JPS6225710A - Optical multiplexer/demultiplexer - Google Patents
Optical multiplexer/demultiplexerInfo
- Publication number
- JPS6225710A JPS6225710A JP60165125A JP16512585A JPS6225710A JP S6225710 A JPS6225710 A JP S6225710A JP 60165125 A JP60165125 A JP 60165125A JP 16512585 A JP16512585 A JP 16512585A JP S6225710 A JPS6225710 A JP S6225710A
- Authority
- JP
- Japan
- Prior art keywords
- hologram
- wave
- optical
- demultiplexer
- diffraction grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29305—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
- G02B6/29308—Diffractive element having focusing properties, e.g. curved gratings
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/03—WDM arrangements
- H04J14/0307—Multiplexers; Demultiplexers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/32—Holograms used as optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29305—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
- G02B6/2931—Diffractive element operating in reflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29379—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
- G02B6/2938—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Holo Graphy (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、光通信などにおいて、複数の異なる波長の光
を用いて、多重伝送を行うときに用いる光合波・分波器
に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical multiplexer/demultiplexer used in optical communications and the like to perform multiplex transmission using light of a plurality of different wavelengths.
従来の技術
従来、光合波・分波器に用いる回折格子は、平面波と平
面波の干渉によって作成したホログラムからなる平面直
線回折格子を用いたものと、機械的刻線法または光学的
に作成した凹面回折格子を用いたものが、一般に知られ
ている。このうち、平面直線回折格子を用いたものは、
第1図に、その−例として、特開昭54−4147号に
示すように、入力光ファイバ1より入った多重化された
入射光(波長λ4.λ2.λ5.・・・・・・)は、コ
リメイミョンレンズ2によって平行光となシ、回折格子
3によって、波長λ1.λ2.λ、・・・・・・に応じ
て回折・分波され、集束レンズ4によって集束され、出
力光ファイバ6よシ出射する構造の光分波器や、第2図
に他の例として、特開昭54−17045号に示すよう
に、多重化された入射光(波長λ、。Conventional technology Conventionally, diffraction gratings used in optical multiplexers and demultiplexers include those using a flat linear diffraction grating made of a hologram created by interference between plane waves, and those using a mechanical scoring method or concave gratings created optically. Those using a diffraction grating are generally known. Among these, those using planar linear diffraction gratings are
FIG. 1 shows, as an example, multiplexed incident light (wavelengths λ4, λ2, λ5, etc.) entering from the input optical fiber 1, as shown in Japanese Patent Laid-Open No. 54-4147. are collimated into parallel light by the collimation lens 2, and converted into wavelengths λ1 by the diffraction grating 3. λ2. An optical demultiplexer has a structure in which it is diffracted and demultiplexed according to As shown in 17045/1984, multiplexed incident light (wavelength λ,
λ2.λ3.・・・・・・)は、入力光ファイバ1より
、屈折率が、中心から周辺に向って、徐々に減少してい
る第1の電束性光伝送体6に入シ、蛇行しながら進行し
、透過形回折格子3によって、波長λ、。λ2. λ3. ) enters from the input optical fiber 1 into the first electric flux optical transmitter 6 whose refractive index gradually decreases from the center to the periphery, and travels in a meandering manner. The transmission type diffraction grating 3 transmits the wavelength λ.
λ2.λ3.・・・・・・に応じて回折・分波され、第
2の集束性光伝送体7によって、蛇行しながら集束され
、出力光ファイバ5より分波されて出射する構造の光分
波器が知られているのみで、いずれも、コリメイション
レンズや、集束レンズあるいは集束性光伝送体のような
レンズ類似のものを必要とし、その光学系はI雉である
。寸た、凹面回折格子を用いたものは、機械的刻線法に
よるか、あるいは光学的な方法では、球面波と球面波の
干渉によってホログラムを作成するため、コリメイショ
ンレンズや集束レンズを特に必要としないが、形状が凹
面であるため、製作が困難であり、高価になる欠点があ
る。λ2. λ3. An optical demultiplexer has a structure in which the optical demultiplexer is diffracted and demultiplexed in accordance with As far as is known, all of them require lens-like lenses such as collimation lenses, focusing lenses, or focusing light transmitters, and their optical systems are I-Pheasant. On the other hand, those using concave diffraction gratings create holograms by mechanical scoring method or by optical method by interference of spherical waves, so collimation lenses and focusing lenses are particularly required. However, since it has a concave shape, it is difficult to manufacture and has the disadvantage of being expensive.
