JPS62211525A - Temperature sensor - Google Patents
Temperature sensorInfo
- Publication number
- JPS62211525A JPS62211525A JP5426986A JP5426986A JPS62211525A JP S62211525 A JPS62211525 A JP S62211525A JP 5426986 A JP5426986 A JP 5426986A JP 5426986 A JP5426986 A JP 5426986A JP S62211525 A JPS62211525 A JP S62211525A
- Authority
- JP
- Japan
- Prior art keywords
- thermistor
- temperature sensor
- heat
- sealed
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001301 oxygen Substances 0.000 claims abstract description 28
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 28
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 26
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000011810 insulating material Substances 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 21
- 229910052573 porcelain Inorganic materials 0.000 claims description 17
- 239000007789 gas Substances 0.000 claims description 16
- 238000002485 combustion reaction Methods 0.000 claims description 13
- 238000010304 firing Methods 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 2
- 239000000446 fuel Substances 0.000 claims 1
- 239000002994 raw material Substances 0.000 claims 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 claims 1
- 238000007789 sealing Methods 0.000 abstract description 4
- 239000000853 adhesive Substances 0.000 abstract description 2
- 230000001070 adhesive effect Effects 0.000 abstract description 2
- 238000010030 laminating Methods 0.000 abstract description 2
- 239000000919 ceramic Substances 0.000 abstract 1
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 230000002950 deficient Effects 0.000 abstract 1
- AEBQGBJXPRNAJF-UHFFFAOYSA-N zinc oxygen(2-) yttrium(3+) Chemical compound [O-2].[Y+3].[O-2].[Zn+2] AEBQGBJXPRNAJF-UHFFFAOYSA-N 0.000 abstract 1
- 238000000034 method Methods 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 230000001681 protective effect Effects 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000009529 body temperature measurement Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- -1 oxygen ion Chemical class 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 241001653121 Glenoides Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
- Thermistors And Varistors (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はサーミスタを検温素子として使用し、特に内燃
IN@などから排出される燃焼排ガスの温度計測用とし
て好適した温度センサに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a temperature sensor that uses a thermistor as a temperature measuring element, and is particularly suitable for measuring the temperature of combustion exhaust gas discharged from an internal combustion engine or the like.
[従来の技術]
内燃l1gl1や各種燃焼炉などの燃焼排ガス温度の計
測方法として、酸素イオン主導式あるいは電子電導式の
サーミスタを検温素子として組み込lνだ温度センサが
使われているが、この種のサーミスタは酸素イオンを電
荷の伝導媒体とする一種の酸素電池として働くので、サ
ーミスタが接触づる雰囲気中にある濃度以上(一般には
5%以上)の酸素が存在しないと、安定した信頼するに
足る計測結果を得ることができない。[Prior Art] As a method of measuring the temperature of combustion exhaust gas from internal combustion engines and various combustion furnaces, a temperature sensor incorporating an oxygen ion-driven or electronic conduction type thermistor as a temperature measuring element is used. The thermistor works as a type of oxygen battery that uses oxygen ions as the charge conduction medium, so it is stable and reliable unless there is a concentration of oxygen higher than a certain concentration (generally 5% or more) in the atmosphere that the thermistor comes into contact with. Unable to obtain measurement results.
温度センサの概略の構造は、サーミスタの保護用カバー
とセン9の取付は金具を兼ねて一端側が封止された耐熱
性金属チューブ内の封止端側にサーミスタを納め、その
電気出力の取り出し用リード線をチューブの解放端に嵌
着させた配線用コードに接続させるようになっている。The general structure of the temperature sensor is that the thermistor is housed at the sealed end of a heat-resistant metal tube that also serves as a metal fitting and one end is sealed, and the thermistor's protective cover and sensor 9 are mounted on the sealed end. The lead wire is connected to a wiring cord fitted to the open end of the tube.
・
[発明、が解決しようとする問題点]
上述のような構造を備えた温度センサは、使用中に金l
1lI製チューブの内壁面がチューブ内に存在する酸素
と結合して次第に酸化して行くために、サーミスタの周
囲の雰囲気中の酸素濃度が時の経過と共に低減し、それ
に伴ってサーミスタの電気出力特性にも変動を来たして
温度センサとしての信頼性が経時的に低下して来る。・ [Problem to be solved by the invention] A temperature sensor with the above-described structure is free from metallurgy during use.
