[go: up one dir, main page]

JPS62169458A - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS62169458A
JPS62169458A JP61012448A JP1244886A JPS62169458A JP S62169458 A JPS62169458 A JP S62169458A JP 61012448 A JP61012448 A JP 61012448A JP 1244886 A JP1244886 A JP 1244886A JP S62169458 A JPS62169458 A JP S62169458A
Authority
JP
Japan
Prior art keywords
metal wiring
wiring layer
layer
contact
line width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61012448A
Other languages
Japanese (ja)
Inventor
Kazuo Kanehiro
金廣 一雄
Takao Maeda
貴雄 前田
Tadashi Igarashi
五十嵐 廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61012448A priority Critical patent/JPS62169458A/en
Publication of JPS62169458A publication Critical patent/JPS62169458A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body (electrodes)
    • H01L23/4822Beam leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain the semiconductor device having high degree of reliability by removing the variation in resistance of a metal wiring layer by a method wherein the line width of the metal wiring layer in the vicinity of the part containing the boundary section where the metal wiring layer is in contact with a glass layer is made wider by five percent or more than the line width of the part where the metal wiring layer is in contact with the glass layer. CONSTITUTION:The line width l2 of the metal wiring layer 4 located in the section L, including the boundary part 9 where the metal wiring layer 4 is in contact with the glass layer 7 is made wider by 5% or more than the line width l1 of the part 11 where the metal wiring layer is in contact with the glass layer. Pertaining to the metal wiring layer, it is desirable that the layer is formed into the prescribed shape by performing an ion plating method or a sputtering method on aluminum or an aluminum alloy. As a result, the increase in electric resistance on the contact boundary part of the metal wiring layer caused by heat cycle or thermal shock can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置、特にセラミック基材上に金属配線
層を有するガラス封止型半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a glass-sealed semiconductor device having a metal wiring layer on a ceramic substrate.

〔従来の技術〕[Conventional technology]

現在使用されている集積回路(以下I’ Oと略称する
)のパッケージ法は樹脂封止型、ガラス−セラミック封
止型及び積層セラミック型の3種類に分類される。これ
らのパッケージ法は信頼性及び価格の点で長短があり、
信頼性に関しては積層セラミック型、ガラス−セラミッ
ク型、樹脂封止型の順に優れ、一方価格の点ではこの逆
の順序となる。最近では、各パッケージ法の短所を克服
すべく研究が進められているが、信頼性と価格において
中間的なガラス−セラミック封止型の改良が強く望まれ
ている。
Currently used packaging methods for integrated circuits (hereinafter abbreviated as I'O) are classified into three types: resin sealing type, glass-ceramic sealing type, and laminated ceramic type. These packaging methods have advantages and disadvantages in terms of reliability and cost.
In terms of reliability, the laminated ceramic type, glass-ceramic type, and resin-sealed type are superior in this order, while in terms of price they are in the opposite order. Recently, research has been carried out to overcome the shortcomings of each packaging method, but there is a strong desire to improve the glass-ceramic sealing type, which is intermediate in terms of reliability and cost.

第2図にガラス−セラミック封止型半導体装置としてビ
ングリッドアレイ (PGA)の−例を示す。kl O
等のセラミック基材1の凹部に工C等の半導体素子2が
Au−8i共晶合金やAuペースト等の接着層3により
塔載されている。また、セラミック基材1には多数の導
電層としてklやA4合金等からなる金属配線層4が形
成され、半導体素子2の各電極と各金属配線層4とがA
uまたはAtのボンディングワイヤで各々結線されてい
る。そして、半導体素子2を気密封止すべく、セラミッ
ク基材1の周縁部に低融点ガラスペーストを塗布し、そ
の上にセラミックまたは金属からなるキャツブ部材6を
載せて加熱して生じたガラス営荀セラミック基材1とキ
ャップ部材6とを封止する。
FIG. 2 shows an example of a bin grid array (PGA) as a glass-ceramic sealed semiconductor device. kl O
A semiconductor element 2, such as a ceramic substrate 1, is mounted on a recessed portion of a ceramic substrate 1, etc., with an adhesive layer 3, such as an Au-8i eutectic alloy or an Au paste. Further, metal wiring layers 4 made of KL, A4 alloy, etc. are formed as a large number of conductive layers on the ceramic base material 1, and each electrode of the semiconductor element 2 and each metal wiring layer 4 are connected to A4.
They are connected with U or At bonding wires. Then, in order to hermetically seal the semiconductor element 2, a low melting point glass paste is applied to the peripheral edge of the ceramic substrate 1, and a cap member 6 made of ceramic or metal is placed on top of the paste and heated. The ceramic base material 1 and the cap member 6 are sealed.