発明が解決しようとする問題点
従来の平面直線回折格子を用いた光合波・分波器は、コ
リメイションレンズや集束レンズなどのレンズ類似品が
必要であるため、光学系が複雑であり、またη重回折格
子を用いたものは、集束レンズなどを必要としないが、
形状が凹面であるため、製作が困難であり、いずれも高
価になり、かつ性能的にも多重度をあげることが困難で
あった。Problems to be Solved by the Invention Conventional optical multiplexers and demultiplexers using planar linear diffraction gratings require lens-like products such as collimation lenses and focusing lenses, resulting in complicated optical systems. Those using η multiple diffraction gratings do not require a focusing lens, etc.
Since the shape is concave, it is difficult to manufacture, both are expensive, and it is difficult to increase the multiplicity in terms of performance.
本発明は、この点を考慮したもので、平面状の回折格子
で、レンズなどが不要であり、かつ多重度の高い光合波
・分波器を提供するものである。The present invention takes this point into consideration and provides an optical multiplexer/demultiplexer that uses a planar diffraction grating, does not require lenses, and has a high degree of multiplicity.
問題点を解決するだめの手段
本発明は、上記問題点を解決するため、収差の補正に非
球面波を用い、非球面波と球面波の合成からなる波面と
球面波の干渉によるホログラムを回折格子に用いること
により、平面状の回折格子で、レンズなどを必要としな
い光学系の簡単な光合波・分波器を提供するものである
。Means to Solve the Problems In order to solve the above problems, the present invention uses aspherical waves to correct aberrations, and diffracts a hologram due to the interference between a wavefront consisting of a combination of an aspherical wave and a spherical wave and a spherical wave. By using it as a grating, it is a planar diffraction grating that provides a simple optical multiplexer/demultiplexer that does not require lenses or the like.
作用 本発明は、多重化された波長λ4.λ2.λ、。action The present invention provides multiplexed wavelengths λ4. λ2. λ,.
・・・・・・からなる入射光が、1本の入力光ファイバ
から入射し、上記した平面ホログラムからなる回折格子
により、回折・分波され、後、複数の出力光ファイバよ
り出射する。あるいは、複数の入力光ファイバから別々
に入った多重化された入射光が、上記した平面ホログラ
ムからなる回折格子により、回折・合波され、1本の出
力光ファイ・(より出射する。. . . enters from one input optical fiber, is diffracted and demultiplexed by the diffraction grating made of the above-described plane hologram, and then exits from a plurality of output optical fibers. Alternatively, multiplexed incident light that enters separately from a plurality of input optical fibers is diffracted and multiplexed by the above-described diffraction grating made of a plane hologram, and is emitted from a single output optical fiber.
実施例
本発明に用いる回折格子の作成方法ならびに、その回折
格子を用いた光分波器の実施例を第3図〜第6図に基づ
いて説明する。第3図は、光合波・分波器に用いる回折
格子となるホログラムを作成するだめの原理図を示すも
のである。本発明ではホログラムは、平面状(平面回折
格子)で、収差の少ないものをつくるため、非球面波と
球面波の干渉によって作成する。非球面波は、非球面波
単一のものでも良いが、非球面波に球面波を合成したも
のでも、実質的に非球面波である。非球面波は、レーザ
光を、適当に設計された計算機ホログラム(Compu
ter Generated Hologram 、C
GH)を通すことにより、つくることができる。計算機
ホログラムは、電子ビームの直接描画による方法と、プ
ロッタで描画し、縮少する光学的な方法が、するが、精
度の高いものは、電子ビーム描画による方法が良好であ
る。ホログラムの作成は、レーザ光からなる収れんまた
は発散非球面波と、収れんまたは発散球面波をホログラ
ム感光材料層の両面または片面から入射させ、ホログラ
ム感光材料層を露光して、干渉縞からなるホログラムを
作成する。なお、第3図はその一例として、ホログラム
感光材料層8に、垂直なZ軸を光軸とすると、収れん非
球面波9は、光軸方向に入射させて、光軸上の点○に収
れんさせ(OA=Ro)、 発散球面波10は、収れ
ん非球面波9の反対側から、光軸に対し、Orの角度で
、点RよりRムの方向に(RA==Rr)に入射させて
、ホログラム11を作成したものである。Embodiments A method for producing a diffraction grating used in the present invention and an embodiment of an optical demultiplexer using the diffraction grating will be described with reference to FIGS. 3 to 6. FIG. 3 shows a principle diagram for creating a hologram that serves as a diffraction grating for use in an optical multiplexer/demultiplexer. In the present invention, the hologram is created by interference between an aspherical wave and a spherical wave in order to create a hologram that is planar (plane diffraction grating) and has little aberration. The aspherical wave may be a single aspherical wave, but even a combination of an aspherical wave and a spherical wave is essentially an aspherical wave. The aspherical wave transforms the laser beam into an appropriately designed computer hologram (Computer hologram).
