JPS6223255B2 - - Google Patents
Info
- Publication number
- JPS6223255B2 JPS6223255B2 JP54042395A JP4239579A JPS6223255B2 JP S6223255 B2 JPS6223255 B2 JP S6223255B2 JP 54042395 A JP54042395 A JP 54042395A JP 4239579 A JP4239579 A JP 4239579A JP S6223255 B2 JPS6223255 B2 JP S6223255B2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- waves
- measured
- flow rate
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012530 fluid Substances 0.000 claims description 47
- 238000001514 detection method Methods 0.000 claims description 28
- 239000000463 material Substances 0.000 claims 1
- 238000003754 machining Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】
本発明は超音波、音波を利用して流体、流体中
の固形物等を検出測定する装置、音波検知装置を
利用した流体の性状判別装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting and measuring a fluid, solid matter, etc. in a fluid using ultrasonic waves or sound waves, and a fluid property determination device using a sonic wave detection device.
測定は通常、被測定物流体中に超音波を照射
し、透過波、反射波、散乱波等の音圧を検出して
行なうが、被測定物は管状水槽中に静止状態で入
れられ、これに超音波を照射し検出測定するのが
普通である。したがつて音波、超音波の照射はパ
ルス的に行ないパルス検出するので、試料が多量
にあるときは不便であり能率的でない。又分解能
が優れたものが得られない。 Measurement is usually performed by irradiating ultrasonic waves into the fluid of the object to be measured and detecting the sound pressure of transmitted waves, reflected waves, scattered waves, etc.The object to be measured is placed stationary in a tubular water tank, and It is common to detect and measure by irradiating ultrasonic waves. Therefore, since the irradiation of sound waves and ultrasonic waves is carried out in pulses and pulse detection is performed, this is inconvenient and inefficient when there are a large number of samples. Also, it is not possible to obtain excellent resolution.
本発明はこの点を改善するために提案されたも
ので、試料の流体を流量、流速を制御しながら音
波検知装置の検出部に直交する方向に流し、この
流動する流体に音波、超音波を照射し、透過、反
射波、散乱波の検出をする音波検知装置の検出信
号を前記流体の流速に対応した時間軸に記録若し
くは表示して測定をするようにしたことを特徴と
する。 The present invention was proposed in order to improve this point, and involves controlling the flow rate and velocity of the sample fluid in a direction perpendicular to the detection section of the sonic detector, and applying sound waves and ultrasonic waves to the flowing fluid. The present invention is characterized in that the measurement is performed by recording or displaying a detection signal of a sonic wave detection device that irradiates the fluid and detects transmitted, reflected waves, and scattered waves on a time axis corresponding to the flow velocity of the fluid.
以下実施例によつて本発明を説明する。第1図
は透過波を検出測定するもので、1は被測定物流
体2を流通させる管路で、この一部を横切るよう
に送波器3及び受波器4を直線上に対向して設け
る。5は発振器、6は変調器、7は増巾器で、こ
の出力高周波を送信用振動子8に作用して振動せ
しめ、振動エネルギを送波器ホーン3から集束し
て流体中に照射する。9は増巾器、10はブラウ
ン管オツシロスコープで、受波器ホーン4を伝わ
る信号が振動子11により電気信号に変換され、
これを増巾してオツシロスコープ10で測定す
る。12は被測定物流体2を供給するポンプ、1
3が駆動モータ、14はモータ制御回路である。 The present invention will be explained below with reference to Examples. Fig. 1 shows a system for detecting and measuring transmitted waves. Reference numeral 1 denotes a pipe through which a fluid 2 to be measured flows, and a wave transmitter 3 and a wave receiver 4 are arranged facing each other in a straight line so as to cross a part of the pipe. establish. Reference numeral 5 is an oscillator, 6 is a modulator, and 7 is an amplifier, which applies this output high frequency wave to a transmitting vibrator 8 to cause it to vibrate, and the vibration energy is focused from the transmitter horn 3 and irradiated into the fluid. 9 is an amplifier, 10 is a cathode ray tube oscilloscope, and the signal transmitted through the receiver horn 4 is converted into an electric signal by a vibrator 11.
This is amplified and measured using an oscilloscope 10. 12 is a pump that supplies the fluid 2 to be measured;
3 is a drive motor, and 14 is a motor control circuit.