電気信号の入出力は半導体素子2、金属配線N4及び外
部接続用ピン8を通って行なわれる。
Input/output of electrical signals is performed through the semiconductor element 2, metal wiring N4, and external connection pins 8.

工Cを中心とする半導体装置の小型化、高集積化及び低
コスト化の傾向に伴ない、パッケージにおいてはセラミ
ック基材1上の金属配線層4の微細化が要望され、従来
のスクリーン印刷に代ってマスク蒸着等により微細な配
線を形成する方向にある。しかし、金属配線層4が微細
になる程その電気抵抗のフントロールは困難になり、温
度サイクルテストや熱衝撃テスト等の半導体装置の信頼
性評価試験において金属配線層の配線抵抗値が設計値か
ら変化する等、安定した特性が得られない現状であった
With the trend toward miniaturization, higher integration, and lower cost of semiconductor devices, especially semiconductor devices, there is a demand for miniaturization of the metal wiring layer 4 on the ceramic base material 1 in packages, and conventional screen printing Instead, the trend is to form fine wiring by mask vapor deposition or the like. However, as the metal wiring layer 4 becomes finer, it becomes more difficult to control its electrical resistance, and in reliability evaluation tests of semiconductor devices such as temperature cycle tests and thermal shock tests, the wiring resistance value of the metal wiring layer 4 is lower than the design value. The current situation was that stable characteristics could not be obtained due to changes such as changes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等は配線抵抗の変化についで詳細に調査、検討
した結果、第2図に示す金属配線層4のガラス層7との
接触部分と非接触部分との接触境界部9において、温度
サイクル(例えば、−651:’〜+15Or)数の増
加に伴なって接触境界部9の抵抗値が第3図に示す如く
増加することを見出した。
As a result of detailed investigation and study regarding changes in wiring resistance, the inventors of the present invention found that the temperature cycle was (For example, -651:' to +15 Or) It has been found that as the number increases, the resistance value of the contact boundary portion 9 increases as shown in FIG.

この原因は明確ではないが、温度サイクルを与えた場合
、セラミック基材1、金属配線層4及びガラス層7の熱
膨張率が異なるために接触境界部9に熱応力が集中する
こと、及びその結果A4等の金属配線層4の接触境界部
9の近傍りにボイドの集中及び微細なりラックの発生が
起るため、この接触境界部9付近で金属配線層4の電気
抵抗が上昇するものと考えられる。
The reason for this is not clear, but when a temperature cycle is applied, thermal stress concentrates on the contact boundary 9 due to the different coefficients of thermal expansion of the ceramic base material 1, metal wiring layer 4, and glass layer 7. As a result, the concentration of voids and the generation of fine racks occur near the contact boundary part 9 of the metal wiring layer 4 such as A4, so the electrical resistance of the metal wiring layer 4 increases near the contact boundary part 9. Conceivable.

本発明は、か\る抵抗変化の現象の解析に基いて、信頼
性評価試験における金属配線層の抵抗変化をなくし、信
頼性の高い半導体装置を提供することを目的とする。
An object of the present invention is to provide a highly reliable semiconductor device by eliminating resistance changes in a metal wiring layer in a reliability evaluation test based on an analysis of the phenomenon of resistance changes.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の目的を達するために、半導体素子を塔
載したセラミック基材上に形成した金属配線層と、金属
配線層の一部に接触してセラミック基材とキャップ部材
とを固着する封止用ガラス層とを備えた半導体装置であ
って、金属配線層のガラス層との接触境界部を含む近傍
で金属配線層の線幅がガラス層との非接触部での線幅よ
り5%以上大きいことを特徴とする上記半導体装置を提
供するものである。
In order to achieve the above object, the present invention includes a metal wiring layer formed on a ceramic base material on which a semiconductor element is mounted, and a cap member that is fixed to the ceramic base material by contacting a part of the metal wiring layer. A semiconductor device comprising a sealing glass layer, wherein the line width of the metal wiring layer near the contact boundary with the glass layer is 55% larger than the line width at the non-contact part with the glass layer. % or more.