Because the inner wall surface of the 1lI tube combines with the oxygen present in the tube and gradually oxidizes, the oxygen concentration in the atmosphere around the thermistor decreases over time, and the electrical output characteristics of the thermistor decrease accordingly. As a result, the reliability of the temperature sensor decreases over time.
対応策として、チューブの封止端側にチューブ内空間を
大気と連通させるため多数の小孔を穿つたり、配穎コー
ドに通気構造を与えたりすることが必要になる。As a countermeasure, it is necessary to make a large number of small holes on the sealed end side of the tube in order to communicate the inner space of the tube with the atmosphere, or to provide a ventilation structure to the glenoid cord.
しかしこのようにチューブ内空間を外気と連通させない
と、例えば酸素濃度が極度に低い燃焼排ガスの温度を正
確に計測することができなくなってしまう。However, if the inner space of the tube is not communicated with the outside air in this way, it becomes impossible to accurately measure the temperature of combustion exhaust gas, for example, which has an extremely low oxygen concentration.
本発明は酸素濃度が一定水準以上に保たれている雰囲気
中で使用することを要件とするサーミスタを検温素子と
して使用する温度センサについて、その保護用ケーシン
グ内を外気と導通させるための孔あけその他のわずられ
しい加工を施す手間を要せず、また酸素の乏しいないし
は全く存在しない雰囲気中でも高い信頼性をもって使用
することのできる温度センサを提供することを目的とす
る。The present invention relates to a temperature sensor that uses a thermistor as a temperature measuring element and is required to be used in an atmosphere where the oxygen concentration is maintained above a certain level. It is an object of the present invention to provide a temperature sensor that does not require any troublesome processing and can be used with high reliability even in an atmosphere where oxygen is scarce or does not exist at all.
[問題点を解決するための手段]
上記の目的を達成するために本発明による温度センサは
、耐熱性絶縁材料で包囲されると共に、酸素を含む気体
が存在する密閉空間内に納められたサーミスタを、接部
素子として組込んだ構成を採用した。[Means for Solving the Problems] In order to achieve the above object, a temperature sensor according to the present invention includes a thermistor that is surrounded by a heat-resistant insulating material and housed in a closed space in which a gas containing oxygen exists. A configuration was adopted in which the was incorporated as a contact element.
[作用および発明の効果]
上記の如き構成を備えた温度センサは、あるレベル以上
の濃度をもって酸素が存在する雰囲気中で使用すること
を要件とする検温素子としての与−ミスタが、耐熱性磁
性材料で形成され密閉空間内に納められており、且つこ
の空間内には酸素を含む気体が存在するので、同種のサ
ーミスタを使用した従来の温度センサのようにセンサの
ケーシングに外気導入のための多数の小孔を穿つなどの
わずられしい加工作業が不要化する。[Operation and Effects of the Invention] In the temperature sensor having the above-mentioned configuration, the temperature sensor used as a temperature measuring element is required to be used in an atmosphere where oxygen exists at a concentration higher than a certain level. It is made of a material and is housed in a sealed space, and since gas containing oxygen is present in this space, unlike conventional temperature sensors using the same type of thermistor, there is no need to introduce outside air into the sensor casing. This eliminates the need for cumbersome machining operations such as drilling numerous small holes.
またサーミスタは、非金属材料からなり、酸素が存在す
る密閉空間内に納められているので、例えば燃焼排ガス
のようにほとんど酸素を含有しない高温気体に対しても
、計測精度に経時変化を来たずことなく信頼性の高い温
度測定を行うことができる。Furthermore, because thermistors are made of non-metallic materials and are housed in a closed space where oxygen is present, their measurement accuracy may change over time, even for high-temperature gases that contain little oxygen, such as combustion exhaust gas. Highly reliable temperature measurements can be made without any hassle.
[実施例]
以下に付図に示す実施例に基づいて本発明の構成を具体
的に説明する。[Example] The structure of the present invention will be specifically described below based on the example shown in the attached drawings.
第1図と第2図は本発明による温度センサに組み込まれ
ている検温素子としての負温度係数サーミスタを、耐熱
性絶縁材料で包囲された空間内に密閉するための、サー
ミスタ密閉構造の一例を示した側断面図と、この密閉構
造の形成方法の説明図である。Figures 1 and 2 show an example of a thermistor sealing structure for sealing a negative temperature coefficient thermistor as a temperature measuring element incorporated in a temperature sensor according to the present invention in a space surrounded by a heat-resistant insulating material. FIG. 2 is a side sectional view shown and an explanatory diagram of a method of forming this sealed structure.
