JPS62204575A - Thin film semiconductor device and manufacture thereof - Google Patents
Thin film semiconductor device and manufacture thereofInfo
- Publication number
- JPS62204575A JPS62204575A JP61047842A JP4784286A JPS62204575A JP S62204575 A JPS62204575 A JP S62204575A JP 61047842 A JP61047842 A JP 61047842A JP 4784286 A JP4784286 A JP 4784286A JP S62204575 A JPS62204575 A JP S62204575A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- film
- semiconductor device
- thin film
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は薄膜半導体装置およびその製造方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film semiconductor device and a method for manufacturing the same.
従来の技術
従来の薄膜半導体装置の窒化シリコン膜による7a膜半
導体層の水素化とその保護については、アイイーイーイ
ー、イーディーエル−5:IEEE。BACKGROUND OF THE INVENTION Hydrogenation of a 7a film semiconductor layer using a silicon nitride film in a conventional thin film semiconductor device and its protection are described in IEEE, EDL-5: IEEE.
EDL−5、N o 11 (’84) P 468に
述べられている。第4図に代表例としてMOS F E
Tの断面構成図を示して説明する。絶縁体臭板31の
上にソースとドレインをn型に注入された薄膜半導体層
32が積層され、前記薄膜半導体層32の上にPSG膜
3膜上3層され、さらに前記PSG膜33の上に窒化シ
リコン膜34が積層されている。その製造に際しては、
まず薄膜半導体層32を基板31上に積層してパターン
出しを行った後、ゲート絶縁膜35を熱酸化で形成し、
さらにその上にゲート電極としての薄膜半導体層36を
積層する。その後、ゲート部のパターン出しをしてPS
(JI33を6000A積層し、コンタクトホールを開
けてアルミ37を積層し、アルミ配線のパターン出しを
し、450℃で熱処理する。その後に多量に水素を含む
窒化シリコン膜34を、Si、H4,NH3,N2の混
合ガスを用い基板31音度300℃でプラズマCVDで
積層してから、450℃、N2中で熱処理することによ
って、窒化シリコン11i!34中の水素を#膜半導体
層に熱拡散して水素化を行うものである。EDL-5, No. 11 ('84) P 468. Figure 4 shows a typical example of MOS F E
This will be explained by showing a cross-sectional configuration diagram of T. A thin film semiconductor layer 32 in which the source and drain are implanted into n-type is laminated on the insulator smell plate 31, three layers of PSG film 3 are deposited on the thin film semiconductor layer 32, and three layers are further deposited on the PSG film 33. A silicon nitride film 34 is laminated. When manufacturing it,
First, a thin film semiconductor layer 32 is laminated on a substrate 31 and patterned, and then a gate insulating film 35 is formed by thermal oxidation.
Furthermore, a thin film semiconductor layer 36 as a gate electrode is laminated thereon. After that, pattern out the gate part and PS
(JI33 is laminated at 6000A, contact holes are made, aluminum 37 is laminated, aluminum wiring is patterned, and heat treated at 450°C. After that, a silicon nitride film 34 containing a large amount of hydrogen is coated with Si, H4, NH3 ,N2 by plasma CVD at an acoustic intensity of 300°C, and then heat-treated in N2 at 450°C to thermally diffuse hydrogen in the silicon nitride 11i!34 into the film semiconductor layer. hydrogenation.
発明が解決しようとする問題点
しかしながら、sg半導体層の水素化とその保護は、た
とえば多結晶SiのMOS F E Tでは、移動度、
y th、オンオフ特性などに関係する。水素化するこ
とによりそれらの特性は向上するが、薄膜半導体層から
の水素の放出により劣化が生じる。Problems to be Solved by the Invention However, hydrogenation of the sg semiconductor layer and its protection are difficult due to the mobility,
It is related to y th, on-off characteristics, etc. Hydrogenation improves their properties, but deterioration occurs due to the release of hydrogen from the thin film semiconductor layer.
従来の構成の窒化シリコン膜34では、水素化は多量に
水素を含んだ窒化シリコン膜34の形成後、450℃N
Z中で行なわれる。水素化の際、窒化シリコンWA3
4中の水素は、薄膜半導体層32と外部へ熱拡散または
放出してなくなる。したがって、従来の構成では、薄膜
半導体層32の上にあるのはPSG膜3膜上3素の抜け
た窒化シリコンWi34のみである。水素が抜けた窒化
シリコン膜34は、内部に結合の弱い所ができて膜クラ
ツクが発生しやすく、また保護膜としても水素を放出し
たことにより弱くなり、水などに浸されやすく、また薄
膜半導体層32からの水素の放出を保持する力も弱くな
ることから、薄膜半導体装置の特性の安定性を悪くする
という問題点があった。また密着型イメージセンサなど
のように摩耗の生じやすい所に従来の薄膜半導体装置を
用いた場合は、水素の放出した窒化シリコン膜34では
耐摩耗性などの機械的強度ら弱くなるという問題点があ
った。さらに従来の構成では、熱処理をして水素化する
のに、その熱処理温度が430℃より低いと水素の拡散
が十分でなく、また反対に470℃より高いと水素の放
出が多く、430℃〜470″Cの狭い温度範囲でない
と十分な効果は期待できなかった。以上のことにより、
特性の安定した薄膜半導体装置はまだ実用化に至ってな
い。In the silicon nitride film 34 having a conventional structure, hydrogenation is performed at 450° C.N after forming the silicon nitride film 34 containing a large amount of hydrogen.