本発明の特徴点を第1図を参照して説明すると、金属配
線層4とガラス層7との接触境界部9を含む近傍りにお
ける金属配線層4の線幅l をガラス7との非接触部分
1)での線幅l よりも5%以上大さく形成するのであ
る。
The characteristic points of the present invention will be explained with reference to FIG. It is formed to be 5% or more larger than the line width l in portion 1).

金属配線層4を増加された線幅! に形成すべき接触境
界部9の近傍りとは、この接触境界部9を含み、その両
側に適当な距離だけ離れた範囲以内を云う。ガラス層7
は金属配線層4との接触境界部9からキャップ部材6と
の接触点まで漸増する断面形状を有するが、上記近傍り
は少なくともこの接触境界部9からキャップ部材6との
接触点までの水平距離だけ接触境界部9の両側から離れ
た範囲を含むことが好ましい。又、金属配線層4の近傍
りに加えてガラス層7との接触部分10全体を線幅t 
に形成しても良い。
Increased line width of metal wiring layer 4! The vicinity of the contact boundary portion 9 to be formed is defined as an area including the contact boundary portion 9 and separated by an appropriate distance on both sides thereof. glass layer 7
has a cross-sectional shape that gradually increases from the contact boundary part 9 with the metal wiring layer 4 to the contact point with the cap member 6, and in the vicinity of the above, at least the horizontal distance from the contact boundary part 9 to the contact point with the cap member 6 It is preferable to include a range away from both sides of the contact boundary portion 9 by a distance of 100 mm. In addition to the vicinity of the metal wiring layer 4, the entire contact portion 10 with the glass layer 7 has a line width t.
It may be formed into

金属配線層としては、アルミニウムまたはアルミニウム
合金をイオンプレーティング法またはスパッタリング法
により所定の形状に形成することが好ましい。Alまた
はその合金を使用すれば、半導体素子の電極、ボンディ
ングワイヤ及び金属配線層を同一材料にでき、ワイヤー
ボンディング及びガラス封止の安定性を増し、高品位で
低コストの半導体装置を得ることができる。又、一般的
にセラミック基材上に形成された金属配線は高い密着性
を確保することが困難であるが、本発明者等はプラズマ
CvD法、イオンプレーティング法又はスパッタリング
法等の方法によりイオン化した粒子を析出させて成膜す
れば、高い密着性が得られることを見い出したものであ
り、この中でマスキングによる部分成膜が可能で製造コ
ストが安いイオンプレーティング又はスパッタリングを
用いること・が好ましい。
As the metal wiring layer, it is preferable to form aluminum or an aluminum alloy into a predetermined shape by an ion plating method or a sputtering method. If Al or its alloy is used, the electrodes, bonding wires, and metal wiring layers of semiconductor elements can be made of the same material, increasing the stability of wire bonding and glass sealing, and making it possible to obtain high-quality, low-cost semiconductor devices. can. In addition, it is generally difficult to ensure high adhesion for metal wiring formed on a ceramic substrate, but the inventors have developed ionization methods such as plasma CVD, ion plating, or sputtering. It was discovered that high adhesion can be obtained by depositing the particles, and among these methods, it is possible to use ion plating or sputtering, which allows partial film formation by masking and has low manufacturing costs. preferable.

〔作用〕[Effect]

金属配線層のガラス層との接触境界部を含む近傍で金属
配線層の線幅をガラス層との非接触部での線幅より5%
以上大きくすることにより、第3図に示したような熱サ
イクルもしくは熱衝撃による金属配線層の接触境界部で
の電気抵抗の上昇が一押えられる。線幅の増加が5%未
満では上記の抵抗の上昇が表われ、金属配線層の抵抗フ
ントロールが困難である。
The line width of the metal wiring layer near the contact boundary with the glass layer is set to 5% of the line width at the non-contact area with the glass layer.
By making it larger than this, the increase in electrical resistance at the contact boundary of the metal wiring layer due to thermal cycles or thermal shock as shown in FIG. 3 can be suppressed. If the increase in line width is less than 5%, the above-mentioned resistance increases and it is difficult to control the resistance of the metal wiring layer.