検温素子としてのサーミスタ1は、酸化亜鉛〜酸化イツ
トリウム20モル%のものを使用し、耐熱性絶縁材料と
してのアルミナ磁器の未焼成シート状体3.4および5
を積層し一体化焼成を行って形成された密閉中1I12
内に納められている。The thermistor 1 as a temperature measuring element uses 20 mol% of zinc oxide to yttrium oxide, and unfired sheets 3.4 and 5 of alumina porcelain as heat-resistant insulating materials.
Sealed medium 1I12 formed by laminating and integrally firing
It is stored inside.
この密閉空間2の形成方法を第2図を参照しながら説明
゛すると、先ず未焼成の極く薄いシート状の短冊形に成
形された3枚のアルミナIa器素材板3.4及び5を用
意する。これら3枚の11♂素材板の巾はそれぞれ等し
く、艮ざは最下層の一枚の磁器素材板3を幾分長くしで
ある。これら3枚の磁器素材板を重ね合わせ大うえ焼成
を行うことによって焼結一体化されるが、焼成に先立っ
て積層構造の中間層となる磁器素材板4には、その長手
方向の一端部に四角形、円形その他の適宜の形状のくり
扱き穴4aを設け、また最下層となる幾分長い磁器素材
板3の上面には、サーミスタ1の出力取り出し用電極6
と7を、導電性ペースト状組成物のプリント法によって
形成させておく。プリント法によって形成される2条の
電橋6および1の一端側は、上記のくり扱ぎ穴4a内に
対向するように位置させる。The method for forming this sealed space 2 will be explained with reference to FIG. 2. First, three alumina Ia material plates 3.4 and 5, which are formed into unfired extremely thin sheet-like rectangular shapes, are prepared. do. The widths of these three 11♂ material plates are the same, and the width is slightly longer than that of the bottom layer, the porcelain material plate 3. These three porcelain material plates are stacked and fired to form a sintered body, but prior to firing, the porcelain material plate 4, which is the middle layer of the laminated structure, has one end in its longitudinal direction. A hollow hole 4a of a square, circular or other appropriate shape is provided, and an electrode 6 for taking out the output of the thermistor 1 is provided on the upper surface of the somewhat long ceramic material plate 3, which is the lowest layer.
and 7 are formed by a printing method using a conductive paste composition. One end sides of the two electric bridges 6 and 1 formed by the printing method are positioned to face each other in the hollowed hole 4a.
しかる後、一対の電極がプリントされている最下層磁器
素材板3の上に中間層の磁器素材板4を重ねると、くり
抜き穴48部分はくぼみとなるので、このくぼみ個所に
半導体磁器としてのサーミスタ1の未焼成素材を、くぼ
み内に完全に充満させるに足りない量だけ充填する。最
後に最上WJT!1器素材板5を重ね合わせたうえ焼成
炉に納めて常法により加熱することによって、三層の1
1V!A素材板3.4および5は焼結合体されて一体構
造化し、くり汰ぎ孔48部分は、サーミスタ密閉構造の
側断面図としての第1図にみられるように、外界から遮
断された密閉空間2を生じさせる。After that, when the middle layer porcelain material plate 4 is placed on the bottom layer porcelain material plate 3 on which the pair of electrodes are printed, the hollowed-out hole 48 becomes a depression, so a thermistor as a semiconductor porcelain is placed in this depression. Fill the unfired material of No. 1 in an amount insufficient to completely fill the cavity. Finally, Mogami WJT! By stacking the single material plates 5 on top of each other and placing them in a firing furnace and heating them in a conventional manner, three layers of
1V! The A material plates 3.4 and 5 are sintered together to form an integral structure, and the cutout hole 48 portion is a hermetic seal cut off from the outside world, as shown in FIG. 1, which is a side sectional view of the thermistor sealed structure. Create space 2.
磁器素材板の焼成過程においては、上述の如くして形成
される密閉空間2内に、この空間を完全に充満するには
足りない昆をもって封入させた、サーミスタ1の未焼成
素材もまた同時に焼成されることになる。そして密閉空
間2の底面にはあらかじめサーミスタ1の出力取り出し
用の電極6および7がプリント印刷されているので焼成
工程においてはサーミスタ1へのリード線の接合も同時
に行われる。20はサーミスタ素材の容器を示している
。During the firing process of the porcelain material board, the unfired material of the thermistor 1, which is filled with enough particles to completely fill the sealed space 2 formed as described above, is also fired at the same time. will be done. Since the electrodes 6 and 7 for taking out the output of the thermistor 1 are printed in advance on the bottom surface of the sealed space 2, the lead wires are connected to the thermistor 1 at the same time in the firing process. 20 indicates a container made of thermistor material.
このようにして形作られたサーミスタ密閉構造の密閉空
隙2内の上層部には、焼成の過程でこの空隙内に閉じ込
められた空気が存在するので、検温素子としての酸素イ
オン’!導式または電子電導式サーミスタの使用上の要
件である、一定濃度(一般には5%以上)の酸素が存在
する雰囲気中に置かれなければならないという条件が満
たされることになる。In the upper layer of the hermetic gap 2 of the thermistor sealed structure formed in this way, there is air trapped within the gap during the firing process, so it can be used as a temperature measuring element! A requirement for use of conductive or electronically conductive thermistors is that they must be placed in an atmosphere containing a certain concentration of oxygen (generally 5% or more).
磁器素材板3〜5、およびサーミスタ素材としての1は
それぞれ純粋な酸化アルミニウムと酸化亜鉛〜酸化イツ
トリウムを使用しているので、これらの焼成過程におい
て反応生成物としての不純ガスが密閉空隙2内を占有す
る不都合を生ずることはない。Since the porcelain material plates 3 to 5 and the thermistor material 1 use pure aluminum oxide and zinc oxide to yttrium oxide, impurity gas as a reaction product enters the sealed gap 2 during the firing process. There will be no inconvenience caused by occupying the space.
またサーミスタ1を完全に外気から遮断させた状態のも
とに封入させている密閉空隙2の構成素材は、純粋なア
ルミナ磁器であるので、温度センサが1000℃以上に
も達する環境下で長時間に亘って使用されても、このア
ルミナ磁器が密閉空隙内に存在する酸素と反応して空隙
内の酸素含有量を低下させることは起らない。Furthermore, since the constituent material of the hermetically sealed gap 2, which seals the thermistor 1 in a state where it is completely isolated from the outside air, is pure alumina porcelain, the temperature sensor can be used for long periods of time in environments where temperatures reach over 1000 degrees Celsius. Even after being used for many years, the alumina porcelain does not react with the oxygen present in the closed gap to reduce the oxygen content in the gap.
第3図に上記実施例に示されたサーミスタ密閉構造体を
組み込んだ、内燃機関の燃焼排ガス温度計測用温度セン
サの構造の一例を、軸方向断面図として示した。FIG. 3 shows, as an axial sectional view, an example of the structure of a temperature sensor for measuring the combustion exhaust gas temperature of an internal combustion engine, which incorporates the thermistor sealed structure shown in the above embodiment.
サーミスタ閉構造体Aは、一端が封止された耐熱耐蝕性
金属デユープ10内の軸芯部に、耐熱性接着剤12を用
いて支持固定されている。サーミスタ1はデユープ10
の封止端側に接して配置されている。サーミスタ保護用
カバ一体としての金属製チューブ10には、中空ボルト
状の温度センサ取付は金具11が外嵌されており、また
チューブ1oのtM放端側には配線コード15の取り付
は用の継手パイプ14が嵌着させである。The thermistor closed structure A is supported and fixed using a heat-resistant adhesive 12 to a shaft core within a heat-resistant and corrosion-resistant metal duplex 10 whose one end is sealed. Thermistor 1 is duplex 10
is placed in contact with the sealed end side of the A metal fitting 11 is fitted onto the metal tube 10 as an integral part of the thermistor protective cover, and a metal fitting 11 is fitted onto the hollow bolt-shaped temperature sensor, and a wiring cord 15 is fitted onto the tM discharging end side of the tube 1o. The joint pipe 14 is fitted.
下WJ磁器素材板3にプリント法によって形成させであ
るサーミスタ1の出力取り出し用電極6および7には、
それぞれリード線8がはんだ付けされており、その一方
の電極は配線コード15の芯線9にはんだ付けされ、他
方の電極は、温度センサの取付金具11に導通される。The output extraction electrodes 6 and 7 of the thermistor 1 are formed on the lower WJ porcelain material plate 3 by a printing method.