It takes place in Z. During hydrogenation, silicon nitride WA3
The hydrogen in 4 is thermally diffused or released to the thin film semiconductor layer 32 and the outside, and disappears. Therefore, in the conventional configuration, only the silicon nitride Wi 34 from which the three elements on the PSG film 3 are removed is on the thin film semiconductor layer 32. The silicon nitride film 34 from which hydrogen has been removed is likely to have weak bonding inside, causing film cracks, and even as a protective film, it becomes weak due to the release of hydrogen and is easily immersed in water, etc., and is a thin film semiconductor. Since the ability to retain the release of hydrogen from the layer 32 is also weakened, there is a problem that the stability of the characteristics of the thin film semiconductor device is deteriorated. Furthermore, when a conventional thin film semiconductor device is used in a place where wear is likely to occur, such as in a contact image sensor, there is a problem that the silicon nitride film 34 in which hydrogen has been released becomes weak in mechanical strength such as wear resistance. there were. Furthermore, in conventional configurations, when hydrogenation is performed by heat treatment, hydrogen diffusion is insufficient if the heat treatment temperature is lower than 430°C, and conversely, if it is higher than 470°C, a large amount of hydrogen is released. A sufficient effect could not be expected unless it was within a narrow temperature range of 470″C.As a result of the above,
Thin film semiconductor devices with stable characteristics have not yet been put into practical use.
そこで本発明は、このような問題点を解決することを目
的とする。Therefore, an object of the present invention is to solve such problems.
問題点を解決するための手段
上記問題点を解決するため本発明装置は、半導体装置を
構成する絶縁膜を、水素を5%より多く含む第1の窒化
シリコン膜と、前記第1の窒化シリコン膜上に積層され
た水素を5%以下含む絶縁体膜とで形成したものである
。Means for Solving the Problems In order to solve the above-mentioned problems, the device of the present invention uses a first silicon nitride film containing more than 5% hydrogen as an insulating film constituting a semiconductor device, and a first silicon nitride film containing more than 5% hydrogen. It is formed by an insulating film containing 5% or less hydrogen and laminated on the film.
また、第1の本発明方法は、半導体装置を構成する絶縁
膜を形成するに際し、気体状シリコン化合物と少なくと
も窒素原子を含むガスとの混合ガスを使った高周波励起
のCVDによる第1の窒化シリコン膜を形成し、この第
1の窒化シリコン膜の七に水素を5%以下含む絶縁体膜
を積1し、その俊、温度350℃以上かつ550℃以下
で熱処理するものである。Further, the first method of the present invention is to form a first silicon nitride film by high-frequency excited CVD using a mixed gas of a gaseous silicon compound and a gas containing at least nitrogen atoms, when forming an insulating film constituting a semiconductor device. A film is formed, an insulating film containing 5% or less hydrogen is laminated on top of the first silicon nitride film, and then heat treated at a temperature of 350° C. or more and 550° C. or less.
また、第2の本発明方法は、半導体装置を構成する絶縁
膜を形成するに際し、気体状シリコン化合物と少なくと
も窒素原子を含むガスとの混合ガスを使った高周波励起
のCVDによる第1の窒化シリコン膜を形成し、この第
1の窒化シリコン膜の上に基板温度が350℃以上かつ
500℃以下で絶縁体膜を積層するものである。Further, in the second method of the present invention, when forming an insulating film constituting a semiconductor device, the first silicon nitride is formed by high-frequency excited CVD using a mixed gas of a gaseous silicon compound and a gas containing at least nitrogen atoms. A film is formed, and an insulating film is laminated on the first silicon nitride film at a substrate temperature of 350° C. or more and 500° C. or less.
作用 本発明による作用は次のようになる。action The effects of the present invention are as follows.
すなわち、水素の拡散源となる水素を多量に含む第1の
窒化シリコン膜を水素の含有量の少ない絶縁体膜で被覆
することにより、水素化により水素を多量に含む窒化シ
リコン膜から水素が抜は出して薄膜半導体層に拡散した
後も、水素を放出した第1の窒化シリコン膜の表面を保
護し、第1の窒化シリコン膜の機械的強度を補い、薄膜
半導体層から外部への水素の放出を抑制して薄膜半導体
装置の特性の安定性と機械的強度とを向上さける。That is, by covering the first silicon nitride film containing a large amount of hydrogen, which serves as a hydrogen diffusion source, with an insulating film containing a small amount of hydrogen, hydrogen can be extracted from the silicon nitride film containing a large amount of hydrogen by hydrogenation. Even after the hydrogen is released and diffused into the thin film semiconductor layer, it protects the surface of the first silicon nitride film from which hydrogen has been released, supplements the mechanical strength of the first silicon nitride film, and prevents hydrogen from flowing out from the thin film semiconductor layer. Emissions are suppressed to improve the stability of characteristics and mechanical strength of thin film semiconductor devices.
また、水素化の熱処理のときに水素が外部へ放出するの
を抑制するので、水素化の熱処理温度などの条件が広く
なり、製造が容易になる。Furthermore, since hydrogen is suppressed from being released to the outside during the heat treatment for hydrogenation, conditions such as the temperature for the heat treatment for hydrogenation can be widened, making production easier.
実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.
第1図は、本発明の第1の実施例のNチャンネル簿HM
O8FETの断面構成図である。石英基板1の上に薄膜
半導体層2として多結晶Si膜が積層されている。多結
晶Siの薄膜半導体層2のソースとドレイン部はAsを
注入してN型となっていて、チャンネル部には拡散を行
っていない。FIG. 1 shows an N-channel board HM of the first embodiment of the present invention.
FIG. 2 is a cross-sectional configuration diagram of an O8FET. A polycrystalline Si film is laminated as a thin film semiconductor layer 2 on a quartz substrate 1 . The source and drain portions of the polycrystalline Si thin film semiconductor layer 2 are made N-type by implanting As, and the channel portion is not diffused.
