収できなく、従って検
出感度が低い。However, since the semiconductor crystal to be measured is a thin wafer with a thickness of 500 μm or less, it cannot absorb much light, and therefore the detection sensitivity is low.
■ PL法
この方法は、例えばアルゴン(^r)レーザより出る波
長0.488μmの単色光を被測定半導体結晶に照射し
て不純物準位に相当する波長を持つPL発光をみるもの
で、検出感度は高いが、その発光強度は必ずしも不純物
濃度に対応しない。■ PL method In this method, the semiconductor crystal to be measured is irradiated with monochromatic light with a wavelength of 0.488 μm emitted from, for example, an argon (^r) laser and the PL emission with a wavelength corresponding to the impurity level is observed. is high, but the emission intensity does not necessarily correspond to the impurity concentration.
その原因は、強度は不純物濃度だけでなく、転移等の種
々の結晶の不完全性に左右されるためで、従ってこの方
法は定量的解析には用いることばできない。The reason for this is that the strength depends not only on the impurity concentration but also on various crystal imperfections such as dislocations, and therefore this method cannot be used for quantitative analysis.
従ってこの場合、ウェハ中の不純物分布を測定しようと
しても、多くの場合転移密度や原因不明の欠陥密度等が
入り混った情報が得られるだけである。Therefore, in this case, even if an attempt is made to measure the impurity distribution in the wafer, in most cases only information mixed with dislocation density, unexplained defect density, etc. will be obtained.
従来の半導体結晶中の不純物濃度の非破壊測定法では定
量性と検出感度を同時に向上することはできなかった。Conventional nondestructive methods for measuring impurity concentrations in semiconductor crystals have not been able to simultaneously improve quantitative performance and detection sensitivity.
上記問題点の解決は、励起光として被測定アクセプタ準
位と伝導帯端間のエネルギ差に相当する波長の光を、被
測定半導体結晶に照射し、検知する波長領域を該被ff
111定アクセプタ準位と伝導帯端間の中間帯域に設定
して発光強度を測定する不純物乞フ度の測定方法、およ
び
被測定アクセプタ準位と伝導帯端間のエネルギ差に相当
する波長の光を被測定半導体結晶に照射する励起光照射
手段と、検知する波長領域を該被測定アクセプタ準位と
伝導帯端間の中間帯域に設定して発光強度を測定する検
知手段とを含む不純物濃度の測定装置により達成される
。To solve the above problem, the semiconductor crystal to be measured is irradiated with light having a wavelength corresponding to the energy difference between the acceptor level to be measured and the conduction band edge as excitation light, and the wavelength region to be detected is
111 A method for measuring impurity impurity level in which the emission intensity is measured by setting it in an intermediate band between a constant acceptor level and the conduction band edge, and a method for measuring the impurity level, and light having a wavelength corresponding to the energy difference between the acceptor level to be measured and the conduction band edge. An excitation light irradiation means for irradiating a semiconductor crystal to be measured with excitation light, and a detection means for measuring emission intensity by setting the detection wavelength range to an intermediate band between the acceptor level to be measured and the conduction band edge. Achieved by measuring equipment.
前記被測定半導体結晶を移動可能にして不純物のン震度
の面内分布を求めることができる。The in-plane distribution of seismic intensity of impurities can be determined by making the semiconductor crystal to be measured movable.
本発明は、被測定半導体結晶に、その中に含まれる特定
の不純物(被測定7クセプタ)が光吸収を起こすような
波長の単色光を照射すると、この光よりもっと長波長の
I)Lが誘起されることを利用し、
かつ、検知する波長帯域を被測定アクセプタ準位と伝導
帯端間の中間帯域に、例えば結晶欠陥により生ずる、被
測定アクセプタ準位より深い(禁制帯幅の中央に近づい
た)欠陥準位に相当する波長帯に設定すると、
検知されるPl、光は面内では欠陥密度に関係なく不変
であり、励起(被測定7クセプタ準位より電子を伝導帯
に叩き上げるときに生しる光吸収)の+1!7報のみが
得られ、Pl光の強度は被測定アクセプタ濃度に対応す
ることになる。In the present invention, when a semiconductor crystal to be measured is irradiated with monochromatic light of a wavelength that causes light absorption by specific impurities (7 receptors to be measured) contained therein, I)L with a longer wavelength than this light is emitted. In addition, the wavelength band to be detected is set to the intermediate band between the acceptor level to be measured and the edge of the conduction band, which is deeper than the acceptor level to be measured (in the center of the forbidden band width) caused by crystal defects, for example. When the wavelength band corresponding to the defect level (approached) is set, the detected Pl and light remain unchanged in the plane regardless of the defect density, and excitation (knocks electrons from the measured 7 receptor level to the conduction band) Only +1!7 reports of light absorption (which sometimes occurs) are obtained, and the intensity of the Pl light corresponds to the acceptor concentration to be measured.
以上のように、観測しようとする1)シの波長は転移等
の欠陥の影響が少ないような遷移に相当する波長、すな
わち深い欠陥準位に相当する波長を選ぶ必要がある。As described above, it is necessary to select the wavelength of 1) to be observed that corresponds to a transition that is less affected by defects such as dislocation, that is, a wavelength that corresponds to a deep defect level.
第1図は本発明による半導体結晶中の不純物濃度測定に
用いる装置の概略を示すブロック図である。FIG. 1 is a block diagram schematically showing an apparatus used for measuring impurity concentration in a semiconductor crystal according to the present invention.
図において、ハロゲンランプ等の光a1から出た光を、
分光器2を通して準色光3にする。In the figure, the light emitted from light a1 of a halogen lamp, etc.
It passes through a spectrometer 2 to produce quasi-chromatic light 3.
この単色光3をレンズ4により集光し被測定半導体結晶
(試料)5に!jq射する。This monochromatic light 3 is focused by a lens 4 onto a semiconductor crystal (sample) to be measured 5! Shoot jq.
試料5は光学窓の付いた冷却槽6の中に保持されている
。The sample 5 is held in a cooling tank 6 with an optical window.
試料5から出射したl’L7はレンス8で梁光され、分
光器ってスペクトル解析された後、検知器1oにより電
気信号に変換される。l'L7 emitted from the sample 5 is beamed by a lens 8, subjected to spectrum analysis by a spectrometer, and then converted into an electrical signal by a detector 1o.
電気信号は増幅器11で増幅された後、コンピュータ1
2に送られる。After the electrical signal is amplified by the amplifier 11, it is sent to the computer 1.
Sent to 2.
冷却槽6は移動ステージ13に固定され、分光器9に対
して平行に移動する。移動ステージ13の動作はコンピ
ュータ12によりコントロールされている。The cooling tank 6 is fixed to a moving stage 13 and moves parallel to the spectrometer 9. The operation of the moving stage 13 is controlled by a computer 12.
つぎに、測定例を説明する。Next, a measurement example will be explained.
被測定試料として、液体カプセルチョクラルスキー法で
成長した半絶縁性ガリウム砒素(Sr−GaAS)基板
、被測定不純物(アクセプタ)として炭素(C)を例に
とり説明する。試料は4.2にの濃度に保持される。A description will be given by taking as an example a semi-insulating gallium arsenide (Sr-GaAS) substrate grown by the liquid capsule Czochralski method as a sample to be measured, and carbon (C) as an impurity (acceptor) to be measured. The sample is kept at a concentration of 4.2.
この場合、励起光である単色光3の波長は、Cのアクセ
プタ準位と伝専帯端間のエネルギ差の0、830μmを
選ぶ。In this case, the wavelength of the monochromatic light 3, which is the excitation light, is selected to be 0.830 μm, which is the energy difference between the acceptor level of C and the edge of the transmission band.
PLは1.5から2.2 μmの波長領域にわたって深
い準が関与した幅広いスペクトルとなって現れるが、こ
こでは、この波長領域の略中央をとって、−1,9μm
に設定する。PL appears as a wide spectrum involving deep quasi over a wavelength range of 1.5 to 2.2 μm, but here, we will take the approximate center of this wavelength range and -1.9 μm.
Set to .
通常のPL法による測定では、前述のように励起波長と
して禁制帯幅より大きなエネルギ、すなわち0.8 l
zmより短波長の光を用いる。このような場合の1.9
μmのPL強度はウェハ面内でほとんど変化しない。In measurements using the normal PL method, as mentioned above, the excitation wavelength is larger than the forbidden band width, that is, 0.8 l.
Light with a wavelength shorter than zm is used. 1.9 in such a case
The PL intensity in μm hardly changes within the wafer plane.
しかし、本発明のように励起波長として0.830μm
を選ぶと、1,9 μmのl)L強度は第2図のように
ウェハ面内の位置により変化する。However, as in the present invention, the excitation wavelength is 0.830 μm.
If , the l)L intensity of 1.9 μm changes depending on the position within the wafer plane as shown in FIG.
第2図は1.9 μmの円1強度のウェハ面内分布を示
す図である。FIG. 2 is a diagram showing the distribution of the intensity of a circle of 1.9 μm within the wafer surface.
PL強度の変化は、Cアクセプタによる吸収強度の情報
がPL強度として現れたもので、C濃度の不均一性に該
当するものである。The change in PL intensity is the result of information on absorption intensity by C acceptors appearing as PL intensity, and corresponds to non-uniformity of C concentration.
実施例においては、測定装置に分光器2と9を用いたが
、被測定試料や被測定不純物が一定である場合は、これ
の代わりに干渉フィルタに置き換えてもよい。In the embodiment, the spectrometers 2 and 9 are used as the measuring device, but if the sample to be measured or the impurity to be measured is constant, an interference filter may be used instead.
また、試料の移動を横方向だけでなく、縦方向にも行え
るステージを用いると、2次元的な分布を測定できる。Furthermore, by using a stage that can move the sample not only horizontally but also vertically, a two-dimensional distribution can be measured.
また、励起光の波長を変化させることにより、異なる種
類のアクセプタ濃度の不均一性が測定できる。Furthermore, by changing the wavelength of the excitation light, the non-uniformity of different types of acceptor concentrations can be measured.
以上詳細に説明したように本発明によれば、光吸収測定
により得られるのと同様なi+!7報を、感度の高いP
L測定により得ることができるので、被測定ウェハ面内
の不純物Y震度分布を高感度、かつ非破壊で測定できる
。As explained in detail above, according to the present invention, i+! similar to that obtained by optical absorption measurement! 7 reports with high sensitivity P
Since it can be obtained by L measurement, the impurity Y seismic intensity distribution within the surface of the wafer to be measured can be measured with high sensitivity and non-destructively.
第1閣は本発明による半へ体結晶中の不純物?H度測定
に用いる装置の概略を示すブロック図、第2図は1.9
μmのil+、強度のウェハ面内分布を示す図である。
図において、
■はハロゲンランプ等の光源、
2.9は分光器、3は励起光(明色光)4.8はレンズ
、
5は被測定半導体結晶(試料)、
6は冷却槽、
7はIIL。
10は検知器、
11は増幅器、
12はコンピュータ\
13は移動ステージ・
ピL5敷Aに
1 (社古卸俣つ
巴
千−3ダε(由 正で耐(ブ鼠
昭和 年 月 日
1、事件の、麻
昭和60年特許願第255409号
2、発明の名称
半導体結晶中の不純物濃度の渭淀方法、および装置3、
抽圧をする者
事件との関係 ′1Ii−,i乍1郡1友住所 神奈
川県用崎市中原区上小田中1015?!i’地(522
)名称 冨 士 通 株 式 会 社4、
代理人
住所 神奈川県用崎市中原区上小田中1015番地富
士 通 株 式 会 社 内昭和61年
1月28日 (発送日)
6、+重圧の文1象
図 面(企図)Is the first part an impurity in the hemihemiform crystal according to the present invention? A block diagram showing the outline of the device used for H degree measurement, Figure 2 is 1.9
FIG. 3 is a diagram showing the distribution of il+ and intensity in μm within the wafer surface. In the figure, ■ is a light source such as a halogen lamp, 2.9 is a spectrometer, 3 is excitation light (bright color light), 4.8 is a lens, 5 is a semiconductor crystal to be measured (sample), 6 is a cooling tank, and 7 is an IIL. . 10 is a detector, 11 is an amplifier, 12 is a computer \ 13 is a moving stage. Incident, 1985 Patent Application No. 255409 2, title of invention: Weidian method and apparatus for determining impurity concentration in semiconductor crystal 3;
Relationship with the case of a person who performs extraction '1Ii-,i乍1gun1tomoAddress 1015 Kamiodanaka, Nakahara-ku, Yozaki City, Kanagawa Prefecture? ! i' ground (522
) Name Fujitsu Co., Ltd. 4.
Agent address: 1015 Kamiodanaka, Nakahara-ku, Yozaki City, Kanagawa Prefecture Tomi
Shitsu Co., Ltd. January 28, 1985 (Shipping date) 6.
Claims (3)
のエネルギ差に相当する波長の光を、被測定半導体結晶
に照射し、 検知する波長領域を該被測定アクセプタ準位と伝導帯端
間の中間帯域に設定して発光強度を測定することを特徴
とする半導体結晶中の不純物濃度の測定方法。(1) Light with a wavelength corresponding to the energy difference between the acceptor level to be measured and the conduction band edge is irradiated onto the semiconductor crystal to be measured as excitation light, and the wavelength range to be detected is set between the acceptor level to be measured and the conduction band edge. 1. A method for measuring impurity concentration in a semiconductor crystal, the method comprising measuring the emission intensity in an intermediate band between the two.
に相当する波長の光を被測定半導体結晶に照射する励起
光照射手段と、 検知する波長領域を該被測定アクセプタ準位と伝導帯端
間の中間帯域に設定して発光強度を測定する検知手段と
を 含むことを特徴とする半導体結晶中の不純物濃度の測定
装置。(2) excitation light irradiation means for irradiating the semiconductor crystal to be measured with light of a wavelength corresponding to the energy difference between the acceptor level to be measured and the conduction band edge; 1. An apparatus for measuring impurity concentration in a semiconductor crystal, comprising: a detection means for measuring emission intensity by being set in an intermediate band between the edges.
徴とする特許請求の範囲第2項記載の半導体結晶中の不
純物濃度の測定装置。(3) The device for measuring impurity concentration in a semiconductor crystal according to claim 2, wherein the semiconductor crystal to be measured is movable.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25540985A JPS62115346A (en) | 1985-11-14 | 1985-11-14 | Method and instrument for measuring impurity concentration in semiconductor crystal |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP25540985A JPS62115346A (en) | 1985-11-14 | 1985-11-14 | Method and instrument for measuring impurity concentration in semiconductor crystal |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS62115346A true JPS62115346A (en) | 1987-05-27 |
Family
ID=17278362
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP25540985A Pending JPS62115346A (en) | 1985-11-14 | 1985-11-14 | Method and instrument for measuring impurity concentration in semiconductor crystal |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS62115346A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02205045A (en) * | 1989-02-02 | 1990-08-14 | Nippon Telegr & Teleph Corp <Ntt> | Method and apparatus for evaluating semiconductor crystal |
| EP1946079B2 (en) † | 2005-10-11 | 2024-11-06 | BT Imaging Pty Limited | Method and system for inspecting indirect bandgap semiconductor structure |
-
1985
- 1985-11-14 JP JP25540985A patent/JPS62115346A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02205045A (en) * | 1989-02-02 | 1990-08-14 | Nippon Telegr & Teleph Corp <Ntt> | Method and apparatus for evaluating semiconductor crystal |
| EP1946079B2 (en) † | 2005-10-11 | 2024-11-06 | BT Imaging Pty Limited | Method and system for inspecting indirect bandgap semiconductor structure |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3782836A (en) | Surface irregularity analyzing method | |
| US5381016A (en) | Method and apparatus for measuring photoluminescence in crystal | |
| JPS6258143A (en) | Method of optically detecting defect of semiconductor material | |
| TW201205062A (en) | Sample inspection device and sample inspection method | |
| JP2008198913A (en) | Semiconductor substrate inspection method and semiconductor substrate inspection apparatus | |
| JPH0727945B2 (en) | Evaluation method of deep level density distribution in semiconductor crystal | |
| KR20000064554A (en) | Surface crystal defect measurement method and apparatus | |
| CN117705831A (en) | A quantum sensor and non-destructive detection method based on microwave reflection | |
| US9921158B2 (en) | Method and apparatus for determining isotopic properties of a sample mass | |
| US4492871A (en) | Method for determining impurities in epitaxial silicon crystals | |
| JPH09243569A (en) | Semiconductor substrate evaluation apparatus and evaluation method | |
| JPS62115346A (en) | Method and instrument for measuring impurity concentration in semiconductor crystal | |
| JPH08335618A (en) | Method and apparatus for measuring lifetime of carriers in semiconductor sample | |
| US5841532A (en) | Method for evaluating oxygen concentrating in semiconductor silicon single crystal | |
| JP2001083080A (en) | Crystal defect measurement equipment | |
| JPH01182738A (en) | Method for measuring impurities in compound semiconductor crystals | |
| Nango et al. | An optical study on dislocation clusters in a slowly pulled silicon crystal | |
| JP3688383B2 (en) | Crystal defect detection method | |
| JP3275022B2 (en) | Photoluminescence measurement device in crystal | |
| JPH0719844A (en) | Measuring method for roughness of surface of wafer | |
| JP2850856B2 (en) | Interface analysis method | |
| JP2740903B2 (en) | Evaluation method for compound semiconductor substrate | |
| JPS59184539A (en) | Method for measuring dislocation density in semiconductor crystals | |
| JPH01182739A (en) | Method for measuring strain in compound semiconductor crystals | |
| Ivakin et al. | Thermal diffusivity measurement of high-conducting solids by the method of transient gratings |