Lead wires 8 are soldered to each of them, one electrode of which is soldered to the core wire 9 of the wiring cord 15, and the other electrode electrically connected to the mounting bracket 11 of the temperature sensor.
、bははんだ付は個所、14aは継手パイプ14のかし
め加工個所、17は配線用コネクタである。, b is a soldering part, 14a is a caulking part of the joint pipe 14, and 17 is a wiring connector.
第4図は第2実施例としての温度センサの測温側端部を
示している。第1実施例と異なる点はサーミスタ1の保
護用金属チューブ10の側渦側端に外気との連通孔10
a群を設けた点にある。FIG. 4 shows the temperature measuring side end of a temperature sensor as a second embodiment. The difference from the first embodiment is that there is a communication hole 10 at the end of the protective metal tube 10 of the thermistor 1 on the side vortex side.
This is due to the establishment of group a.
冒頭に述べたように本発明による温度センサは、検温素
子としてのサーミスタの保護用チューブにサーミスタへ
の酸素供給連通孔を設けるための、わずられしい孔あけ
加工を不要化した点が一特長をなしている。しかしサー
ミスタを金属ヂューブ内に密閉することによって、被測
温気体とサーミスタとの直接の接触が妨げられるために
、正確な測温結果が表示されるに至るまでには幾分かの
時間を要することになる。従って、被泪測気体の温度変
化に対する応答性や迅速な計測が特に求められる場合に
は、サーミスタ保護用金属デユープ10に外気との連通
孔10aを設けることが望ましい。As mentioned at the beginning, one of the features of the temperature sensor according to the present invention is that it eliminates the need for the troublesome drilling process to provide an oxygen supply communication hole to the thermistor in the protective tube of the thermistor as a temperature measuring element. is doing. However, by sealing the thermistor inside a metal tube, direct contact between the thermistor and the gas being measured is prevented, so it takes some time before accurate temperature measurement results are displayed. It turns out. Therefore, when responsiveness to temperature changes in the gas to be measured and rapid measurement are particularly required, it is desirable to provide the thermistor protective metal duplex 10 with a communication hole 10a communicating with the outside air.
被計測気体が例えば各種燃焼炉や内燃機関の燃焼排ガス
である場合には、従来の同種の温度センサであれば酸素
濃度が低すぎるためにセンサ機能が失なわれるが、この
実施例センサではサーミスタ1がアルミナ磁器製のカバ
一体によって完全に包被されておりしかも必要濃度の酸
素が共存する状態のもとに置かれているので、同等支障
を来たすことなくその役割を果たしてくれる。また化学
的活性の強い排ガスによってサーミスタ1が悪影響を受
けることも防がれる。If the gas to be measured is, for example, combustion exhaust gas from various combustion furnaces or internal combustion engines, a conventional temperature sensor of the same type would lose its sensor function because the oxygen concentration is too low, but this example sensor uses a thermistor. 1 is completely covered by a cover made of alumina porcelain and is placed in the presence of oxygen at the required concentration, so it can fulfill its role without causing any trouble. Further, the thermistor 1 is prevented from being adversely affected by the chemically active exhaust gas.
第5図に、第4図に示された構造を備える本発明の温度
センサと、この温度センサのサーミスタ密閉構造体Aに
代えて密閉構造を有しない従来のサーミスタを組み込ん
だ、従来タイプの温度センサとについて、それぞれの出
力特性を比較した実験のデータをグラフ化して示した。FIG. 5 shows a conventional type temperature sensor that incorporates the temperature sensor of the present invention having the structure shown in FIG. 4 and a conventional thermistor without a sealed structure in place of the thermistor sealed structure A of this temperature sensor. The graph shows experimental data comparing the output characteristics of each sensor.
実験は温度センサが置かれている領域内の酸素濃度が5
%以上であるいわゆる酸化雰囲気中と、5%以下である
還元雰囲気内とで、それぞれ酸素濃度を変化させて行っ
た。The experiment was conducted when the oxygen concentration in the area where the temperature sensor was placed was 5.
The oxygen concentration was changed in a so-called oxidizing atmosphere where the oxygen concentration was 5% or more and in a reducing atmosphere where the oxygen concentration was 5% or less.