チャンネル部の上にはゲート絶縁膜3があり、その上に
ゲート電極の多結晶Si膜4が積層されている。薄膜半
導体層2は熱酸化膜5により被覆されている。熱酸化膜
5にはアルミ電極6と薄膜半導体層とのコンタクトのた
めのコンタクトホールが聞けられている。さらに、それ
らの上に、層間絶縁膜でありかつ保護膜である、水素の
拡散源としての、水素を多量に含む第1の窒化シリコン
幕7が積層されていて、その上に水素を多く含まない第
2の窒化シリコン膜8が積層されている。A gate insulating film 3 is provided on the channel portion, and a polycrystalline Si film 4 serving as a gate electrode is laminated thereon. The thin film semiconductor layer 2 is covered with a thermal oxide film 5. A contact hole is formed in the thermal oxide film 5 for contacting the aluminum electrode 6 and the thin film semiconductor layer. Furthermore, a first silicon nitride curtain 7 containing a large amount of hydrogen, which serves as an interlayer insulating film and a protective film and serves as a hydrogen diffusion source, is laminated on top of these. A second silicon nitride film 8 is laminated thereon.
次に製造方法について述べる。厚さ11の石英基板1上
に減圧CVD法でS i H4/He = 0.2、真
空度0.5Torr、温度550°C〜650℃で多結
晶または非晶質のSiの薄膜半導体層2を300人〜1
μm積層し、島状のパターンにエツチングする(前記S
iの?79脱半導体層2は、積層直後はX線的に非晶質
81躾であっても、後の熱処理で多結晶Si膜になる)
。次にゲート絶縁膜3を水蒸気の熱酸化で500人〜2
000人形成し、その上にゲート電極の多結晶Si膜4
を減圧CVD法で積層し、ゲート部のパターン出しをエ
ツチングにより行う。Next, the manufacturing method will be described. A thin film semiconductor layer 2 of polycrystalline or amorphous Si is formed on a quartz substrate 1 with a thickness of 11 by low pressure CVD at Si H4/He = 0.2, degree of vacuum 0.5 Torr, and temperature 550°C to 650°C. 300 people to 1
μm stacked and etched into an island-like pattern (the S
i's? 79 Even if the non-semiconductor layer 2 is amorphous by X-rays immediately after lamination, it becomes a polycrystalline Si film after heat treatment.)
. Next, the gate insulating film 3 is thermally oxidized with water vapor for 500 to 20 minutes.
A polycrystalline Si film 4 of the gate electrode is formed on the polycrystalline Si film 4 of the gate electrode.
are laminated by low-pressure CVD, and the gate portion is patterned by etching.
そして、ソースとドレイン部ASを120kVで3×1
0”/cir注入し、N2中950°Cで5〜20分熱
!l!!理して活性化する(イオン注入を行うときには
薄膜半導体層2のソースとドレインに当る所の上には酸
化膜はない)。次に、水蒸気酸化で熱酸イヒ膜5を全体
の表面に500〜2000人形成した後にこの熱酸化膜
5にコンタクトホールを聞け、アルミ電極6を積層する
。そして、水素の拡散源としての、水素を多量に含む窒
化シリコン膜7を、Si H4。Then, the source and drain parts AS are 3×1 at 120kV.
0"/cir implantation, and heat treatment for 5 to 20 minutes at 950°C in N2 to activate. (When performing ion implantation, there is no oxidation Next, a thermal oxide film 5 of 500 to 2000 layers is formed on the entire surface by steam oxidation, a contact hole is formed in this thermal oxide film 5, and an aluminum electrode 6 is laminated. The silicon nitride film 7 containing a large amount of hydrogen, which serves as a diffusion source, is made of SiH4.
NH:! 、H2の混合ガスを用い、基板1温度を至温
から350℃以下までとして、プラズマCVDにより岸
さ500八〜2μm積層する。その上に、水素を多く含
まない窒化シリコンv8を、SiH4゜N2 、H2の
混合ガスを用い、基板1瀉度を350℃以上かつ550
℃以下で、200人〜2μm積層する。その後アルミ電
極6のパッドに当たる所のコンタクトホールを前記の窒
化シリコン膜7,8に開ける。NH:! , H2, and the temperature of the substrate 1 is kept from the lowest temperature to 350 DEG C. or less, and the layers are stacked to a thickness of 5008 to 2 .mu.m by plasma CVD. On top of that, silicon nitride V8, which does not contain much hydrogen, is applied to the substrate at a temperature of 350°C or higher and 550°C using a mixed gas of SiH4°N2 and H2.
℃ or less, 200 to 2 μm layers are laminated. Thereafter, contact holes corresponding to the pads of the aluminum electrodes 6 are made in the silicon nitride films 7 and 8.
試作したNチャンネル薄膜MO8FETの中で、チャン
ネルtw= iooμm1チャンネル長し=10μmの
ものについて、その移e度と水素化の熱処理温度との関
係を従来のものと比較した図を第2図に示す。Among the prototype N-channel thin film MO8FETs, one with channel tw = iooμm and one channel length = 10μm, the relationship between its mobility and the hydrogenation heat treatment temperature is shown in Figure 2 compared with the conventional one. .
本実施例の方が、熱処理温度が高くても移動度の低下の
小さいことがわかるし、全体的に特性も向上している。It can be seen that the decrease in mobility is smaller in this example even when the heat treatment temperature is higher, and the characteristics are improved overall.
また、安定性試験の結果からも、本実施例の方が従来の
ものよりも安定で耐環境性に強いことがわかった。Moreover, the results of the stability test also showed that the present example was more stable and more resistant to the environment than the conventional one.
また、本実施例では、水素の拡散源である窒化シリコン
膜7と同じ窒化シリコン膜8を水素を多く含まない絶縁
膜として用いていることにより、同じ窒化シリコン膜7
,8が積層されるので、熱膨張系数の違いにより窒化シ
リコン膜7に発生するクラックをなくすことができた。Furthermore, in this embodiment, by using the same silicon nitride film 8 as the silicon nitride film 7 that is a hydrogen diffusion source as an insulating film that does not contain much hydrogen, the same silicon nitride film 7
, 8 are laminated, it is possible to eliminate cracks that occur in the silicon nitride film 7 due to differences in thermal expansion coefficients.