ter Generated Hologram,C
GH). Computer-generated holograms can be produced by direct electron beam drawing or by optical methods, which are drawn using a plotter and reduced in size, but for high precision, electron beam drawing is better. To create a hologram, a convergent or diverging aspherical wave made of laser light and a convergent or diverging spherical wave are incident on both sides or one side of a hologram photosensitive material layer, the hologram photosensitive material layer is exposed, and a hologram consisting of interference fringes is created. create. As an example, FIG. 3 shows that if the perpendicular Z-axis is the optical axis of the holographic photosensitive material layer 8, the convergent aspherical wave 9 is incident in the optical axis direction and converged at a point ○ on the optical axis. (OA=Ro), and the divergent spherical wave 10 is made incident from the opposite side of the convergent aspherical wave 9 at an angle of Or to the optical axis in the direction of Rm from the point R (RA==Rr). Thus, the hologram 11 was created.
第4図は、第3図のホログラムの作成方法と類似の構成
に、入力光ファイバ13、出力光ファイバ14!L、1
4b、140.・・・・・・からなる出力光ファイバ群
14、回折格子12を配置した光分波器の一実施例を示
す図である。その構成を、第3図と対比しながら説明す
ると、ホログラム11からなる回折格子12の中心点を
人とすると、光軸Z軸に対し、orの角度に等しい角度
0゜で、Rrと同じ距離Rcの位置に、入力光ファイバ
13の先端をおき、Z軸上で、Roと同じ距離R1に相
当する位置に、出力光ファイバ群14の先端をおく。FIG. 4 shows a configuration similar to the hologram creation method shown in FIG. 3, including an input optical fiber 13 and an output optical fiber 14! L, 1
4b, 140. . . . is a diagram showing an example of an optical demultiplexer in which an output optical fiber group 14 and a diffraction grating 12 are arranged. To explain its configuration in comparison with FIG. 3, if the center point of the diffraction grating 12 made up of the hologram 11 is a person, it is at an angle of 0° with respect to the optical axis Z axis, which is equal to the angle of or, and the same distance as Rr. The tip of the input optical fiber 13 is placed at a position Rc, and the tip of the output optical fiber group 14 is placed at a position corresponding to the same distance R1 as Ro on the Z axis.
入力光ファイバ13よシ入射した多重化された入力光信
号(波長;λ1.λ2.λ5.・・・・・・)は、回折
格子12で回折・分波され、その波長に応じて、出力光
ファイバ141L、14b、140.・・・・・・に入
り出射する。第6図は第4図を部分的に拡大した図であ
シ、出力光ファイバ間の距離を’i +再生時の結像光
の回折角をθi、再生時の再生光の入射角をθC1結像
距離すなわち回折格子面と出力光ファイバ群の先端位置
との距離をR4としたものである。The multiplexed input optical signal (wavelength; λ1, λ2, λ5, etc.) entering the input optical fiber 13 is diffracted and demultiplexed by the diffraction grating 12, and is outputted according to the wavelength. Optical fibers 141L, 14b, 140. It enters and exits. Figure 6 is a partially enlarged view of Figure 4, where the distance between the output optical fibers is 'i + the diffraction angle of the imaging light during reproduction is θi, and the incident angle of the reproduction light during reproduction is θC1. The imaging distance, that is, the distance between the diffraction grating surface and the tip position of the output optical fiber group is defined as R4.
第4図および第5図の構成は、次式に示すグレーティン
グの式によって求める。The configurations shown in FIGS. 4 and 5 are determined by the grating equation shown below.
λC
sln θ4=sin Oc + −(sin θ0
− S!n θr ) −・=(1)λO
λC;再生波長
λ0;記録波長
θ0;記録時の物体光の入射角
0r;記録時の参照光の入射角
Oc;再生時の再生光の入射角
第3図に示すように、収れん非球面波を、ホログラム面
に垂直に入射させると、θQ:180°であるため
sir+0□二〇
また、第4図に示すように、θC二orとすると、・・
・・・・(2)
となる。第5図よシ、光フアイバ間の距Re工は、6i
= R1tan Ol
λC
: Ri tan sin’″’(sinθc(1−−
)Jλ0
・・・・・・(3)
R1;結像距離
である。λC sln θ4=sin Oc + −(sin θ0
-S! n θr ) −・=(1) λO λC; Reproduction wavelength λ0; Recording wavelength θ0; Incident angle of object light during recording 0r; Incident angle of reference light during recording Oc; Incident angle of reproduction light during reproduction 3rd As shown in the figure, when a convergent aspherical wave is incident perpendicularly on the hologram surface, θQ: 180°, so sir+0□20 Also, as shown in Figure 4, if θC2or...
...(2) becomes. According to Figure 5, the distance Re between the optical fibers is 6i
= R1tanOlλC: Ritan sin''''(sinθc(1--
) Jλ0 (3) R1: Imaging distance.
したがって、その−例として、Ro ” 800nm。Therefore, as an example, Ro "800 nm.
λO=820 nm 、 J =36.70111’l
l、 Rc=32.20ffl、光ファイバの外径(す
なわち出力光ファイバを接して並べた場合の光フアイバ
間の距離64に相当)を300μとすると、
θQ:19.08° (=θr)
となる。すなわち、参照光あるいは入力光ファイバから
の入射光は、光軸に対して、19.08°の角度で入射
させるとよい。λO=820 nm, J=36.70111'l
l, Rc = 32.20ffl, and the outer diameter of the optical fiber (corresponding to the distance 64 between the optical fibers when the output optical fibers are lined up next to each other) is 300μ, then θQ: 19.08° (=θr) Become. That is, the reference light or the incident light from the input optical fiber is preferably made incident at an angle of 19.08° with respect to the optical axis.
計算器ホログラム(CG H)の作成は、ホログラムの
位相関数φヨを求める。記録は電子ビーム直接描画法に
よる場合は、計算機制御によって、基板上のレジスト膜
にあたえる露光量すなわち電子ビーム照射量を、位相関
数φヨに応じ、変化させて作成する方法と、干渉縞に相
当するパターンをプロッタで記録して縮少する光学的な
方法がある。To create a computer hologram (CGH), the phase function φyo of the hologram is determined. When recording is performed using the electron beam direct writing method, there is a method in which the exposure amount applied to the resist film on the substrate, that is, the electron beam irradiation amount, is changed by computer control according to the phase function φyo, and a method equivalent to interference fringes. There is an optical method of recording and reducing the pattern with a plotter.
ホログラム膜の位相関数φ、は、物体光の位相関数φ0
.!:参照先の位相関数φrの差である。すなわち
φヨ=φ。−φ1 川・・・(4)収
差補正のため、位相関数φGからなる非球面波を物体光
に加えると
φヨ= (φ0+φ。)−φ1 ・・・・・・
(5)となる。もおよび勾は球面波であるため、次式に
よって示される。The phase function φ of the hologram film is the phase function φ0 of the object light
.. ! : Difference between reference phase functions φr. In other words, φyo=φ. -φ1 River... (4) For aberration correction, when an aspherical wave consisting of phase function φG is added to the object beam, φyo = (φ0+φ.)-φ1 ・・・・・・
(5) becomes. Since the slope and slope are spherical waves, they are expressed by the following equation.
A。A.
−R0〕 ・・曲・(6)−Rr)
・・・・・・(ア)θ。=0.0
r=19.08°を代入し、さらに、R6=36.70
1M、 Rr =32.20MM、 λ。 = 8
o 。-R0〕 ...Song・(6)-Rr)
・・・・・・(A) θ. =0.0
Substitute r=19.08° and further, R6=36.70
1M, Rr =32.20MM, λ. = 8
o.
nmを代入すると、Xおよびyの関数となる。Substituting nm becomes a function of X and y.
非球面波φ。は、次式によって、Xおよびyの関数で与
えられる。Aspherical wave φ. is given as a function of X and y by the following equation.
ス0
十C02y2+C04y4+C06y6+Co8y8十
C22x272+Cas !’3” ) ’ −・”(
8)(8)式は、波面の対称性のため、C工、の奇数項
はなくなり、偶数項のみである。Su0 ten C02y2+C04y4+C06y6+Co8y8 ten C22x272+Cas! '3'') '-・”(
8) In equation (8), due to the symmetry of the wavefront, there are no odd terms in C, and there are only even terms.
また、このホログラム膜を用いた再生像光の位相関数φ
、は、次式でもって示される。In addition, the phase function φ of the reconstructed image light using this hologram film is
, is expressed by the following equation.
λC
φ、=φ。+−((φ。+φ。)−φ1)λ0
・・・・・・(9)
非球面波の係数C工、は、φ、の方向余弦を求め、各波
長ごとに、光線追をおこない、それぞれのスポットダイ
アグラムの分散地より、点像の旋回半径を求めて、評価
関数(merit function )を決定する。λC φ,=φ. +-((φ.+φ.)-φ1)λ0 (9) The coefficient C of the aspherical wave is obtained by finding the direction cosine of φ, and tracing the rays for each wavelength. The radius of gyration of the point image is determined from the dispersion locations of each spot diagram, and an evaluation function (merit function) is determined.
このとき、非線形最小自乗法(DLSmethod )
を用いて、計算を必要回数、くりかえすことによって、
最適条件を決定する。計算の結果、この実施例の一条件
では、最適非球面波面に相当するC工、は、
C2o; 6.7100
c40 ; 1.4259
C6o; 0.60353
Cso ; 0.22731
c02 ; 1 1.81 3
C,、; 0.79928
Co6 ; 0.27268
c08 ; 0.80916
C22; 5.9671
C4,; 1.8714
となる。このC工j係数を(8)式に代入−し、さらに
、(5)式〜(8)式より、φ8が決定する。At this time, the nonlinear least squares method (DLSmethod)
By repeating the calculation as many times as necessary using
Determine optimal conditions. As a result of calculation, under one condition of this example, the C value corresponding to the optimal aspherical wavefront is: C2o; 6.7100 c40; 1.4259 C6o; 0.60353 Cso; 0.22731 c02; 1 1.81 3 C,; 0.79928 Co6; 0.27268 c08; 0.80916 C22; 5.9671 C4,; 1.8714. Substituting this C-factor j coefficient into equation (8), further, φ8 is determined from equations (5) to (8).
φ、 = 2 yr p (μ; fring 1nd
ex 、整数)・・・・・・(1(1)になるように、
Xおよびyをプロットすると、干渉縞に相当するホログ
ラムが得られる。このホログラムは、そのままでは、回
折効率が低いだめ、適当な方法たとえば露光条件を変え
て、溝形状を三角波状または鋸歯状にすることにより、
回折効率を高めることができる。このようにしてできた
ホログラムを、第4図および第5図に示すように、回折
格子12として用い、波長800nm、820nu18
40nm、860nl11,880nuの多重化された
光信号を、入力光ファイバ13より入射させると、回折
格子12で、回折・分波され、出力光ファイバ142L
にsoonm、出力光ファイバ14bに820nm、出
力光ファイバ140に8401m、出力光7フイバ14
dに860nm、出力光ファイバ1415に880nm
の光信号が入り、出射する。第6図に光線追跡による点
像分布を光ファイバのコア内の点16で示す。すなわち
、外径300μの光ファイバ1 jLL 、14b。φ, = 2 yr p (μ; fring 1nd
ex, integer)......(1 (1),
Plotting X and y yields a hologram corresponding to interference fringes. Since the diffraction efficiency of this hologram is low as it is, by changing the exposure conditions and making the groove shape triangular or sawtooth,
Diffraction efficiency can be increased. The hologram thus produced was used as a diffraction grating 12, as shown in FIGS. 4 and 5, with a wavelength of 800 nm and an 820 nu18
When a multiplexed optical signal of 40 nm, 860nl11, 880nu is inputted from the input optical fiber 13, it is diffracted and demultiplexed by the diffraction grating 12, and then sent to the output optical fiber 142L.
soonm, 820 nm to the output optical fiber 14b, 8401 m to the output optical fiber 140, output optical fiber 14
860 nm to d, 880 nm to output optical fiber 1415
The optical signal enters and exits. FIG. 6 shows a point spread distribution obtained by ray tracing at a point 16 within the core of the optical fiber. That is, the optical fiber 1 jLL , 14b has an outer diameter of 300 μ.
14C,14d、14elのそれぞれのコア径200μ
のコア16a、16b、160,16d、1615内に
出力光がすべて入っている。14C, 14d, 14el each core diameter 200μ
All output light enters the cores 16a, 16b, 160, 16d, and 1615.
第4図および第6図は、光分波器として説明したが、光
合波器として用いる場合は、入力光ファイバを141L
、14b、140,14d、146゜出力光ファイバを
13とし、入力光ファイバのそれぞれに、800nm
、820nm 、840nm。4 and 6 are explained as an optical demultiplexer, but when used as an optical multiplexer, the input optical fiber is 141L.
, 14b, 140, 14d, 146° The output optical fibers are 13, and the input optical fibers each have an 800 nm
, 820nm, 840nm.
860nm 、880nmの光を入射させると、回折格
子12で、回折・合波され、出力光ファイバ13に入っ
て出射する。したがって、光分波器または光合波器とし
て使用することができる。When light of 860 nm and 880 nm is incident, it is diffracted and multiplexed by the diffraction grating 12, enters the output optical fiber 13, and is emitted. Therefore, it can be used as an optical demultiplexer or an optical multiplexer.
本発明は、収差補正のための非球面波と平面波の干渉縞
に相当するパターンを計算機ホログラムで作成し、これ
に平面波を通して非球面波を発生させ、この波面を、い
ったん収れんさせ後発散させて、非球面波と球面波の合
成からなる波面をつくり、そして、この波面と球面波の
干渉によって光学的に作成したホログラムを回折格子と
しても全く同様である。また、本実施例では、非球面波
と球面波をホログラム感光材料層の両面から入射させて
作成した反射形について説明したが、非球面波と球面波
を、ホログラム感光材料層の片面から入射させて作成し
た透過形ホログラムや、あるいは、このホログラム面に
金やアルミニウムなどの反射膜を形成させたものについ
ても、全く同様の効果を有する。また、本実施例では、
形状が平面状のいわゆる平面回折格子について説明した
が、形状が凹面状の凹面回折格子についても全く同様の
効果を有するものである。あるいはまた、本願を分光器
として用いる場合も、全く同様の効果を有するものであ
る。なお、本実施例では5波の光合波・分波器について
説明したが、非球面波を用いることによシ、10波のも
のも可能となシ、多重度の高い光合波・分波器をつくる
ことができる。The present invention creates a pattern corresponding to the interference fringes of an aspherical wave and a plane wave for aberration correction using a computer hologram, generates an aspherical wave by passing the plane wave through this, and converges this wavefront once, then diverges it. , a wavefront is created by combining an aspherical wave and a spherical wave, and a hologram optically created by interference between this wavefront and the spherical wave is used as a diffraction grating. Furthermore, in this example, a reflection type was explained in which an aspherical wave and a spherical wave were made incident from both sides of the holographic photosensitive material layer, but an aspherical wave and a spherical wave were made incident from one side of the holographic photosensitive material layer. Transmission type holograms made using holograms, or holograms in which a reflective film of gold, aluminum, or the like is formed on the hologram surface have exactly the same effect. Furthermore, in this example,
Although a so-called flat diffraction grating having a planar shape has been described, a concave diffraction grating having a concave shape has exactly the same effect. Alternatively, when the present invention is used as a spectrometer, it has exactly the same effect. In this example, a 5-wave optical multiplexer/demultiplexer was explained, but by using an aspherical wave, a 10-wave optical multiplexer/demultiplexer is also possible. can be created.
発明の効果
本発明は、非球面波と球面波の干渉によるホログラムを
用いることにより、平面状で、しかも光学系が簡単で、
製作が容易であシ、かつ性能的にも多重度の高い光合波
・分波器をつくることができる。Effects of the Invention The present invention uses a hologram created by interference between an aspherical wave and a spherical wave, so that it is flat and has a simple optical system.
It is possible to create an optical multiplexer/demultiplexer that is easy to manufacture and has high multiplicity in terms of performance.
第1図ならびに第2図は従来の回折格子を用いた光分波
器を示す概念図、第3図は本発明によるホログラムすな
わち回折格子の作成方法の一例を示す原理図、第4図は
第3図の方法で作成した回折格子を用いた光分波器の概
念図、第6図は第4図の部分的な拡大概念図、第6図は
本発明による回折格子について、光線追跡法による出力
光ファイバ内の点像分布を示す図である。
1・・・・・・入力光ファイバ、2・・・・・・コリメ
イションレンズ、3・・・・・・回折格子、4・・・・
・・集束レンズ、5・・・・・・出力光ファイバ群、6
・・・・・・第1の集束性光伝送体、7・・・・・・第
2の集束性光伝送体、8・・・・・・ホログラム感光材
料層、9・・・・・・収れん非球面波、10・・・・・
−発数球面波、11・・・・・・ホログラム、12・・
・・・・回折格子、13・・・・・・入力光ファイバ、
14・・・・・・出力光ファイバ群、14&、14b、
140,14d。
140・・・・・・それぞれ出力光ファイバ、16・・
・・・・光線追跡による点像分布の点、16m、16b
。
16c、16d、18e・・・・・・それぞれ出力光フ
ァイバのコア。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名f1
1.入/JLファイバ
4・・11床レンス゛
5 ・・・出/F光2フイノζ石イー
第2図
11− オ、Ω2゛フ人
第5図
第6図
/61点。
7k ・ 出
つ尤ファイバ′0コア1 and 2 are conceptual diagrams showing an optical demultiplexer using a conventional diffraction grating, FIG. 3 is a principle diagram showing an example of a method for creating a hologram or diffraction grating according to the present invention, and FIG. 4 is a conceptual diagram showing an optical demultiplexer using a conventional diffraction grating. Figure 3 is a conceptual diagram of an optical demultiplexer using a diffraction grating created by the method shown in Figure 6. Figure 6 is a partially enlarged conceptual diagram of Figure 4. FIG. 3 is a diagram showing a point spread distribution within an output optical fiber. 1... Input optical fiber, 2... Collimation lens, 3... Diffraction grating, 4...
...Focusing lens, 5... Output optical fiber group, 6
. . . First focusing light transmission body, 7 . . . Second focusing light transmission body, 8 . . . Hologram photosensitive material layer, 9 . . . Convergent aspherical wave, 10...
-Speech spherical wave, 11...Hologram, 12...
... Diffraction grating, 13 ... Input optical fiber,
14... Output optical fiber group, 14&, 14b,
140, 14d. 140... Each output optical fiber, 16...
...Points of point spread distribution by ray tracing, 16m, 16b
. 16c, 16d, 18e... Cores of output optical fibers, respectively. Name of agent: Patent attorney Toshio Nakao and 1 other person f1
1. Input/JL fiber 4...11 floor lens 5... Output/F light 2 fin ζ stone E Fig. 2 11- O, Ω2゛F person Fig. 5 Fig. 6/61 points. 7k ・Output fiber '0 core
Claims (4)
折格子としたことを特徴とする光合波・分波器。(1) An optical multiplexer/demultiplexer characterized in that a hologram formed by interference between an aspherical wave and a spherical wave is used as a diffraction grating.
からなることを特徴とする特許請求の範囲第(1)項記
載の光合波・分波器。(2) The optical multiplexer/demultiplexer according to claim (1), wherein the aspherical wave is substantially composed of a combination of an aspherical wave and a spherical wave.
ことを特徴とする特許請求の範囲第(1)項または第(
2)項記載の光合波・分波器。(3) The aspherical wave is created by a computer-generated hologram.
Optical multiplexer/demultiplexer described in section 2).
ることを特徴とする特許請求の範囲第(1)項記載の光
合波・分波器。(4) The optical multiplexer/demultiplexer according to claim (1), wherein the hologram is created by a computer-generated hologram.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60165125A JPS6225710A (en) | 1985-07-26 | 1985-07-26 | Optical multiplexer/demultiplexer |
| US06/889,890 US4824193A (en) | 1985-07-26 | 1986-07-25 | Holographic multiplexer/demultiplexer and its manufacturing method |
| EP86305741A EP0213726B1 (en) | 1985-07-26 | 1986-07-25 | Holographic multiplexer/demultiplexer and its manufacturing method |
| DE8686305741T DE3687869T2 (en) | 1985-07-26 | 1986-07-25 | HOLOGRAPHICAL MULTIPLEX / DEMULTIPLEX DEVICE, AND THEIR PRODUCTION METHOD. |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60165125A JPS6225710A (en) | 1985-07-26 | 1985-07-26 | Optical multiplexer/demultiplexer |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS6225710A true JPS6225710A (en) | 1987-02-03 |
Family
ID=15806385
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP60165125A Pending JPS6225710A (en) | 1985-07-26 | 1985-07-26 | Optical multiplexer/demultiplexer |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6225710A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006329989A (en) * | 2005-05-26 | 2006-12-07 | Mettler-Toledo Ag | Parallel guide mechanism for compact weighting system |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS545454A (en) * | 1977-06-14 | 1979-01-16 | Nec Corp | Multiple branching circuit of optical wavelength using holograms |
| JPS5590984A (en) * | 1978-12-29 | 1980-07-10 | Ricoh Co Ltd | Making method of multibranching hologram photo coupler |
| JPS55146403A (en) * | 1979-05-04 | 1980-11-14 | Nippon Telegr & Teleph Corp <Ntt> | Photo branching and distributing device |
| JPS579048A (en) * | 1980-06-18 | 1982-01-18 | Toshiba Corp | Metal vapor discharge lamp |
-
1985
- 1985-07-26 JP JP60165125A patent/JPS6225710A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS545454A (en) * | 1977-06-14 | 1979-01-16 | Nec Corp | Multiple branching circuit of optical wavelength using holograms |
| JPS5590984A (en) * | 1978-12-29 | 1980-07-10 | Ricoh Co Ltd | Making method of multibranching hologram photo coupler |
| JPS55146403A (en) * | 1979-05-04 | 1980-11-14 | Nippon Telegr & Teleph Corp <Ntt> | Photo branching and distributing device |
| JPS579048A (en) * | 1980-06-18 | 1982-01-18 | Toshiba Corp | Metal vapor discharge lamp |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006329989A (en) * | 2005-05-26 | 2006-12-07 | Mettler-Toledo Ag | Parallel guide mechanism for compact weighting system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0157895B1 (en) | Achromatic holographic element | |
| US4824193A (en) | Holographic multiplexer/demultiplexer and its manufacturing method | |
| US4245882A (en) | Doubly modulated on-axis thick hologram optical element | |
| Nishihara et al. | I micro Fresnel lenses | |
| JPS6137633B2 (en) | ||
| JPH0335647B2 (en) | ||
| US4306763A (en) | Optical source comprising a semiconductor laser and optical means for the anamorphosis of the beam emitted by said laser | |
| JPS5822725B2 (en) | optical demultiplexer | |
| US4720158A (en) | Method of and apparatus for making a hologram | |
| US4626062A (en) | Light beam scanning apparatus | |
| JPH0422481B2 (en) | ||
| JPS6225710A (en) | Optical multiplexer/demultiplexer | |
| JPS6225709A (en) | Multiplexer-demultiplexer | |
| US4461533A (en) | Forming and reading holograms | |
| JPH0627965B2 (en) | Hologram production method | |
| JP2005316233A (en) | Photonic crystal structure creation method and apparatus | |
| JP3432235B2 (en) | How to create a holographic filter | |
| JPS6275504A (en) | Optical multiplexer/demultiplexer | |
| Prongué et al. | HOE for clock distribution in integrated circuits: experimental results | |
| JPH0797162B2 (en) | Optical beam expander | |
| JPH02157889A (en) | Method and apparatus for using holographic optical elements | |
| KR910007718B1 (en) | Achromatic holographic element | |
| US6621633B2 (en) | System and method for increasing the diffraction efficiency of holograms | |
| JP2002162524A (en) | Optical fiber having display function and method of manufacturing the same | |
| JPS6275503A (en) | Optical multiplexer/demultiplexer |