両センサの電気抵抗値(IoaR)対雰囲気温度のグラ
フを求めた所、本発明センサは酸化雰囲気であると還元
雰囲気であるとを1問わず、同一形状のグラフ(イ)を
描いたのに対して、従来センサは酸化雰囲気中ではグラ
フ(イ)と同一の曲線を示したが還元雰囲気中では全く
異なったグラフ(ロ)を描いた。When graphs of electrical resistance (IoaR) versus ambient temperature were obtained for both sensors, the sensor of the present invention drew the same graph (A) regardless of whether it was in an oxidizing atmosphere or a reducing atmosphere. On the other hand, the conventional sensor showed the same curve as graph (a) in an oxidizing atmosphere, but a completely different graph (b) in a reducing atmosphere.
すなわち実験の結果として、従来の湿度センかは測温域
に存在する酸素の濃度の如何によって計測値が著しく変
動するのに対して、本発明のそれは全く酸素81度依存
性を示さないことが確認されたのである。In other words, as a result of experiments, it was found that while the measured value of the conventional humidity sensor fluctuates significantly depending on the concentration of oxygen present in the temperature measurement area, the one of the present invention shows no dependence on oxygen at 81 degrees Celsius. It was confirmed.
第1図は本発明センサに組込まれたサーミスタ取付は構
造体の側断面図、第2図はこの取付は構造体の製造過程
の説明図、第3図は第1図のサーミスタの取付は構造体
を組込んだ温度センサの軸方向断面図、第4図は第2実
施例としての温度センサの部分断面図、第5図は本発明
センサと従来センサの出力特性の比較データグラフであ
る。Figure 1 shows the thermistor mounted in the sensor of the present invention in a side cross-sectional view of the structure, Figure 2 shows the mounting in an explanatory diagram of the manufacturing process of the structure, and Figure 3 shows the mounting of the thermistor in Figure 1 in the structure. FIG. 4 is a partial sectional view of a temperature sensor as a second embodiment, and FIG. 5 is a comparative data graph of the output characteristics of the sensor of the present invention and a conventional sensor.
Claims (1)
体が存在する密閉空間内に納められたサーミスタを、検
温素子として組込んだことを特徴とする温度センサ。 2)前記サーミスタは、安定化ジルコニアからなる磁性
半導体であり、前記耐熱性絶縁材料はアルミナ磁器であ
ることを特徴とする特許請求の範囲第1項記載の温度セ
ンサ。 3)前記密閉空間は、複数枚の未焼性磁器素材板を重ね
合わせたうえ一体的に焼成させることによって形成され
ていることを特徴とする特許請求の範囲第1項または第
2項記載の温度センサ。 4)前記未焼性磁器素材板には、前記サーミスタの電極
を形成させるための導電性ペーストがパターン印刷され
ていると共に、焼成に先立って前記密閉空間域に、この
空間内に充満するに足りない量の、前記サーミスタの未
焼成原料が納められていることを特徴とする特許請求の
範囲第1項ないし第3項のいずれかに記載の温度センサ
。 5)前記温度センサは、燃料の燃焼排ガス温度の計測用
センサであることを特徴とする特許請求の範囲第1項な
いし第4項のいずれかに記載の温度センサ。[Scope of Claims] 1) A temperature sensor incorporating as a temperature measuring element a thermistor surrounded by a heat-resistant insulating material and housed in a closed space in which a gas containing oxygen exists. 2) The temperature sensor according to claim 1, wherein the thermistor is a magnetic semiconductor made of stabilized zirconia, and the heat-resistant insulating material is alumina porcelain. 3) The sealed space is formed by stacking a plurality of unfired porcelain material plates and firing them integrally. temperature sensor. 4) A pattern of conductive paste for forming the electrodes of the thermistor is printed on the unfired porcelain material plate, and a conductive paste is printed on the unfired porcelain material plate in a sufficient amount to fill the closed space before firing. 4. The temperature sensor according to any one of claims 1 to 3, wherein an amount of unfired raw material for the thermistor is stored. 5) The temperature sensor according to any one of claims 1 to 4, wherein the temperature sensor is a sensor for measuring the temperature of combustion exhaust gas of fuel.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61054269A JPH0648219B2 (en) | 1986-03-12 | 1986-03-12 | Temperature sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61054269A JPH0648219B2 (en) | 1986-03-12 | 1986-03-12 | Temperature sensor |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS62211525A true JPS62211525A (en) | 1987-09-17 |
| JPH0648219B2 JPH0648219B2 (en) | 1994-06-22 |
Family
ID=12965854
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP61054269A Expired - Fee Related JPH0648219B2 (en) | 1986-03-12 | 1986-03-12 | Temperature sensor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0648219B2 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0287032A (en) * | 1988-09-22 | 1990-03-27 | Ngk Spark Plug Co Ltd | Thermistor for high temperature |