さらに、表面を水素を多く含まない窒化シリコンWA8
で覆ったので、窒化シリコン膜8自体からの水素の放出
によるそれ自体の劣化がなく、薄膜半導体@2からの水
素の放出を抑制する。さらに、窒化シリコン膜8は耐水
性が特に良いので、本実施例の薄膜半導体装置の安定性
と耐水性が向上した。また窒化シリコン脱8は、水素の
拡散源である窒化シリコン膀7と同じプラズマCVD法
でガスと基板1温度だけを変えるだけで積層できるので
、製造工程の短縮ができく特に2チャンバ以上のプラズ
マCVD装置があれば便利である)、水素の拡散源であ
る窒化シリコン膜7が外囲気にさらされることなく、水
素化をしながら、その上に特性の良い保護膜の窒化シリ
コン脱8が積層できた。Furthermore, the surface is made of silicon nitride WA8 which does not contain much hydrogen.
Since the silicon nitride film 8 is covered with hydrogen, there is no deterioration of the silicon nitride film 8 itself due to the release of hydrogen, and the release of hydrogen from the thin film semiconductor @2 is suppressed. Furthermore, since the silicon nitride film 8 has particularly good water resistance, the stability and water resistance of the thin film semiconductor device of this example were improved. In addition, silicon nitride de-8 can be laminated using the same plasma CVD method as the silicon nitride bladder 7, which is a hydrogen diffusion source, by changing only the gas and substrate 1 temperatures, so the manufacturing process can be shortened, especially when using plasma in two or more chambers. (It is convenient to have a CVD device), the silicon nitride film 7, which is a hydrogen diffusion source, is hydrogenated without being exposed to the surrounding air, and a silicon nitride de-8 film, which is a protective film with good properties, is layered on top of it. did it.
また、水素化は窒化シリコン1198の積層と同時に行
えるので、後で熱処理する必要がない。さらにこのとき
同時にアルミ電極6とt’l膜半膜体導体層2コンタク
ト部の熱処理を行っている(アルミ電極のコンタクト部
の熱処理だけを先に行っても別に問題はない)。またア
ルミ電極6は、窒化膜8を積層した後に形成しても問題
はない。また窒化シリコン膜8は、窒化シリコンWA7
のように薄膜半導体層に多量に水素を供給する必要がな
いので、窒化シリコン膜7より膜厚が薄くても十分にそ
の効果はあり、200〜500八程度でもよく、その膜
厚の比が1:3程度あれば、機械的強度の点からもなお
有効である。また本実施例では350℃より高<550
℃以下という高温で水素の含有量の少ない絶縁体膜であ
る窒化シリコンW:!8を積層したので、その結晶性が
良く、緻密な保護膜ができ有効であることがわかった。Furthermore, since hydrogenation can be performed simultaneously with the stacking of silicon nitride 1198, there is no need for subsequent heat treatment. Further, at this time, the aluminum electrode 6 and the contact portion of the T'l film semi-film conductor layer 2 are heat-treated at the same time (there is no particular problem if only the contact portion of the aluminum electrode is heat-treated first). Moreover, there is no problem even if the aluminum electrode 6 is formed after the nitride film 8 is laminated. Further, the silicon nitride film 8 is made of silicon nitride WA7.
Since there is no need to supply a large amount of hydrogen to the thin film semiconductor layer as shown in FIG. A ratio of about 1:3 is still effective from the viewpoint of mechanical strength. In addition, in this example, higher than 350℃<550℃
Silicon nitride W is an insulating film with low hydrogen content at high temperatures below ℃:! 8 was laminated, it was found to be effective because it had good crystallinity and a dense protective film was formed.
そのような高温で水素の含有量の少ない結晶性の良い絶
縁体膜を形成するには、他の材料、たとえばBN、Ti
Nなどの窒化膜や、Si C,Ag2O3,Ta 2
05などの酸化膜も有効である。それらの形成方法は、
金f!!膜(B、Ti 、A!2.Taなど)を先に積
層して窒化または酸化したり、スパッタ、プラズマCV
D、クラスターイオンビーム、CVD、蒸着、プラズマ
溶射など多くのものがある。In order to form a highly crystalline insulating film with low hydrogen content at such high temperatures, other materials such as BN, Ti, etc.
Nitride films such as N, Si C, Ag2O3, Ta 2
An oxide film such as 05 is also effective. The way they are formed is
Money f! ! Films (B, Ti, A!2.Ta, etc.) may be laminated first and then nitrided or oxidized, sputtering, plasma CV
D. There are many methods such as cluster ion beam, CVD, vapor deposition, and plasma spraying.
本実施例のように水素の拡散源である窒化シリコンv7
を形成する前に熱酸化膜5を形成しておくと、プラズマ
による1119半導体層へのダメージがないので、特性
の良い薄膜半導体装置ができた。Silicon nitride v7 which is a hydrogen diffusion source as in this example
By forming the thermal oxide film 5 before forming the 1119 semiconductor layer, there is no plasma damage to the 1119 semiconductor layer, so a thin film semiconductor device with good characteristics can be obtained.
さらに、その酸化膜が熱酸化膜であるから、PSGより
も緻密性が良く、薄膜半導体層からの水素の放出を防止
して、特性の安定性が良い薄膜半導体装置ができた。ま
たこれらの熱酸化膜5と窒化F!7.8を積層すること
で、窒化膜だけだと下の薄膜半導体層2がSi薄膜だっ
た場合に熱膨張係数の差が大きく、このSiiff膜に
クラックが発生しやすいのを、熱酸化膜5と窒化膜7.
8の中間当りにSi薄膜の熱膨張係数があることから、
熱酸化膜5が熱膨張係数の差を緩和してクラックの発生
を防止する。Furthermore, since the oxide film is a thermal oxide film, it has better density than PSG, prevents release of hydrogen from the thin film semiconductor layer, and provides a thin film semiconductor device with good stability of characteristics. In addition, these thermal oxide films 5 and nitride F! By stacking 7.8, the difference in thermal expansion coefficient is large when the thin film semiconductor layer 2 below is a Si thin film, and cracks are likely to occur in this Siiff film when only a nitride film is used. 5 and nitride film 7.
Since the thermal expansion coefficient of the Si thin film is around the middle of 8,
Thermal oxide film 5 alleviates the difference in thermal expansion coefficients and prevents cracks from occurring.
また、水素の拡散源である水素を多量含む窒化シリコン
脱7の中の水素の吊は、水素化の熱処理後も5%よりも
多く、反対に、水素を多く含まない窒化シリコン膜8の
は5%以下であることがSIMs、赤外吸収などの測定
でわかった。また水素を多く含まない窒化シリコン膜8
の水素の量を5%よりも多くづると、保護膜として積層
した窒化シリコン嗅8自体からの水素の放出が顕茗にな
り、膜の劣化が始まり良くない。そして、水素の拡散源
である窒化シリコン膜7が、水素化の後でも水素の吊が
5%よりも多く残るような躾でなげれば、水素化の効果
は弱かった。In addition, the hydrogen concentration in the silicon nitride film 7 containing a large amount of hydrogen, which is a hydrogen diffusion source, is still more than 5% even after the hydrogenation heat treatment, and on the contrary, the hydrogen concentration in the silicon nitride film 8, which does not contain a large amount of hydrogen, is more than 5% even after the hydrogenation heat treatment. It was found by SIMs, infrared absorption, etc. measurements that it was 5% or less. In addition, silicon nitride film 8 that does not contain much hydrogen
If the amount of hydrogen is more than 5%, the release of hydrogen from the silicon nitride film itself, which is laminated as a protective film, becomes significant and the film begins to deteriorate, which is not good. If the silicon nitride film 7, which is a hydrogen diffusion source, is removed in such a way that more than 5% of hydrogen remains even after hydrogenation, the effect of hydrogenation will be weak.
第3図に本発明の第2の実施例を示し、説明する。第1
の実施例と同じNチ↑・ンネル薄腰IVIO8F E
Tであるが、第1の実施例と違う所はイオン注入後に熱
酸化膜を形成しない点である。すなわち、薄膜半導体層
21の上に直接、水素を多量に含む第1の窒化シリコン
膜22を積層して、その上にプラズマ溶射て水素を多く
含まない絶縁体膜23としてB N ’i基板24温度
を室温から350℃で積層した。そして、その後、不活
性ガスまたはH2、またはその混合ifスス中350℃
以上かつ550℃以下で熱処理して水素化を行った。A second embodiment of the present invention is shown in FIG. 3 and will be described. 1st
Same as the example of
The difference from the first embodiment is that a thermal oxide film is not formed after ion implantation. That is, the first silicon nitride film 22 containing a large amount of hydrogen is directly stacked on the thin film semiconductor layer 21, and then plasma sprayed onto the first silicon nitride film 22 to form an insulating film 23 that does not contain a large amount of hydrogen on the BN'i substrate 24. Lamination was carried out at a temperature ranging from room temperature to 350°C. And then inert gas or H2, or their mixture if soot at 350℃
Hydrogenation was performed by heat treatment at temperatures above and below 550°C.
すると、薄膜半導体層21と水素の拡散源の窒化シリコ
ン膜22との間に酸化膜がないので、7!膜半導体層2
1の水素化を比較的低温で速くできた。また、製造工程
の短縮化になった。また、BN。Then, since there is no oxide film between the thin film semiconductor layer 21 and the silicon nitride film 22, which is the hydrogen diffusion source, 7! Membrane semiconductor layer 2
Hydrogenation of 1 could be done quickly and at a relatively low temperature. Additionally, the manufacturing process has been shortened. Also, BN.
Ti N、Mo Nなどの窒化膜とSiCとi −Cは
耐摩耗性が強いので、密着型イメージセンサ、ICカー
ドなどの耐摩耗性を必要とする物の薄膜半導体装置の窒
化シリコン模22の上に被覆するのには最適である、ま
た絶縁体膜23を、ECRによる窒化シリコン膜によっ
ても形成できる。ECRによる窒化シリコン膜は、水素
の含有量が少なく、緻密で堅く、耐薬品性も強いので、
保護膜として有効である。Nitride films such as TiN, MoN, SiC, and i-C have strong wear resistance, so they can be used as silicon nitride patterns 22 for thin film semiconductor devices that require wear resistance, such as contact image sensors and IC cards. The insulating film 23, which is most suitable for covering on top, can also be formed using a silicon nitride film formed by ECR. The silicon nitride film produced by ECR has a low hydrogen content, is dense and hard, and has strong chemical resistance.
Effective as a protective film.
以上の実施例では、薄膜半導体層2,21をLPCVD
による多結晶Si膜として、その水素化について説明し
たが、これらの口とは、非晶質Si膜や多結晶Si膜を
、電子線、レーザ、ランプ熱ふく射などで再結晶化また
は単結晶化したSillyにも有効である。つまり、多
結晶Si膜や再結晶化$1膜に存在する結晶粒界にある
欠陥や、バルク内部に存在する未結合手を、ターミネー
トする効果がある。さらに、Si膜とゲート絶縁膜との
界面の欠陥、未結合手を少なくする効果があるので、単
結晶化したSirc!にも有効である。また上記実施例
では薄膜半導体装置を構成する絶縁膜にMOSFETの
保′ya膜または層間絶縁膜についてだけ記述したが、
ゲート絶縁膜にも本発明が効果があるのはいうまでもな
い。また、材料内部の水素の世によって特性の変化する
部品、装置にも本発明が使えるのはいうまでもない。特
に磁性体のように水素によって飽和磁場定数やHcが変
化するもので、センサー、磁性半導体、磁気記録材料、
磁気抵抗素子などに効果がある。さらに、水素貯蔵合金
などにも本発明の技術手段が有効に使える。In the above embodiment, the thin film semiconductor layers 2 and 21 are formed by LPCVD.
We have explained the hydrogenation of polycrystalline Si films using electron beams, lasers, lamp heat radiation, etc. It is also effective for Silly. In other words, it has the effect of terminating defects at grain boundaries that exist in polycrystalline Si films and recrystallized $1 films and dangling bonds that exist inside the bulk. Furthermore, since it has the effect of reducing defects and dangling bonds at the interface between the Si film and the gate insulating film, single-crystal SiRC! It is also effective for Furthermore, in the above embodiments, only the insulation film or interlayer insulation film of the MOSFET was described as the insulation film constituting the thin film semiconductor device.
It goes without saying that the present invention is also effective for gate insulating films. It goes without saying that the present invention can also be used for parts and devices whose characteristics change depending on the hydrogen content inside the material. In particular, materials such as magnetic materials whose saturation magnetic field constant and Hc change depending on hydrogen, such as sensors, magnetic semiconductors, magnetic recording materials, etc.
Effective for magnetoresistive elements, etc. Furthermore, the technical means of the present invention can be effectively applied to hydrogen storage alloys and the like.
発明の効果
以上述べたように、本発明によれば、薄膜半導体装置を
構成する絶縁膜を、水素の拡散源となる水素を多量に含
む窒化シリコン膜と、その上に積層()た水素の含有量
の少ない絶縁体膜とで構成することにより、1110半
導体層への水素の拡散を有効かつ容易に行い、7aWA
半導体層の保護としてもクラックがなく、耐水性が強り
、機械的強度の強いものができ、薄膜半導体装置の特性
の向上と安定性の向上に寄与可能となる。また、その製
造も容易である。Effects of the Invention As described above, according to the present invention, the insulating film constituting the thin film semiconductor device is composed of a silicon nitride film containing a large amount of hydrogen, which serves as a hydrogen diffusion source, and a hydrogen-containing silicon nitride film laminated thereon. By constructing an insulator film with a low content, hydrogen can be effectively and easily diffused into the 1110 semiconductor layer, and the 7aWA
As a protection for the semiconductor layer, it can be made without cracks, has strong water resistance, and has strong mechanical strength, which can contribute to improving the characteristics and stability of thin film semiconductor devices. Moreover, its manufacture is also easy.
第1図は本発明の第1の実施例におけるNチャンレ
ンネを膜MO8FETの断面図、第2図は本発明の第1
の実施例のMOSFETの移動度と水素化の熱処理温度
との関係を示す図、第3図1を本発明の第2の実施例の
Nヂャンネル薄膜MO3FETの断面図、第4図は従来
のNftンネル薄膜MO8FETの断面図である。
1・・・石英基板、7,22・・・第1の窒化シリコン
膜、8・・・第2の窒化シリコン膜(絶縁体膜)、23
・・・絶縁体膜、24・・・基板
代理人 森 本 義 弘
第1図
/−一石嬰基抜
7−一一苫lの窒イヒシリ7ン腹
3−g7の窒イヒシリフ〕n々鳴に染I峯H莫)第2図
熱処理湿度(’(1)
第3図FIG. 1 is a cross-sectional view of an N-channel MO8FET according to the first embodiment of the present invention, and FIG.
FIG. 3 is a cross-sectional view of the N-channel thin film MOSFET of the second embodiment of the present invention, and FIG. 1 is a cross-sectional view of a channel thin film MO8FET. DESCRIPTION OF SYMBOLS 1... Quartz substrate, 7, 22... First silicon nitride film, 8... Second silicon nitride film (insulator film), 23
...Insulator film, 24...Substrate agent Yoshihiro Morimoto Figure 1/-Ichisoku Yoshimoto 7-11 Tom1's Nitrogen 7-layer 3-g7's Nitrogen Fig. 2 Heat treatment humidity ('(1) Fig. 3
Claims (1)
く含む第1の窒化シリコン膜と、前記第1の窒化シリコ
ン膜上に積層された水素を5%以下含む絶縁体膜とで形
成されていることを特徴とする薄膜半導体装置。 2、水素を5%以下含む絶縁体膜が第2の窒化シリコン
膜であることを特徴とする特許請求の範囲第1項記載の
薄膜半導体装置。 3、第1の窒化シリコン膜の下に酸化膜が形成されてい
ることを特徴とする特許請求の範囲第1項または第2項
記載の薄膜半導体装置。 4、半導体装置を構成する絶縁膜を形成するに際し、気
体状シリコン化合物と少なくとも窒素原子を含むガスと
の混合ガスを使った高周波励起のCVDによる第1の窒
化シリコン膜を形成し、この第1の窒化シリコン膜の上
に水素を5%以下含む絶縁体膜を積層し、その後、温度
350℃以上かつ550℃以下で熱処理することを特徴
とする薄膜半導体装置の製造方法。 5、半導体装置を構成する絶縁膜を形成するに際し、気
体状シリコン化合物と少なくとも窒素原子を含むガスと
の混合ガスを使つた高周波励起のCVDによる第1の窒
化シリコン膜を形成し、この第1の窒化シリコン膜の上
に基板温度が350℃以上かつ550℃以下で絶縁体膜
を積層することを特徴とする薄膜半導体装置の製造方法
。 6、半導体装置を構成する絶縁膜を形成するに際し、気
体状シリコン化合物と少なくとも窒素原子を含むガスと
の混合ガスを使つた高周波励起のCVDで基板温度を室
温から350℃として第1の窒化シリコン膜を形成し、
この第1の窒化シリコン膜の上に、基板温度を 350℃以上かつ500℃以下として第2の窒化シリコ
ン膜を積層することを特徴とする特許請求の範囲第5項
記載の薄膜半導体装置の製造方法。 7、半導体装置を構成する絶縁膜を形成するに際し、気
体状シリコン化合物と少なくともNH_3との混合ガス
を使った高周波励起のCVDにより第1の窒化シリコン
膜を形成し、この第1の窒化シリコン膜の上に、気体状
シリコン化合物とNH_3を除く窒素原子または分子を
含む混合ガスとを使った高周波励起による第2の窒化シ
リコン膜を積層することを特徴とする特許請求の範囲第
4項または第5項記載の薄膜半導体装置の製造方法。 8、半導体装置を構成する絶縁膜を、最初に酸化膜を形
成した後に形成することを特徴とする特許請求の範囲第
4項または第5項記載の薄膜半導体装置の製造方法。 9、薄膜半導体層がα−Siまたは多結晶Siまたは再
結晶化Siまたは単結晶化Siであることを特徴とする
特許請求の範囲第1項記載の薄膜半導体装置。 10、薄膜半導体層がα−Siまたは多結晶Siまたは
再結晶化Siまたは単結晶化Siであることを特徴とす
る特許請求の範囲第4項または第5項記載の薄膜半導体