管路1を流動する流体2に対して送波器3から
超音波を照射すると、透過波が受波器4に検出さ
れるが、水中照射音波は、水中固形物、汚泥、微
生物等によつて一部が反射され、散乱され、吸収
され、残りの音波が流体中を透過して受波器4に
検出される。したがつて送波器3から所要の音波
を照射し、受波器4で透過波を検出することによ
つて、受波器4の検出信号が流体中の固形物等の
量、大きさ、性状等によつて変化し、この変化す
る検出信号を前記流体の流速に対応した時間軸に
記録若しくは表示する。照射用の音波は発振器5
によつて、所要の、被測定流体2の種類等によつ
て最適な周波数にして発振し、水晶、ロツシエル
塩等の振動子8を励起して所定の音波、超音波の
発振を行ない照射する。受波器4によつて受波さ
れた音波は振動子11により電気信号に変換さ
れ、オツシロスコープ10で測定される。 When ultrasonic waves are irradiated from the transmitter 3 to the fluid 2 flowing through the pipe 1, the transmitted waves are detected by the receiver 4. A portion of the sound wave is reflected, scattered, and absorbed, and the remaining sound wave is transmitted through the fluid and detected by the wave receiver 4. Therefore, by emitting the required sound waves from the wave transmitter 3 and detecting the transmitted waves at the wave receiver 4, the detection signal from the wave receiver 4 can be used to determine the amount, size, etc. of solid matter in the fluid, etc. The detection signal changes depending on the properties and the like, and the changing detection signal is recorded or displayed on a time axis corresponding to the flow velocity of the fluid. The sound waves for irradiation are generated by the oscillator 5.
oscillates at an optimum frequency depending on the type of fluid 2 to be measured, etc., and excites the vibrator 8 made of crystal, Rothsiel salt, etc. to oscillate and irradiate a predetermined sound wave or ultrasonic wave. . The sound waves received by the wave receiver 4 are converted into electrical signals by the vibrator 11 and measured by the oscilloscope 10.
被測定物の流体2はポンプ12によつて管路1
から検出部に直交する方向に常に流れており、流
速、流量を一定に制御することによつて、この流
体の流速に対応した時間に対して測定し、時間軸
(X軸)対する検出信号出力を記録すると第2図
のような測定グラフがオツシロスコープ10によ
つて検出される。流体の流量、流速はポンプ12
によつて制御されるようにしてあり、制御回路1
4により駆動モータ13を制御することによつて
流速制御が行なわれ、その制御された流速に対応
して前記時間軸も同時に制御を行なうことができ
る。流量,流速制御はポンプ12に定量ポンプを
用いて、これを制御回路14のNC制御によつて
制御することにより安定した正確な流量制御がで
き、第2図のような検査グラフが高精度をもつて
得られる。グラフは3回の測定検査を行なつたも
のをスタート時点を備えて同一グラフ上に記載し
たもので、出力は検出信号を純流体の検出信号と
比較してその差をグラフにしたもので、グラフ出
力電圧が低いのは透過度が大きく被測定流体中に
音波の反射、散乱、吸収物質を含まない純流体を
表わし、出力電圧が高いのは流体中に音波吸収物
質を多く含むことを表わし、その時間的変化によ
つて物質の大きさ、形状等を判定することができ
る。グラフ出力電圧が低いのは流体中に音波吸収
物等を多く含むことを表わし、したがつて廃水処
理等における活性汚泥,微生物等の増殖状態等を
容易に検出することができる。そして被測定流体
2を流動させながら送波器3の焦点部分を流動通
過する物質からの透過波を連続的に検出測定して
いるから能率的な測定が可能で、活性汚泥処理等
において処理状態の変化変動傾向等も適確に検知
することができ、曝気、薬剤添加等の自動制御が
常に最良に行なえ、また例えば放電加工等におい
て、加工液を循環させながら加工するとき、その
液循環路において音波検出によつて、加工切削粉
の液中混入状態,液組成の変化等が連続的に正確
に検出できるから、これによつて加工状態を知る
ことができ、加工液の供給量、加工パルス、サー
ボ送り等の制御を常に最良状態に行なうことがで
きる。 The fluid 2 of the object to be measured is transferred to the pipe 1 by a pump 12.
The fluid always flows in the direction perpendicular to the detection part, and by controlling the flow rate and flow rate to a constant value, the measurement is performed at a time corresponding to the flow rate of this fluid, and the detection signal is output with respect to the time axis (X axis). When recorded, a measurement graph as shown in FIG. 2 is detected by the oscilloscope 10. The flow rate and velocity of the fluid is determined by the pump 12.
The control circuit 1
4 controls the drive motor 13 to control the flow velocity, and the time axis can also be controlled simultaneously in accordance with the controlled flow velocity. For flow rate and flow rate control, a metering pump is used as the pump 12, and this is controlled by the NC control of the control circuit 14, which allows stable and accurate flow rate control, and the inspection graph shown in Figure 2 shows high accuracy. You can get it even later. The graph shows the results of three measurement tests performed on the same graph with the starting point, and the output is a graph of the difference between the detection signal and the pure fluid detection signal. A low graph output voltage indicates a pure fluid with high transmittance and no substances that reflect, scatter, or absorb sound waves in the measured fluid, whereas a high output voltage indicates that the fluid contains a large amount of sound wave absorbing substances. , the size, shape, etc. of a substance can be determined based on its temporal changes. A low graph output voltage indicates that the fluid contains a large amount of sound absorbers, etc., and therefore, the state of growth of activated sludge, microorganisms, etc. in wastewater treatment etc. can be easily detected. Since the transmitted wave from the substance flowing through the focal point of the wave transmitter 3 is continuously detected and measured while the fluid to be measured 2 is flowing, efficient measurement is possible, and the treatment status in activated sludge treatment etc. It is possible to accurately detect trends in changes and fluctuations in the temperature, and automatic control of aeration, chemical addition, etc. can always be carried out optimally. Also, when machining is performed while circulating machining fluid in electrical discharge machining, etc., the fluid circulation path can be accurately detected. By using acoustic wave detection, it is possible to continuously and accurately detect the state of machining chips mixed in the liquid, changes in the liquid composition, etc., so the machining status can be known, and the amount of machining fluid supplied and the machining Control of pulses, servo feed, etc. can always be performed in the best condition.
なお以上は、音波の照射、受波器を直線上に配
置して行なう例について説明したが、ある偏向角
度をもつて照射し、受波検出するように設けるこ
とができ、所定方向の反射、散乱波を検出して判
別することができる。また音波発振照射を連続的
に行なう場合について説明して来たが、変調器6
において発振器5からの高周波を断続制御するこ
とによつて振動子8を断続パルス的に作動してパ
ルス的に照射検出を行なうことができる。 Although the example above has been explained in which sound waves are irradiated and the receivers are arranged in a straight line, it is also possible to irradiate the waves at a certain deflection angle and detect the received waves. Scattered waves can be detected and discriminated. Also, although we have explained the case in which sonic oscillation irradiation is performed continuously, the modulator 6
By controlling the high frequency from the oscillator 5 intermittently, the vibrator 8 is actuated in an intermittent pulse manner, and irradiation detection can be performed in a pulse manner.
第3図は他の実施例で、送受波器を兼用するホ
ーン15を反射板16に対向せしめ、その対向間
隙に第1図のようにポンプによつて被測定流体2
を紙面に垂直に流動通過させながら検出するよう
にしたものである。ホーン15上に振動発生用の
放電槽17が設けられ、槽内液中に放電々極18
を挿入し、放電コンデンサ19を接続して高周波
放電、10〜50nsの放電を行つて放電衝撃波によ
る振動を発生するようにしたものである。20は
電源接続端子で、コンデンサ19が充放電する。
21は圧電素子の受波信号の電気信号変換器で、
これもホーン15に接触して設けられ、検出信号
は第1図に説明したように増巾器9、オツシロス
コープ10で検出測定される。 FIG. 3 shows another embodiment, in which a horn 15 that also serves as a transducer is placed opposite a reflection plate 16, and a pump is used to pump the fluid to be measured into the gap between the horns 15 and 16, as shown in FIG.
Detection is performed while the flow passes perpendicular to the plane of the paper. A discharge tank 17 for generating vibrations is provided on the horn 15, and discharge poles 18 are placed in the liquid in the tank.
is inserted, and a discharge capacitor 19 is connected to perform high-frequency discharge of 10 to 50 ns to generate vibrations due to discharge shock waves. 20 is a power supply connection terminal, and a capacitor 19 is charged and discharged.
21 is an electrical signal converter for receiving signals of the piezoelectric element;
This is also provided in contact with the horn 15, and the detection signal is detected and measured by the amplifier 9 and the oscilloscope 10 as explained in FIG.
この実施例によつてはホーン15が送受波器を
兼ねるので、流体2中に伝わる透過波だけでなく
反射、散乱波も同時に検出され、検出信号中に含
めて検出される。また変更例として反射板16を
除去すれば流体2中の反射、散乱波だけが検出で
きる。 In this embodiment, the horn 15 also serves as a wave transmitter/receiver, so that not only transmitted waves transmitted through the fluid 2 but also reflected and scattered waves are simultaneously detected and included in the detection signal. Further, as a modification example, if the reflection plate 16 is removed, only reflected and scattered waves in the fluid 2 can be detected.
第4図は音波発振子に光電電歪素子22を用
い、これを図のようにホーン15に接触して設
け、レーザー発振器23によりレンズ24を通し
てレーザー照射させるものである。 In FIG. 4, a photoelectrostrictive element 22 is used as a sound wave oscillator, which is placed in contact with the horn 15 as shown in the figure, and a laser oscillator 23 irradiates the laser beam through a lens 24.
レーザー発振器23を所要の高周波でQスイツ
チングして音波でパルス照射するレーザーを発振
し、これを振動子22に入力することによつて高
周波、超音波の振動を発生させるようにしたもの
である。振動音の被測定物流体への照射、受波検
出等は第3図の場合と同様である。 The laser oscillator 23 is Q-switched at a required high frequency to oscillate a laser that emits pulses of sound waves, and this is input to the vibrator 22 to generate high frequency and ultrasonic vibrations. Irradiation of the vibration sound onto the fluid under test, reception detection, etc. are the same as in the case of FIG. 3.
なお検出信号の測定判別にはペンオツシロ、X
―Yレコーダ、その他任意の装置が利用できる。 In addition, for measuring and determining the detection signal, use a pen tip,
- Y recorder or any other device can be used.
以上説明したように、音波、超音波を流体に照
射し、その透過波、反射波、散乱波等を受波検出
して被測定流体の性状検出など行なうとき、前記
被測定流体を検出部に直交する方向に流動し流
量、流速を一定に制御しながら音波検知装置の検
出部を流動せしめ、この流動する被測定物流体に
対して集束して照射した音波の反射、散乱、又は
透過波を検出し、検出信号を前記流体の流速に対
応した時間軸に記録若しくは表示して測定するよ
うにしたから連続的な検出、監視ができ、前記被
測定流体の流量、流速を最良の値に変更制御する
ことによつて分解能の優れた流体の性状判別を行
なうことができる。 As explained above, when detecting the properties of a fluid to be measured by irradiating a fluid with sound waves or ultrasonic waves and receiving and detecting the transmitted waves, reflected waves, scattered waves, etc., the fluid to be measured is sent to the detection section. It flows in the perpendicular direction and controls the flow rate and velocity at a constant level through the detection part of the sound wave detection device, and detects the reflected, scattered, or transmitted waves of the sound waves that are focused and irradiated to the flowing fluid to be measured. Since the detection signal is recorded or displayed on a time axis corresponding to the flow rate of the fluid, continuous detection and monitoring is possible, and the flow rate and flow rate of the fluid to be measured are changed to the best values. By controlling this, it is possible to determine the properties of the fluid with excellent resolution.
第1図は本発明の一実施例構成図、第2図は検
出特性の一例グラフ図、第3図及び第4図は他の
実施例構成図である。
2は被測定物流体、3は音波送波器、4は音波
受波器、12は流動ポンプ、13はモータ、14
は制御回路である。
FIG. 1 is a configuration diagram of one embodiment of the present invention, FIG. 2 is a graph diagram of an example of detection characteristics, and FIGS. 3 and 4 are configuration diagrams of other embodiments. 2 is a fluid to be measured, 3 is a sonic wave transmitter, 4 is a sonic wave receiver, 12 is a flow pump, 13 is a motor, 14
is the control circuit.
Claims (1)
し、その反射波、散乱波、又は透過波を検出する
音波検知装置を備えたものに於て、前記被測定物
流体を音波検知装置の検出部に直交する方向に流
動させる装置を設け、且つ該流動装置による前記
被測定物流体を所定の流量、流速に制御する装置
を設け、前記音波検知装置の検出信号を前記流速
制御装置による流体流速に対応した時間軸に記録
若しくは表示して測定する装置を設けたことを特
徴とする流体の性状判別装置。 2 流動装置に定量ポンプを用い、流量、流速制
御装置にNC制御装置を用いることを特徴とする
特許請求の範囲第1項に記載の流体の性状判別装
置。[Scope of Claims] 1. A device equipped with a sonic wave detection device that irradiates focused sound waves or ultrasonic waves onto a fluid to be measured and detects reflected waves, scattered waves, or transmitted waves thereof, A device for flowing the material fluid in a direction orthogonal to the detection section of the sonic detector is provided, and a device is provided for controlling the fluid to be measured to a predetermined flow rate and flow velocity by the flow device, and a detection signal of the sonic detector is provided. A fluid property determining device comprising: a device for recording or displaying and measuring on a time axis corresponding to the fluid flow velocity by the flow velocity control device. 2. The fluid property determination device according to claim 1, wherein a metering pump is used as the flow device, and an NC control device is used as the flow rate and flow rate control device.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4239579A JPS55134349A (en) | 1979-04-06 | 1979-04-06 | Sound wave microscope |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP4239579A JPS55134349A (en) | 1979-04-06 | 1979-04-06 | Sound wave microscope |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS55134349A JPS55134349A (en) | 1980-10-20 |
| JPS6223255B2 true JPS6223255B2 (en) | 1987-05-22 |
Family
ID=12634867
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP4239579A Granted JPS55134349A (en) | 1979-04-06 | 1979-04-06 | Sound wave microscope |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS55134349A (en) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5410651B2 (en) * | 2007-02-22 | 2014-02-05 | 株式会社東芝 | Surface degradation detection apparatus and method |
| JP5248443B2 (en) * | 2008-08-13 | 2013-07-31 | 株式会社神戸製鋼所 | Ultrasonic microscope |
| JP5550534B2 (en) * | 2010-11-25 | 2014-07-16 | 株式会社神戸製鋼所 | Ultrasonic microscope |
-
1979
- 1979-04-06 JP JP4239579A patent/JPS55134349A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS55134349A (en) | 1980-10-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4819649A (en) | Noninvasive vibration measurement system and method for measuring amplitude of vibration of tissue in an object being investigated | |
| US11137494B2 (en) | Distance-detection system for determining a time-of-flight measurement and having a reduced dead zone | |
| Leighton et al. | Acoustic detection of gas bubbles in a pipe | |
| CN103454643B (en) | Method for accurately measuring constant sound pressure FSK ultrasonic wave transition time | |
| JPH02504310A (en) | Method and apparatus for monitoring solid phase parameters of suspensions | |
| JPS6223255B2 (en) | ||
| US3861200A (en) | Method and instrument for analysing materials by ultrasonic pulses | |
| US4492117A (en) | Ultrasonic nondestructive test apparatus | |
| KR20240022580A (en) | fluid sensor | |
| JP2000002648A (en) | Method and apparatus for measurement of breakdown threshold value of fine particles as well as measuring apparatus for fine particles in liquid by using them | |
| JPS628726B2 (en) | ||
| SU1462182A1 (en) | Method of measuring size of precipitation drops | |
| SU1244579A1 (en) | Method of determining concentration of suspended particles in suspensions | |
| SU1196751A1 (en) | Method of measuring occluded gas in liquid | |
| JPS61128127A (en) | Supersonic wave pressure intensity measurement and apparatus therefor | |
| RU2188398C1 (en) | Method of ultrasonic indication of level of loose media contained in reservoir | |
| SU1620931A1 (en) | Device for determining content of gas in gas-liquid medium | |
| RU2195635C1 (en) | Method of measurement of level of liquid and loose media | |
| SU1673950A1 (en) | Method of ultrasonic quality control of a plastic envelope | |
| SU1726997A1 (en) | Meter for measurement of rate of propagation of ultrasound oscillations in medium | |
| SU590659A1 (en) | Ultrasonic method for quality control of butt welds | |
| SU723431A1 (en) | Method of monitoring liquid physical parameters | |
| Niemi et al. | P2I-7 On a New Sensing Strategy Using a Combination of Ultrasonic and Photoacoustic Techniques | |
| SU1495728A1 (en) | Device for measuring intensity of magnetic field | |
| RU2037817C1 (en) | Method for testing materials with acoustic vibrations |