| JPH03500349A (en) * | 1987-10-01 | 1991-01-24 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Method for manufacturing PTC temperature sensor and PTC temperature sensor element for PTC temperature sensor |
| US5561411A (en) * | 1993-07-08 | 1996-10-01 | Nippondenso Co., Ltd. | Temperature sensor for high temperature and method of producing the same |
| US7766547B2 (en) * | 2006-04-06 | 2010-08-03 | Sauer-Danfoss Aps | Object having a layer of conducting material forming a sensing device |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5419599A (en) * | 1977-07-14 | 1979-02-14 | Kazuichi Ishii | High place escaping slow landing device |
| JPS5821801A (en) * | 1981-07-31 | 1983-02-08 | 富士通株式会社 | Manufacturing method of square plate metal film resistor |
| JPS59218928A (en) * | 1984-05-15 | 1984-12-10 | Matsushita Electric Ind Co Ltd | temperature sensor |
| JPS60924A (en) * | 1983-06-17 | 1985-01-07 | Matsushita Electric Ind Co Ltd | Injection molding machine |
-
1986
- 1986-03-12 JP JP61054269A patent/JPH0648219B2/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5419599A (en) * | 1977-07-14 | 1979-02-14 | Kazuichi Ishii | High place escaping slow landing device |
| JPS5821801A (en) * | 1981-07-31 | 1983-02-08 | 富士通株式会社 | Manufacturing method of square plate metal film resistor |
| JPS60924A (en) * | 1983-06-17 | 1985-01-07 | Matsushita Electric Ind Co Ltd | Injection molding machine |
| JPS59218928A (en) * | 1984-05-15 | 1984-12-10 | Matsushita Electric Ind Co Ltd | temperature sensor |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH03500349A (en) * | 1987-10-01 | 1991-01-24 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Method for manufacturing PTC temperature sensor and PTC temperature sensor element for PTC temperature sensor |
| JPH0287032A (en) * | 1988-09-22 | 1990-03-27 | Ngk Spark Plug Co Ltd | Thermistor for high temperature |
| US5561411A (en) * | 1993-07-08 | 1996-10-01 | Nippondenso Co., Ltd. | Temperature sensor for high temperature and method of producing the same |
| US7766547B2 (en) * | 2006-04-06 | 2010-08-03 | Sauer-Danfoss Aps | Object having a layer of conducting material forming a sensing device |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0648219B2 (en) | 1994-06-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0001510B1 (en) | Gas sensor | |
| US4453397A (en) | Gas detecting sensor | |
| EP0017359B1 (en) | Ceramic type sensor device | |
| US20030146093A1 (en) | Oxygen sensor | |
| JP5638984B2 (en) | Gas sensor | |
| JPS6118857A (en) | Manufacture of electrochemical cell | |
| US4443781A (en) | Gas detecting sensor | |
| EP3136067A1 (en) | Wiring substrate and temperature sensing element | |
| KR100322981B1 (en) | Insulation layer system for circuit electrical insulation | |
| JP4730722B2 (en) | Method for manufacturing laminated gas sensor element and laminated gas sensor element | |
| JPS62211525A (en) | Temperature sensor | |
| JP2003344348A (en) | Oxygen sensor element | |
| JPH0310131A (en) | Thermistor for high temperature use | |
| JP3677920B2 (en) | Oxygen concentration detector | |
| JP3860768B2 (en) | Oxygen sensor element | |
| JP4693304B2 (en) | Oxygen sensor | |
| EP0001511A1 (en) | Thermistor and method of fabrication | |
| JP2003315303A (en) | Oxygen sensor element | |
| JP4698041B2 (en) | Air-fuel ratio sensor element | |
| JP2003279529A (en) | Oxygen sensor element | |
| JPS63290952A (en) | oxygen concentration detector | |
| JP2917633B2 (en) | Oxygen concentration sensor | |
| JP2001041922A (en) | Heater integrated oxygen sensor element | |
| JPS61167857A (en) | Gaseous oxygen sensor | |
| JP2002131278A (en) | Sensor element |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |