[go: up one dir, main page]

JPS62135505A - Ethylene copolymer capable of silane crosslinking - Google Patents

Ethylene copolymer capable of silane crosslinking

Info

Publication number
JPS62135505A
JPS62135505A JP27720885A JP27720885A JPS62135505A JP S62135505 A JPS62135505 A JP S62135505A JP 27720885 A JP27720885 A JP 27720885A JP 27720885 A JP27720885 A JP 27720885A JP S62135505 A JPS62135505 A JP S62135505A
Authority
JP
Japan
Prior art keywords
silane compound
unsaturated silane
ethylene
copolymer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27720885A
Other languages
Japanese (ja)
Other versions
JPH0635495B2 (en
Inventor
Takeo Shimada
武雄 島田
Tsutomu Isaka
勉 井坂
Yuji Ozeki
尾関 祐司
Iwao Ishino
巌 石野
Akihiko Ono
大野 昭彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP60277208A priority Critical patent/JPH0635495B2/en
Publication of JPS62135505A publication Critical patent/JPS62135505A/en
Publication of JPH0635495B2 publication Critical patent/JPH0635495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the titled copolymer excellent in storage stability, moldability and crosslinkability, by specifying the unsaturated silane compound content, MW distribution, density, chlorine content, etc., of a copolymer obtained by copolymerizing ethylene with an unsaturated silane compound. CONSTITUTION:An unsaturated silane compound such as gamma-(meth) acryloxypropyltrimethoxysilane is mixed with ethylene, a radical generator and 0.5-15wt% chain transfer agent (e.g., methane), and the obtained mixture is polymerized at 170-250 deg.C and a pressure of 1,500-3,000kg/cm<2> to obtain a silane-crosslinkable ethylene copolymer of an unsaturated silane compound content of 0.2-5wt%, a MW distribution <=10, a melt flow rate of 0.1-10g/10min, a density <=0.932g/cm<3> and a chlorine content, a methacrylic acid content and an acrylic acid content <=0.2ppm (by weight), respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明 、水によるシラン架橋が可能な保存安定性4成
 加工性、架橋特性に優れる共重合体であって、■イル
ム、発泡体、電線被覆、容器等の各種成形体分野に好適
なエチレン共重合体に関する。
[Detailed description of the invention] [Industrial application field] The present invention is a storage-stable four-component copolymer that can be crosslinked with silane by water and has excellent processability and crosslinking properties, The present invention relates to an ethylene copolymer suitable for various molded object fields such as coatings and containers.

〔従来技術〕[Prior art]

エチレン重合体を架橋して物性を改良し、種々用途に供
することはよく為されている。
It is common practice to crosslink ethylene polymers to improve their physical properties and use them for various purposes.

エチレン重合体の架橋は、主として有機過酸化物による
方法や放射線を照射する方法が行なわれてきたが、安全
面や高額な設備を要する点、また、成形品の形状の自由
度が小さいこと等の欠点がある。そこで、近年、エチレ
ンと不飽和シラン化合物との共重合体をシラノール縮合
触媒の存在下で水分と接触させてシラン架橋させる方法
が、安価な設備、成形品形状の自由度が大きいという点
で試みられている(特開昭55−9611号)。
Cross-linking of ethylene polymers has mainly been carried out using organic peroxides or radiation irradiation, but these methods have problems in terms of safety, require expensive equipment, and have little freedom in the shape of molded products. There are drawbacks. Therefore, in recent years, a method of silane crosslinking by bringing a copolymer of ethylene and an unsaturated silane compound into contact with moisture in the presence of a silanol condensation catalyst has been attempted, as it offers inexpensive equipment and a high degree of freedom in the shape of molded products. (Japanese Unexamined Patent Publication No. 55-9611).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このシラン架橋法は、架橋前のエチレン
ー不飽和シラン化合物共重合体の保存安定性、成形加工
性および架橋成形品の引張特性等が必ずしも満足できる
ものではないという欠点がある。
However, this silane crosslinking method has the disadvantage that the storage stability of the ethylene-unsaturated silane compound copolymer before crosslinking, the moldability, the tensile properties of the crosslinked molded product, etc. are not necessarily satisfactory.

本発明は、特定の分子構造を有し、不純物の少ないエチ
レンー不飽和シラン化合物共重合体のみがこれらの欠点
のないシラン架橋法を採り得ることを見い出して、為さ
れたものである。
The present invention was made based on the discovery that only an ethylene-unsaturated silane compound copolymer having a specific molecular structure and containing few impurities can be subjected to the silane crosslinking method without these drawbacks.

3問題点を解決するための手段〕 即ち、本発明は、「γ−メタクリロキシプロピルトリメ
トキシシランまたはγ−アクリロキシプロピルトリメキ
シシランの不飽和シラン化合物を単独系または複合系で
0.2〜5重鼠%含有し、分子量分布が10以下、メル
トフローレートが0.1〜lOg/10分、密度が0.
932 g/crA以下で、かつ塩素含量とメタクリル
酸およびアクリル酸含量がそれぞれ0.2重fflpp
m以下の、エチレンと該不飽和シラン化合物とから本質
的に成ることを特徴とするシラン架橋性エチレン共重合
体」である。
Means for Solving the 3 Problems] That is, the present invention provides an unsaturated silane compound of γ-methacryloxypropyltrimethoxysilane or γ-acryloxypropyltrimexysilane alone or in a composite system with a concentration of 0.2 to Contains 5%, has a molecular weight distribution of 10 or less, a melt flow rate of 0.1 to 10g/10 min, and a density of 0.
932 g/crA or less, and the chlorine content and methacrylic acid and acrylic acid content are each 0.2 double fflpp
silane-crosslinkable ethylene copolymer, characterized in that it essentially consists of ethylene and the unsaturated silane compound having a molecular weight of less than m.

〔作 用〕[For production]

本発明のエチレン共重合体は、エチレンと上記の特定の
不飽和シラン化合物とから本質的になるものである。こ
こで「木質的」とは、他の不飽和ブ 単量体、例えば、プロピレン、ブテン−1,4−メチル
ペンテン−1、ヘキセン−1等のα−オレフィン;酢酸
ビニル、酪酸ビニル等のビニルエステル;アクリル酸メ
チル、メタクリルアミド、メタクリル酸メチル、アクリ
ロニトリル、無水マレイン酸等の不飽和有機酸誘導体;
スチレン、α−メチルスチレン等の不飽和芳香族華量体
:ビニルメチルエーテル等のビニルエーテル等を本発明
の効果を損わない範囲、即ち一般には30重四%以下の
範囲で、グラフトまたはランダムないしはブロックの形
にて含有する共重合体や、ビニルトリメトキシシラン、
ビニルトリエトキシシラン等の前記特定の不飽和シラン
化合物以外の不飽和シラン化合物を該特定不飽和シラン
化合物含有量よりも少ない量で含有する共重合体もここ
で言う共重合体に該当するということを意味する。
The ethylene copolymer of the present invention essentially consists of ethylene and the above-mentioned specific unsaturated silane compound. Here, "woody" refers to other unsaturated monomers, such as α-olefins such as propylene, butene-1,4-methylpentene-1, and hexene-1; vinyl such as vinyl acetate and vinyl butyrate. Esters; unsaturated organic acid derivatives such as methyl acrylate, methacrylamide, methyl methacrylate, acrylonitrile, maleic anhydride;
Unsaturated aromatic fluorophores such as styrene and α-methylstyrene: vinyl ethers such as vinyl methyl ether, etc. are grafted, randomly or Copolymers containing in block form, vinyltrimethoxysilane,
A copolymer containing an unsaturated silane compound other than the specific unsaturated silane compound such as vinyltriethoxysilane in an amount smaller than the content of the specific unsaturated silane compound also falls under the copolymer referred to herein. means.

上記以外の不飽和シラン化合物とエチレンとから本質的
になる共重合体は、本発明の効果が低い。
Copolymers consisting essentially of unsaturated silane compounds other than those mentioned above and ethylene are less effective in the present invention.

かかる本発明のエチレン共重合体は、γ−メタクリロキ
シプロピルトリメトキシシランまたはγ−アクリロキシ
プロピルトリメトキシシランの不飽和シラン化合物を単
独系または複合系で0.2〜5重推%、好ましくは0.
5〜3重量%含有し、分子量分布(重量平均分子量と数
平均分子量の比)が10以下、好ましくは8以下、メル
トフローレート(VFR)が0.1〜log/10分、
好ましくは0.3〜5g/10分、密度が0.932 
g/ctA以下、好まし7くは0.930 g/Cn(
以下で、かつ塩素含量とメタクリル酸およびアクリル酸
含量がそれぞれ0.2重量ppm以下、好ましくは0.
1重量ppm以下のエチレンと該不飽和シラン化合物と
から本質的になるエチレン共重合体である。
The ethylene copolymer of the present invention contains an unsaturated silane compound of γ-methacryloxypropyltrimethoxysilane or γ-acryloxypropyltrimethoxysilane alone or in a composite system in an amount of 0.2 to 5% by weight, preferably 0.
Contains 5 to 3% by weight, has a molecular weight distribution (ratio of weight average molecular weight to number average molecular weight) of 10 or less, preferably 8 or less, and has a melt flow rate (VFR) of 0.1 to log/10 minutes.
Preferably 0.3 to 5 g/10 min, density 0.932
g/ctA or less, preferably 7 or 0.930 g/Cn (
or less, and the chlorine content and the methacrylic acid and acrylic acid contents are each not more than 0.2 ppm by weight, preferably 0.
It is an ethylene copolymer consisting essentially of 1 ppm by weight or less of ethylene and the unsaturated silane compound.

ここで、該不飽和シラン化合物が0.2重量%未満では
十分な架橋度が得られず、一方、5重量%超過では保存
安定性、成形加工性および架橋成形品の引張特性が悪化
する。分子量分布がIOを超えると保存安定性、成形加
工性が悪化し、かつ架橋成形品の引張特性も不十分とな
る。また、MFRが0.1g/10分未満では成形加工
性および架橋成形品の引張特性が不十分となり、一方、
10g/10分を超えると架橋成形体の引張特性が不満
足となる。
Here, if the unsaturated silane compound is less than 0.2% by weight, a sufficient degree of crosslinking cannot be obtained, while if it exceeds 5% by weight, the storage stability, moldability and tensile properties of the crosslinked molded product will deteriorate. When the molecular weight distribution exceeds IO, storage stability and molding processability deteriorate, and the tensile properties of the crosslinked molded product also become insufficient. Furthermore, if the MFR is less than 0.1 g/10 minutes, the molding processability and tensile properties of the crosslinked molded product will be insufficient;
If it exceeds 10 g/10 minutes, the tensile properties of the crosslinked molded product will become unsatisfactory.

この共重合体の密度は一般に0.920g/ca以上で
あるが、0.932g/crA超過では架橋特性が劣る
ようになる。
The density of this copolymer is generally 0.920 g/ca or more, but if it exceeds 0.932 g/crA, the crosslinking properties become poor.

さらに、この共重合体中の塩素含量またはメタクリル酸
およびアクリル酸含量のいずれかでも0.2重fflp
pm B過では、保存安定性、成形加工性および架橋成
形品の引張特性が悪化する。これらの不純物は原料の不
飽和シラン化合物により混入するものである。
Furthermore, either the chlorine content or the methacrylic acid and acrylic acid content in this copolymer is 0.2 fold fflp.
pm B filtration deteriorates the storage stability, molding processability, and tensile properties of the crosslinked molded product. These impurities are introduced by unsaturated silane compounds as raw materials.

このような本発明のエチレン共重合体は、例えば、圧力
1000〜4000 kg/ ct、温度150〜28
0℃の条件下でラジカル発生剤および連鎖移動剤の存在
下にエチレンと上記不飽和シラン化合物および場合によ
り他の不飽和単量体を共重合しで得られる。
Such an ethylene copolymer of the present invention can be used, for example, at a pressure of 1000 to 4000 kg/ct and a temperature of 150 to 28 kg/ct.
It is obtained by copolymerizing ethylene with the above unsaturated silane compound and optionally other unsaturated monomers in the presence of a radical generator and a chain transfer agent at 0°C.

反応器は槽型、前型のいずれでもよいが、槽型の方が合
理的で好ましい。
The reactor may be either a tank type or a front type, but the tank type is more reasonable and preferable.

具体的には、分子量分布が10以下のものを得るには連
鎖移動剤を用いて、好ましくは、重合圧力力月500〜
3000 kg/co!で、圧力1500kg / c
fの時の反応温度が210℃以下、かつ圧力3000 
kg/c−の時の反応温度が250°C以下で重合する
Specifically, in order to obtain a molecular weight distribution of 10 or less, a chain transfer agent is used, and the polymerization pressure is preferably 500 to 500 m/month.
3000 kg/co! And the pressure is 1500kg/c
The reaction temperature at f is 210°C or less and the pressure is 3000
The polymerization occurs at a reaction temperature of 250°C or less when the reaction temperature is 250°C or less.

また、M F Rが0.1〜10g/10分のものを得
るには、連鎖移動剤量を比較的多く、例えば、重合モノ
マーおよび連鎖移動剤の合計量に対して0.5〜15重
量%とじ、重合圧力と反応温度を種々コントロールする
In addition, in order to obtain an MFR of 0.1 to 10 g/10 minutes, the amount of chain transfer agent should be relatively large, for example, 0.5 to 15% by weight relative to the total amount of polymerization monomer and chain transfer agent. % binding, polymerization pressure and reaction temperature are variously controlled.

密度が0.937g/c++を以下のものを得るのに好
ましい条件は、重合圧力が1500〜3000 kg/
 c+dで、圧力1500 kg/cdの時の反応温度
は170℃以上、かつ圧力3000 kg/c++1の
時の反応温度が190℃以上であり、さらに好ましくは
、連鎖移動剤としてプロピレン、ブテンのようなα−オ
レフィン、中でもプロピレンを用いると有効である。
The preferred conditions for obtaining a product with a density of 0.937 g/c++ or less are a polymerization pressure of 1500 to 3000 kg/c++.
c+d, the reaction temperature at a pressure of 1500 kg/cd is 170°C or higher, and the reaction temperature at a pressure of 3000 kg/c++1 is 190°C or higher, and more preferably a chain transfer agent such as propylene or butene is used. It is effective to use α-olefins, especially propylene.

従って、これらをまとめると、本願発明のエチレン共重
合体を得るのに好ましい重合条件は、重合圧力が150
0〜3000kg/crAおよび反応温度が170〜2
50°Cかつ連鎖移動剤を特定量用いることである。
Therefore, to summarize these, the preferred polymerization conditions for obtaining the ethylene copolymer of the present invention are that the polymerization pressure is 150
0-3000kg/crA and reaction temperature 170-2
50°C and using a specific amount of chain transfer agent.

さらに、塩素含量とメタクリル酸およびアクリル酸含量
がそれぞれ0.2重lppm以下のものを得るためには
、用いる該不飽和シラン化合物中の塩素含量とメタクリ
ル酸およびアクリル酸含量のそれぞれが60重ffip
pm以下、好ましくは30重量ppm以下であることが
必要である。
Furthermore, in order to obtain a product in which the chlorine content and the methacrylic acid and acrylic acid contents are each 0.2 ppm or less, the chlorine content and the methacrylic acid and acrylic acid contents in the unsaturated silane compound to be used must each be 60 ppm or less.
pm or less, preferably 30 ppm or less by weight.

以上の条件下で重合する際に用いるラジカル発生剤は、
有機過酸化物(例えば、ラウロイルパーオキシド、ジブ
ロピオニルバーオキシド、ヘンシイルバーオキシド、ジ
ーし一ブチルパーオキシド、t−ブチルヒドロパーオキ
シド、t−ブチルパーオキシピバレート、【−ブチルパ
ーオキシイソブチレート等)、分子状酸素、アブ化合物
(例えば、アブビスイソブチロニトリル等)等を用いる
ことができる。また、連鎖移動剤としては、パラフィン
系炭化水素(例えば、メタン、ヘキサン等)、α−オレ
フィン(例えば、プロピレン、ブテン等)、ケトン(例
えば、アセトン、シクロヘキサノン等)アルデヒド(例
えば、アセトアルデヒド、n−ブチルアルデヒド等)、
芳香族炭化水素等を用いることができる。共重合し得る
不飽和単量体は、先に「本質的」の説明において挙げた
不飽和単量体を意味する。
The radical generator used for polymerization under the above conditions is:
Organic peroxides (e.g. lauroyl peroxide, dibropionyl peroxide, hensyl peroxide, di-butyl peroxide, t-butyl hydroperoxide, t-butyl peroxypivalate, [-butyl peroxyiso butyrate, etc.), molecular oxygen, ab compounds (for example, abbisisobutyronitrile, etc.), etc. can be used. Chain transfer agents include paraffinic hydrocarbons (e.g., methane, hexane, etc.), α-olefins (e.g., propylene, butene, etc.), ketones (e.g., acetone, cyclohexanone, etc.), aldehydes (e.g., acetaldehyde, n- butyraldehyde, etc.),
Aromatic hydrocarbons and the like can be used. The copolymerizable unsaturated monomer means the unsaturated monomer mentioned above in the explanation of "essential".

本発明の共重合体は、例えば、架橋発泡、架橋フィルム
、架橋電線被覆材、パイプ、チューブ等に応用される。
The copolymer of the present invention is applied to, for example, crosslinked foams, crosslinked films, crosslinked wire covering materials, pipes, tubes, and the like.

応用に際して架橋に用いられるシラノール縮合触媒とし
ては、例えば、ジブチル錫ジラウレート、酢酸第一錫、
オクタン酸第−錫、ナフテン酸鉛、カプリル酸亜鉛、2
−エチルヘキサン酸鉄、ナフテン酸コバルト等のカルボ
ン酸金属塩、チタン酸エステルおよびキレート化合物等
の有機金属化合物(例えば、チタン酸テトラブチルエス
テル、チタン酸テトラノニルエステルおよびビス(アセ
チルアセトニトリル)ジ−イソプロピルチタネート等)
、その他塩基や酸等がある。中でも、有機錫化合物、例
えば、ジブチル錫ジラウレート、ジオクチル錫ジラウレ
ート、ジブチル錫ジアセテート等が好適である。
Silanol condensation catalysts used for crosslinking in applications include, for example, dibutyltin dilaurate, stannous acetate,
Tin-octoate, lead naphthenate, zinc caprylate, 2
- metal carboxylates such as iron ethylhexanoate, cobalt naphthenate, organometallic compounds such as titanate esters and chelate compounds (e.g. tetrabutyl titanate, tetranonyl titanate and bis(acetylacetonitrile) di-isopropyl titanate, etc.)
, other bases and acids. Among these, organic tin compounds such as dibutyltin dilaurate, dioctyltin dilaurate, and dibutyltin diacetate are preferred.

〔実施例〕〔Example〕

以下の例で製造したエチレン共重合体について、その物
性および品質の評価は次の方法によった。
The physical properties and quality of the ethylene copolymers produced in the following examples were evaluated by the following methods.

(物性評価) (1)不飽和シラン化合物の含有量 赤外分光光度計による。(Evaluation of the physical properties) (1) Content of unsaturated silane compound By infrared spectrophotometer.

(2)分子量分布 重量平均分子量(MW)および数平均分子量(Mn)は
、ゲル拡散クロマトグラフ(GPC)による分別物を低
角度レーザー光散乱装置で定量する方法で測定し、次式
および手法により求めた。
(2) Molecular weight distribution The weight average molecular weight (MW) and number average molecular weight (Mn) are measured by quantifying the fractionated product by gel diffusion chromatography (GPC) using a low-angle laser light scattering device, and using the following formula and method. I asked for it.

なお、検量線は、標準高密度ポリエチレンNBS−3R
NB5−3Rを用いて作った。
The calibration curve is based on standard high-density polyethylene NBS-3R.
It was made using NB5-3R.

(重量平均分子量) =Δ■・Σ(K/R)−’/m ここで、 ΔVはサンプリング体積 に=2π2n2/(λ’ N)(dn/dc)2(Hc
os2 θ)n:屈折率 λ:波長 N:アボガドロ数 dn/dc:屈折率のン農度増分 θ:散乱角 Rは2容’t(lとン容媒のRayleigh比の差m
は注入ポリマー重t (数平均分子星)は、E、E、DrohおよびR9八、
Mendel−sonの手法を基に計算した。
(Weight average molecular weight) = Δ■・Σ(K/R)−'/m Here, ΔV is the sampling volume = 2π2n2/(λ' N)(dn/dc)2(Hc
os2 θ)n: refractive index λ: wavelength N: Avogadro's number dn/dc: index increment of refractive index θ: scattering angle R is 2 volumes't (difference between the Rayleigh ratio of l and n volume m
is the injected polymer weight t (number average molecular star) is E, E, Droh and R98,
Calculations were made based on Mendel-son's method.

(31VFR JIS−に676(lに従った。(31VFR According to JIS-676 (l).

(4)密度 JIS−に6760に従った。(4) Density According to JIS-6760.

(5)  メタアクリル酸、アクリル酸の含量(イ)1
0mfのアセトン中に共重合体10gを浸漬し、50°
Cで24時間の抽出を実施する。
(5) Content of methacrylic acid and acrylic acid (a) 1
10g of copolymer was immersed in 0mf acetone and heated at 50°.
Extraction is carried out for 24 hours at C.

(o)50℃で2時間、クマリン螢光誘導体化を実施す
る。
(o) Perform coumarin fluorescence derivatization for 2 hours at 50°C.

(ハ)液クロマトグラフイーにて螢光抄出する。(c) Fluorescent extraction using liquid chromatography.

(6)塩素の含有量 (イ)共重合体をメタノール/アセトン混合溶媒中に浸
漬し、50℃で24時間加熱した後、溶媒を共重合体か
ら分離する。
(6) Chlorine content (a) The copolymer is immersed in a methanol/acetone mixed solvent and heated at 50° C. for 24 hours, and then the solvent is separated from the copolymer.

(D)  このン容媒に、ナトリウムメチラートのメタ
ノール溶液を加え、良く混合攪拌する。
(D) Add a methanol solution of sodium methylate to this container and mix well.

(ハ)この液に、ブロムフェノールブルー指示薬を加え
、指示薬の色が黄色になる迄、硝酸を滴下する。
(c) Add a bromophenol blue indicator to this solution, and drop nitric acid until the indicator turns yellow.

(ニ)次いで、電位差自動滴定装置の電極を入れ、攪拌
しながら硝酸銀溶液で滴定定量する。
(iv) Then, insert the electrode of an automatic potentiometric titrator and titrate with a silver nitrate solution while stirring.

(7)保存安定性 製造直後のエチレンー不飽和シラン化合物共重合体のM
FRと23℃、50%相対湿度の雰囲気下で1月間保存
した該共重合体のVFRとの比を求め、その減少率によ
り次の如く評価した。
(7) Storage stability M of ethylene-unsaturated silane compound copolymer immediately after production
The ratio of FR to VFR of the copolymer stored for one month in an atmosphere of 23° C. and 50% relative humidity was determined, and the rate of decrease was evaluated as follows.

A:10%未満 B:10〜30% C:30%超過 (8)成形加工性 エチレンー不飽和シラン化合物共重合体100重量部に
対し、ジブチル錫ジラウレート1重量%を含有する低密
度ポリエチレン(三菱油化社製「ユカロンEH30J 
)を5重量部ブレンドし、L/D 22の押出機を用い
て170℃で内径21貫のオリフィスからストランドに
して押出してその外観を観察した。
A: Less than 10% B: 10 to 30% C: More than 30% (8) Moldability Low density polyethylene containing 1% by weight of dibutyltin dilaurate based on 100 parts by weight of the ethylene-unsaturated silane compound copolymer (Mitsubishi “Yukalon EH30J” manufactured by Yukasha
) was blended and extruded into a strand through an orifice with an inner diameter of 21 at 170° C. using an extruder with L/D 22, and its appearance was observed.

!9)架橋特性 上記の成形加工性の評価方法にて押出したストランドを
80°C温水中に8時間浸漬して架橋処理を施したサン
プル(前者)と同ストランドを23°C150%相対湿
度の雰囲気下に1週間放置して架橋処理を施したサンプ
ル(後者)とから各1gをとり、これをソックスレー抽
出器に入れ、沸騰キシレンにて10時間抽出することに
よって各ゲル分率を求め、前者のゲル分率に対する後者
のゲル分率の比にて次の通り評価した。
! 9) Crosslinking properties A sample (former) in which a strand extruded using the moldability evaluation method described above was crosslinked by immersing it in 80°C hot water for 8 hours, and the same strand was placed in an atmosphere of 23°C and 150% relative humidity. 1 g of each sample was taken from the sample (the latter) which had been left for a week to undergo cross-linking treatment, placed in a Soxhlet extractor, and extracted with boiling xylene for 10 hours to determine the gel fraction of each sample. The ratio of the latter gel fraction to the gel fraction was evaluated as follows.

A:80%超過 B:50〜80% C:50%未満 (10)  引張特性 上記架橋特性の評価方法にて得られた8時間浸漬の架橋
処理したストランドをオートグラフにて引張速度200
m1/分で引張伸びを測定し、次の通り評価した。
A: More than 80% B: 50 to 80% C: Less than 50% (10) Tensile properties The 8-hour immersed crosslinked strand obtained by the above method for evaluating crosslinking properties was tensile-stretched at 200% using an autograph.
Tensile elongation was measured in m1/min and evaluated as follows.

A: 350%超過 B:250〜350% C:250%未満 実施例および比較例 内容積1.5リツトルの攪拌機付き反応器にエチレンと
第1表に示した不飽和シラン化合物および分子量調節剤
の混合物と、触媒として同友に示すラジカル発生剤を供
給し、連続的にエチレン共重合体を製造した。
A: More than 350% B: 250 to 350% C: Less than 250% Examples and Comparative Examples In a reactor equipped with a stirrer and having an internal volume of 1.5 liters, ethylene, the unsaturated silane compounds shown in Table 1, and the molecular weight regulator were added. The mixture and the radical generator shown in Dotomo were supplied as a catalyst to continuously produce an ethylene copolymer.

このときの重合条件および生成した共重合体の物性、品
質評価は第1表の通りであった。
The polymerization conditions at this time and the physical properties and quality evaluation of the produced copolymer were as shown in Table 1.

なお、第1表中での略記号の意味は次の通りである。The meanings of the abbreviations in Table 1 are as follows.

fllr  M:γ−メタクリロキシプロピルトリメト
キシシラン (21r−A:r−アクリロキシプロピルトリメトキシ
シラン !3) l B : t−プチルパーオキシイソブチレ
ート!41.1 : t−プチルバーオキシイソプロビ
ルカーホネート f5)PV:t−ブチルパーオキンビハレート(61P
:プロピレン f7)H+ヘキナン (以下余白)
flr M: γ-methacryloxypropyltrimethoxysilane (21r-A: r-acryloxypropyltrimethoxysilane!3) l B: t-butylperoxyisobutyrate! 41.1: t-butyl peroxyisopropyl carbonate f5) PV: t-butyl peroxyisopropyl carbonate (61P
: Propylene f7) H + hequinane (blank below)

Claims (1)

【特許請求の範囲】[Claims] γ−メタクリロキシプロピルトリメトキシシランまたは
γ−アクリロキシプロピルトリメトキシシランの不飽和
シラン化合物を単独系または複合系で0.2〜5重量%
含有し、分子量分布が10以下、メルトフローレートが
0.1〜10g/10分、密度が0.932g/cm^
3以下で、かつ塩素含量とメタクリル酸およびアクリル
酸含有量がそれぞれ0.2重量ppm以下の、エチレン
と該不飽和シラン化合物とから本質的に成ることを特徴
とするシラン架橋性エチレン共重合体。
0.2 to 5% by weight of an unsaturated silane compound such as γ-methacryloxypropyltrimethoxysilane or γ-acryloxypropyltrimethoxysilane alone or in a composite system
Contains, molecular weight distribution is 10 or less, melt flow rate is 0.1 to 10 g/10 min, density is 0.932 g/cm^
A silane-crosslinkable ethylene copolymer essentially consisting of ethylene and the unsaturated silane compound, and having a chlorine content and a methacrylic acid content and an acrylic acid content of 0.2 ppm by weight or less, respectively. .
JP60277208A 1985-12-10 1985-12-10 Ethylene copolymer capable of silane crosslinking Expired - Lifetime JPH0635495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60277208A JPH0635495B2 (en) 1985-12-10 1985-12-10 Ethylene copolymer capable of silane crosslinking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60277208A JPH0635495B2 (en) 1985-12-10 1985-12-10 Ethylene copolymer capable of silane crosslinking

Publications (2)

Publication Number Publication Date
JPS62135505A true JPS62135505A (en) 1987-06-18
JPH0635495B2 JPH0635495B2 (en) 1994-05-11

Family

ID=17580315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60277208A Expired - Lifetime JPH0635495B2 (en) 1985-12-10 1985-12-10 Ethylene copolymer capable of silane crosslinking

Country Status (1)

Country Link
JP (1) JPH0635495B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191045A (en) * 1990-09-10 1993-03-02 Nippon Arc Co., Ltd. Coating composition and resin molded article coated thereby
US5250359A (en) * 1990-09-10 1993-10-05 Nippon Arc Co., Ltd. Coating composition and resin molded article coated thereby
JP2008520761A (en) * 2004-11-16 2008-06-19 ボレアリス テクノロジー オイ Crosslinkable polyethylene composition, electrical cable containing the same, and method for preparing the composition
JP2011526311A (en) * 2008-07-03 2011-10-06 ダウ・コーニング・コーポレイション Grafted polyethylene
US9181379B2 (en) 2010-01-06 2015-11-10 Dow Corning Corporation Modified polyolefins
JP2022505358A (en) * 2018-11-12 2022-01-14 ダウ グローバル テクノロジーズ エルエルシー Moisture crosslinkable copolymer of ethylene and hydrolyzable silane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695912A (en) * 1979-12-28 1981-08-03 Mitsubishi Petrochem Co Ltd Preparation of ethylene copolymer
JPS57207632A (en) * 1981-06-16 1982-12-20 Mitsubishi Petrochem Co Ltd Crosslinkable polyethylene resin composition
JPS57208006A (en) * 1981-06-16 1982-12-21 Mitsubishi Petrochemical Co Crosslinked polyethylene resin coated wire
JPS60198006A (en) * 1984-03-21 1985-10-07 日立電線株式会社 Manufacturing method for electric wires and cables

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5695912A (en) * 1979-12-28 1981-08-03 Mitsubishi Petrochem Co Ltd Preparation of ethylene copolymer
JPS57207632A (en) * 1981-06-16 1982-12-20 Mitsubishi Petrochem Co Ltd Crosslinkable polyethylene resin composition
JPS57208006A (en) * 1981-06-16 1982-12-21 Mitsubishi Petrochemical Co Crosslinked polyethylene resin coated wire
JPS60198006A (en) * 1984-03-21 1985-10-07 日立電線株式会社 Manufacturing method for electric wires and cables

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191045A (en) * 1990-09-10 1993-03-02 Nippon Arc Co., Ltd. Coating composition and resin molded article coated thereby
US5250359A (en) * 1990-09-10 1993-10-05 Nippon Arc Co., Ltd. Coating composition and resin molded article coated thereby
JP2008520761A (en) * 2004-11-16 2008-06-19 ボレアリス テクノロジー オイ Crosslinkable polyethylene composition, electrical cable containing the same, and method for preparing the composition
JP4874257B2 (en) * 2004-11-16 2012-02-15 ボレアリス テクノロジー オイ Crosslinkable polyethylene composition, electrical cable containing the same, and method for preparing the composition
JP2011526311A (en) * 2008-07-03 2011-10-06 ダウ・コーニング・コーポレイション Grafted polyethylene
US9181379B2 (en) 2010-01-06 2015-11-10 Dow Corning Corporation Modified polyolefins
JP2022505358A (en) * 2018-11-12 2022-01-14 ダウ グローバル テクノロジーズ エルエルシー Moisture crosslinkable copolymer of ethylene and hydrolyzable silane

Also Published As

Publication number Publication date
JPH0635495B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
EP0193317B2 (en) Silane-crosslinkable copolymer compositions
EP0152180B1 (en) Polyvinyl alcohol alloys
US4446283A (en) Crosslinkable polyethylene resin composition
US8207277B2 (en) Modifying tubular LDPE with free radical initiator
RU2115665C1 (en) Method for modification of ethylene (co)polymers
DE3731054A1 (en) PROCESS FOR PREPARING ETHYLENE / VINYL ACETATE COPOLYMERISES, NEW ETHYLENE / VINYL ACETATE COPOLYMERISES AND THEIR USE
JPS62135505A (en) Ethylene copolymer capable of silane crosslinking
JPS63254118A (en) Production of graft polymer
JPH05195314A (en) Graft copolymer fiber having main chain of propylene polymer substance
JPS61188406A (en) Ethylene copolymer
EP0932632B1 (en) Polyolefins having greater than 5 percent 2-hydroxyethyl methacrylate grafted thereto
JP4191234B2 (en) Cross-linked polyethylene pipe
DE102010003588A1 (en) Diacyloxysilane-based moisture-crosslinkable ethene polymers
JPH05170938A (en) Cross-linked polyethylene resin film
US6107405A (en) Method of making grafted polyolefin compositions
JPH05174639A (en) Crosslinked polyethylene resin covered electric wire/ cable
JPH05170828A (en) Ethylene copolymer and resin composition containing the same
US4617365A (en) Ethylene copolymer
JPH03134918A (en) Manufacture of cross linked polyethylene resin coated electric wire
JPH04110336A (en) Resin composition and multilayer structure using the same
Hoo et al. Free-radical grafting of co-monomer systems onto an ester-containing polymer
CA2217126A1 (en) Acrylic flexible light pipe of improved thermal stability
MXPA97007688A (en) Acrylic and flexible light tube with better thermal stability
JP2007120764A (en) Cross-linked polyethylene pipe
JPS6210109A (en) Crosslinked ethylene copolymer for electrical insulation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term