金属配線層の接触境界部での電気抵抗を下げるためには
その部分で膜厚を増加させることによっても可能である
が、その場合には金属配線層の形成コストが高くなるほ
か、微細配線にとり著しく不利となり実用的ではない。
It is possible to reduce the electrical resistance at the contact boundary of the metal wiring layer by increasing the film thickness at that part, but in that case, the cost of forming the metal wiring layer increases and it is difficult to make fine wiring. This is extremely disadvantageous and impractical.

〔実施例〕〔Example〕

一辺が35mmの正方形のアルミナ基材に、真空度I 
X 1O−4torr、基板温度200C,蒸着速度5
0A/seaの条件でマスクを用いた真空蒸着により、
A4配線層を形成し、第2図に示す従来のPGA構造の
半導体装置を50個製造した。
Vacuum degree I
X 1O-4torr, substrate temperature 200C, deposition rate 5
By vacuum evaporation using a mask under the condition of 0A/sea,
An A4 wiring layer was formed, and 50 semiconductor devices having the conventional PGA structure shown in FIG. 2 were manufactured.

また、同じアルミナ基材に、Arガス導入後の真空度4
 X 10”−’ torr 、基板温度200 C,
)<イアスミ圧I KV、高周波出力150W、蒸着速
度50シ1llecの条件でマスクを用いたイオンプレ
ーティング法により、第1図の如くガラス層との接触境
界部近傍で線幅を非接触部分の線幅より5%だけ大きく
したAl配線層を形成し、上記と同様にPGA構造を有
する本発明の半導体装置を50個製造した。
In addition, the same alumina base material had a vacuum degree of 4 after introducing Ar gas.
X 10''-' torr, substrate temperature 200 C,
) <Ion plating method using a mask under the conditions of Iasumi pressure I KV, high frequency output 150 W, and evaporation rate 50 cm, the line width was changed in the non-contact area near the contact boundary with the glass layer as shown in Figure 1. An Al wiring layer 5% larger than the line width was formed, and 50 semiconductor devices of the present invention having a PGA structure were manufactured in the same manner as above.

前記PGA組立実装工程において、A4配線層の剥離に
よるワイヤーボンディング不良が、従来の装置では13
個あったが、本発明の装置では全くなかった。
In the PGA assembly and mounting process, wire bonding defects due to peeling of the A4 wiring layer occurred in 13 times with conventional equipment.
However, there were none with the device of the present invention.

次に、−60C〜+150Cの温度サイクルテストを1
00サイクル実施し、その後各装置の作動テストを行な
った結果、従来の装置では23個の異常が認められたが
、本発明の装置では全く異常が発生しなかった。
Next, a temperature cycle test of -60C to +150C was carried out.
As a result of carrying out 00 cycles and then testing the operation of each device, 23 abnormalities were observed in the conventional device, but no abnormalities occurred in the device of the present invention.

この実施例ではPGA構造の半導体装置を例示したが、
その他のガラス封圧型の半導体装置にも適用できる。
In this embodiment, a semiconductor device with a PGA structure was illustrated, but
It can also be applied to other glass sealed pressure type semiconductor devices.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、金属配線層のガラス層との接触境界部
を含む近傍で金属配線層の線幅をガラス層との非接触部
分での線幅より5%以上大きくすることにより、熱サイ
クルもしくは熱衝撃による金属配線層の接触境界部での
電気抵抗の上昇を抑えることができるので、金属配線層
の抵抗変化をなくし、信頼性の高い半導体装置を提供で
きる。
According to the present invention, thermal cycle Alternatively, since it is possible to suppress the increase in electrical resistance at the contact boundary of the metal wiring layer due to thermal shock, it is possible to eliminate resistance changes in the metal wiring layer and provide a highly reliable semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1(a)図は本発明における金属配線層及びガラス層
の構造を示す断面図であり、第1(b)図はその平面図
である。第2図は従来のガラス封止型半導体装置の部分
断面図であり、第3図は従来の半導体装置における温度
サイクルテストでのサイクル数と抵抗変化比の関係を示
すグラフである。 1・・セラミック基材 2・・半導体素子4・・金ff
i配線層 5・・ボンデ′イングワイヤ6・・キャップ
部材 7・・ガラス層 9・・接触境界部 10・・接触部分 1)・・非接触部分 L       ’/力゛う7肩 第2図 第3図 サイクル数
FIG. 1(a) is a sectional view showing the structure of a metal wiring layer and a glass layer in the present invention, and FIG. 1(b) is a plan view thereof. FIG. 2 is a partial sectional view of a conventional glass-sealed semiconductor device, and FIG. 3 is a graph showing the relationship between the number of cycles and the resistance change ratio in a temperature cycle test of the conventional semiconductor device. 1. Ceramic base material 2. Semiconductor element 4. Gold ff
i Wiring layer 5...Bonding wire 6...Cap member 7...Glass layer 9...Contact boundary part 10...Contact part 1)...Non-contact part L'/force 7 shoulder Fig. 2 3 figure cycle number

Claims (2)

【特許請求の範囲】[Claims] (1)半導体素子を塔載したセラミック基材上に形成し
た金属配線層と、金属配線層の一部に接触してセラミッ
ク基材とキャップ部材とを固着する封止用ガラス層とを
備えた半導体装置において、金属配線層のガラス層との
接触境界部を含む近傍で金属配線層の線幅がガラス層と
の非接触部での線幅より5%以上大きいことを特徴とす
る、上記半導体装置。
(1) A metal wiring layer formed on a ceramic substrate on which a semiconductor element is mounted, and a sealing glass layer that contacts a part of the metal wiring layer and fixes the ceramic substrate and the cap member. In the semiconductor device, the line width of the metal wiring layer near the contact boundary with the glass layer is 5% or more larger than the line width at the non-contact part with the glass layer. Device.
(2)上記金属配線層はイオンプレーティング法または
スパッタリング法により形成されたアルミニウムまたは
アルミニウム合金からなる、特許請求の範囲(1)項記
載の半導体装置。
(2) The semiconductor device according to claim (1), wherein the metal wiring layer is made of aluminum or an aluminum alloy formed by an ion plating method or a sputtering method.
JP61012448A 1986-01-22 1986-01-22 semiconductor equipment Pending JPS62169458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61012448A JPS62169458A (en) 1986-01-22 1986-01-22 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61012448A JPS62169458A (en) 1986-01-22 1986-01-22 semiconductor equipment

Publications (1)

Publication Number Publication Date
JPS62169458A true JPS62169458A (en) 1987-07-25

Family

ID=11805616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61012448A Pending JPS62169458A (en) 1986-01-22 1986-01-22 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS62169458A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511272B2 (en) 2004-05-14 2009-03-31 Hitachi High-Technologies Corporation Method for controlling charged particle beam, and charged particle beam apparatus
WO2013057867A1 (en) * 2011-10-21 2013-04-25 パナソニック株式会社 Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511272B2 (en) 2004-05-14 2009-03-31 Hitachi High-Technologies Corporation Method for controlling charged particle beam, and charged particle beam apparatus
WO2013057867A1 (en) * 2011-10-21 2013-04-25 パナソニック株式会社 Semiconductor device
US9117770B2 (en) 2011-10-21 2015-08-25 Panasonic Corporation Semiconductor device

Similar Documents

Publication Publication Date Title
US4356374A (en) Electronics circuit device and method of making the same
US4784972A (en) Method of joining beam leads with projections to device electrodes
KR100543481B1 (en) Semiconductor device and manufacturing method thereof
US5904499A (en) Package for power semiconductor chips
JPS629642A (en) Manufacture of semiconductor device
US7030496B2 (en) Semiconductor device having aluminum and metal electrodes and method for manufacturing the same
US4099200A (en) Package for semiconductor beam lead devices
US4042951A (en) Gold-germanium alloy contacts for a semiconductor device
JP2622156B2 (en) Contact method and structure for integrated circuit pads
JPS5994441A (en) Semiconductor device
CN106129038A (en) Integrated circuit chip and manufacturing method thereof
JPS62169458A (en) semiconductor equipment
JPH0758112A (en) Semiconductor device
JPH0645504A (en) Semiconductor device
JPH01192125A (en) Semiconductor device mounting structure
JPS62165349A (en) Lead frame for semiconductor devices
US4605533A (en) Lead frame coated with aluminum as a packaging material in integrated circuits
JPS62193156A (en) semiconductor equipment
JP2579970Y2 (en) Semiconductor device
US5512780A (en) Inorganic chip-to-package interconnection circuit
JPS62285456A (en) Lead frame for glass-sealed semiconductor devices
JPS6043660B2 (en) semiconductor equipment
JP3934011B2 (en) Semiconductor device and manufacturing method thereof
JP2001127208A (en) Semiconductor chip packaging structure and manufacturing method thereof
JPS581551B2 (en) semiconductor pressure transducer