装置の製造方法。[Claims] 1. An insulating film constituting a semiconductor device includes a first silicon nitride film containing more than 5% hydrogen and a hydrogen content of 5% or less laminated on the first silicon nitride film. A thin film semiconductor device characterized in that it is formed of an insulating film. 2. The thin film semiconductor device according to claim 1, wherein the insulating film containing 5% or less hydrogen is a second silicon nitride film. 3. The thin film semiconductor device according to claim 1 or 2, wherein an oxide film is formed under the first silicon nitride film. 4. When forming an insulating film constituting a semiconductor device, a first silicon nitride film is formed by high-frequency excitation CVD using a mixed gas of a gaseous silicon compound and a gas containing at least nitrogen atoms; 1. A method of manufacturing a thin film semiconductor device, comprising laminating an insulating film containing 5% or less hydrogen on a silicon nitride film, and then heat-treating at a temperature of 350° C. or more and 550° C. or less. 5. When forming an insulating film constituting a semiconductor device, a first silicon nitride film is formed by high-frequency excitation CVD using a mixed gas of a gaseous silicon compound and a gas containing at least nitrogen atoms; A method for manufacturing a thin film semiconductor device, characterized in that an insulating film is laminated on a silicon nitride film at a substrate temperature of 350° C. or higher and 550° C. or lower. 6. When forming the insulating film constituting the semiconductor device, the first silicon nitride is formed by high-frequency excited CVD using a mixed gas of a gaseous silicon compound and a gas containing at least nitrogen atoms, with the substrate temperature ranging from room temperature to 350°C. form a film,
Manufacturing a thin film semiconductor device according to claim 5, characterized in that a second silicon nitride film is laminated on the first silicon nitride film at a substrate temperature of 350° C. or higher and 500° C. or lower. Method. 7. When forming an insulating film constituting a semiconductor device, a first silicon nitride film is formed by high-frequency excited CVD using a mixed gas of a gaseous silicon compound and at least NH_3, and this first silicon nitride film is A second silicon nitride film formed by high frequency excitation using a gaseous silicon compound and a mixed gas containing nitrogen atoms or molecules other than NH_3 is laminated thereon. The method for manufacturing a thin film semiconductor device according to item 5. 8. The method of manufacturing a thin film semiconductor device according to claim 4 or 5, wherein the insulating film constituting the semiconductor device is formed after first forming an oxide film. 9. The thin film semiconductor device according to claim 1, wherein the thin film semiconductor layer is α-Si, polycrystalline Si, recrystallized Si, or single crystallized Si. 10. The method for manufacturing a thin film semiconductor device according to claim 4 or 5, wherein the thin film semiconductor layer is α-Si, polycrystalline Si, recrystallized Si, or single crystallized Si.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61047842A JPS62204575A (en) | 1986-03-05 | 1986-03-05 | Thin film semiconductor device and manufacture thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61047842A JPS62204575A (en) | 1986-03-05 | 1986-03-05 | Thin film semiconductor device and manufacture thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS62204575A true JPS62204575A (en) | 1987-09-09 |
| JPH0556872B2 JPH0556872B2 (en) | 1993-08-20 |
Family
ID=12786620
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP61047842A Granted JPS62204575A (en) | 1986-03-05 | 1986-03-05 | Thin film semiconductor device and manufacture thereof |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS62204575A (en) |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01185926A (en) * | 1988-01-20 | 1989-07-25 | Nec Corp | Manufacture of silicon nitride film |
| JPH029129A (en) * | 1988-06-28 | 1990-01-12 | Matsushita Electric Ind Co Ltd | Manufacturing method of semiconductor device |
| JPH02103936A (en) * | 1988-10-13 | 1990-04-17 | Mitsubishi Electric Corp | semiconductor equipment |
| JPH02187030A (en) * | 1989-01-13 | 1990-07-23 | Kawasaki Steel Corp | Formation of protective film on semiconductor device |
| US6693301B2 (en) | 1991-10-16 | 2004-02-17 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and method of driving and manufacturing the same |
| US6713783B1 (en) | 1991-03-15 | 2004-03-30 | Semiconductor Energy Laboratory Co., Ltd. | Compensating electro-optical device including thin film transistors |
| US7071910B1 (en) | 1991-10-16 | 2006-07-04 | Semiconductor Energy Laboratory Co., Ltd. | Electrooptical device and method of driving and manufacturing the same |
| US7116302B2 (en) | 1991-10-16 | 2006-10-03 | Semiconductor Energy Laboratory Co., Ltd. | Process of operating active matrix display device having thin film transistors |
| US7253440B1 (en) | 1991-10-16 | 2007-08-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having at least first and second thin film transistors |
| US8183135B2 (en) | 2003-03-13 | 2012-05-22 | Nec Corporation | Method for manufacturing thin film transistor having hydrogen feeding layer formed between a metal gate and a gate insulating film |
| WO2013179837A1 (en) * | 2012-05-28 | 2013-12-05 | シャープ株式会社 | Semiconductor device and method for manufacturing same |
| WO2016035627A1 (en) * | 2014-09-02 | 2016-03-10 | シャープ株式会社 | Semiconductor device and method for manufacturing semiconductor device |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS55128851A (en) * | 1979-03-28 | 1980-10-06 | Hitachi Ltd | Semiconductor memory device |
| JPS60136259A (en) * | 1983-12-24 | 1985-07-19 | Sony Corp | Manufacturing method of field effect transistor |
-
1986
- 1986-03-05 JP JP61047842A patent/JPS62204575A/en active Granted
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS55128851A (en) * | 1979-03-28 | 1980-10-06 | Hitachi Ltd | Semiconductor memory device |
| JPS60136259A (en) * | 1983-12-24 | 1985-07-19 | Sony Corp | Manufacturing method of field effect transistor |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH01185926A (en) * | 1988-01-20 | 1989-07-25 | Nec Corp | Manufacture of silicon nitride film |
| JPH029129A (en) * | 1988-06-28 | 1990-01-12 | Matsushita Electric Ind Co Ltd | Manufacturing method of semiconductor device |
| JPH02103936A (en) * | 1988-10-13 | 1990-04-17 | Mitsubishi Electric Corp | semiconductor equipment |
| JPH02187030A (en) * | 1989-01-13 | 1990-07-23 | Kawasaki Steel Corp | Formation of protective film on semiconductor device |
| US6713783B1 (en) | 1991-03-15 | 2004-03-30 | Semiconductor Energy Laboratory Co., Ltd. | Compensating electro-optical device including thin film transistors |
| US6759680B1 (en) | 1991-10-16 | 2004-07-06 | Semiconductor Energy Laboratory Co., Ltd. | Display device having thin film transistors |
| US6693301B2 (en) | 1991-10-16 | 2004-02-17 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device and method of driving and manufacturing the same |
| US7071910B1 (en) | 1991-10-16 | 2006-07-04 | Semiconductor Energy Laboratory Co., Ltd. | Electrooptical device and method of driving and manufacturing the same |
| US7116302B2 (en) | 1991-10-16 | 2006-10-03 | Semiconductor Energy Laboratory Co., Ltd. | Process of operating active matrix display device having thin film transistors |
| US7253440B1 (en) | 1991-10-16 | 2007-08-07 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having at least first and second thin film transistors |
| US8183135B2 (en) | 2003-03-13 | 2012-05-22 | Nec Corporation | Method for manufacturing thin film transistor having hydrogen feeding layer formed between a metal gate and a gate insulating film |
| WO2013179837A1 (en) * | 2012-05-28 | 2013-12-05 | シャープ株式会社 | Semiconductor device and method for manufacturing same |
| CN104335332A (en) * | 2012-05-28 | 2015-02-04 | 夏普株式会社 | Semiconductor device and manufacturing method thereof |
| WO2016035627A1 (en) * | 2014-09-02 | 2016-03-10 | シャープ株式会社 | Semiconductor device and method for manufacturing semiconductor device |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0556872B2 (en) | 1993-08-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5747866A (en) | Application of thin crystalline Si3 N4 liners in shallow trench isolation (STI) structures | |
| JP3202893B2 (en) | Method for producing tantalum oxide thin film by low temperature ozone plasma annealing | |
| JPH09116104A (en) | Semiconductor device capacitor manufacturing method | |
| JPS62204575A (en) | Thin film semiconductor device and manufacture thereof | |
| JPH05259297A (en) | Method for manufacturing semiconductor device | |
| JPH05167008A (en) | Manufacturing method of semiconductor element | |
| US5966624A (en) | Method of manufacturing a semiconductor structure having a crystalline layer | |
| JPH03179778A (en) | Insulating substrate for forming thin film semiconductors | |
| JPH10214889A (en) | Method of forming thin film of crystalline silicon nitride film in shallow trench isolation structure, shallow trench isolation structure for submicron integrated circuit device, and crystalline silicon nitride film | |
| US4224636A (en) | Semiconductor device with thermally compensating SiO2 -silicate glass-SiC passivation layer | |
| US6579614B2 (en) | Structure having refractory metal film on a substrate | |
| KR19980024277A (en) | A semiconductor device having a passivation film | |
| JP2001036078A5 (en) | ||
| JPH0555199A (en) | Semiconductor device | |
| JPH02130961A (en) | field effect transistor | |
| US6551698B1 (en) | Method for treating a silicon substrate, by nitriding, to form a thin insulating layer | |
| JPH05129286A (en) | Silicon nitride film | |
| JPH08335703A (en) | Thin film transistor and manufacturing method thereof | |
| JPH04326576A (en) | Manufacture of semiconductor device | |
| JP3932816B2 (en) | Manufacturing method of semiconductor device | |
| JPH03107463A (en) | Insulating film forming method and device | |
| JP3259641B2 (en) | Protective film structure of semiconductor device | |
| JP2501209B2 (en) | Glass substrate and manufacturing method thereof | |
| JPS649729B2 (en) | ||
| JPH043978A (en) | Manufacture of semiconductor device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |