JPS622869A - Ultrasonic motor drive device - Google Patents
Ultrasonic motor drive deviceInfo
- Publication number
- JPS622869A JPS622869A JP60139446A JP13944685A JPS622869A JP S622869 A JPS622869 A JP S622869A JP 60139446 A JP60139446 A JP 60139446A JP 13944685 A JP13944685 A JP 13944685A JP S622869 A JPS622869 A JP S622869A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- piezoelectric
- voltage
- current
- driving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/14—Drive circuits; Control arrangements or methods
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/163—Motors with ring stator
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
本発明は圧電体を用いて駆動力を発生する超音波モータ
の駆動装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor drive device that generates driving force using a piezoelectric body.
従来め技術
近年圧電セラミック等の圧電体を用いて超音波振動を励
振することにより、回転あるいは直線又は曲線運動をす
る超音波モータが発表され、構造が簡単、小型・軽量な
どの特徴から注目されている。Conventional technology In recent years, ultrasonic motors have been announced that generate rotational, linear or curved motion by exciting ultrasonic vibrations using piezoelectric materials such as piezoelectric ceramics, and have attracted attention due to their simple structure, small size, and light weight. ing.
以下、図面を参照しながら超音波モータの従来技術につ
いて説明を行う。Hereinafter, the conventional technology of an ultrasonic motor will be explained with reference to the drawings.
第5図は超音波モータの一例であシ、円環形の弾性体1
の円環面の一方に圧電体として円環形圧電セラミック2
を貼合せて圧電駆動体3を構成している。4は耐磨耗性
材料のスライダで、6は弾性体であり、互いに貼合せら
れて動体6を構成している。動体6はスライダ4を介し
て駆動体3と接触している。圧電体2に電界を印加する
と駆動体3の周方向に曲げ振動が励起され、これが進行
波となることにより、動体6が回転する。Figure 5 shows an example of an ultrasonic motor, with an annular elastic body 1
An annular piezoelectric ceramic 2 is placed as a piezoelectric body on one of the annular surfaces of the
The piezoelectric driving body 3 is configured by laminating the two. 4 is a slider made of a wear-resistant material, and 6 is an elastic body, which are pasted together to form the moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4. When an electric field is applied to the piezoelectric body 2, bending vibration is excited in the circumferential direction of the driving body 3, and this becomes a traveling wave, thereby causing the moving body 6 to rotate.
第6図は第5図の超音波モータに使用した圧電セラミッ
ク2の電極構造の一例を示している。同図では円周方向
に曲げ振動が9波長のるようにしである。同図において
、ム、Bはそれぞれ2分の1波長相当の小領域から成る
電極群で、Cは4分の3波長、Dは4分の1波長の長さ
の電極である。FIG. 6 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, the bending vibration has nine wavelengths in the circumferential direction. In the figure, M and B are electrode groups each consisting of a small region corresponding to a half wavelength, C is an electrode with a length of three-quarters of a wavelength, and D is an electrode with a length of a quarter of a wavelength.
従って、ムの電極群とBの電極群とは位置的に4分の1
波長(=90度)の位相ずれがある。電極群ム、B内の
隣合う小電極部は互いに反対に厚み方向に分極されてい
る。圧電セラミック2の弾性体1との接着面は第6図に
しめされた面と反対の面であシ、電極はペタ電極である
。使用時には電極群ム、Bは第6図に斜線で示されたよ
うに、それぞれ短絡して用いられる。Therefore, the position of the electrode group M and the electrode group B is 1/4 of each other.
There is a phase shift in wavelength (=90 degrees). Adjacent small electrode portions in the electrode group M and B are polarized oppositely to each other in the thickness direction. The bonding surface of the piezoelectric ceramic 2 with the elastic body 1 is the surface opposite to the surface shown in FIG. 6, and the electrode is a peta electrode. When in use, the electrode groups M and B are short-circuited, as indicated by diagonal lines in FIG.
以上のように構成された超音波モータについて、その動
作を以下に説明する。前記圧電体2の電極群ムにVo−
sin (ωt)で表される電圧を印加すると(ただし
voは電圧の瞬時値、ωは角周波数、tは時間)、駆動
体3は円周方向に曲げ振動をする。The operation of the ultrasonic motor configured as above will be described below. Vo- on the electrode group of the piezoelectric body 2
When a voltage represented by sin (ωt) is applied (where vo is the instantaneous value of the voltage, ω is the angular frequency, and t is time), the driving body 3 bends and vibrates in the circumferential direction.
第7図は第5図の超音波モータの一部分の斜視図であり
、同図(IL)は圧電体2に電圧を印加していない時で
あシ、同図は圧電体2に電圧を印加した時の様子を示す
。FIG. 7 is a perspective view of a part of the ultrasonic motor shown in FIG. This shows what it looks like when you do this.
第8図は動体6と駆動体3の接触状況を拡大して描いた
ものである。前記圧電体2の電極群ムにVo−sin(
ωt)、他の電極群BKVg−005(ωt)の互いに
位相がπ/2だけずれた電圧を印加すれば、駆動体3の
円周方向に曲げ振動の進行波を作ることができる。一般
に進行波は振をξとすればξ=ξg −cos (cc
+t−kx ) ・・・−・(1)ただしξ
0:波の大きさの瞬時値
に:波数(=2π/λ)
λ:波長
X:位置
で表せる。(1)式は
ξ=ξG−(Co!l(ωt)−cot(kx)十5i
n(ωt)−gin(kx)) ・−・−(2)と書
き直せ、(2)式は進行波が時間的にπ/2だけ位相の
ずれた波cos(ωt)と5in(ωt)、および位置
的にπ/2だけ位相のずれたcojs(kx)と5in
(kx)とのそれぞれの積の和で得られることを示して
いる。前述の説明よシ、圧電体2は互いに位置的にπ/
2(=λ/4)だけ位相のずれた電極群ム、Bを持って
いるので、駆動体3の共振周波数に等しい周波数出力を
持つ発振器の出力から、それぞれに時間的に位相のπ/
2だけずれた交流電圧を作り、前記電極群に印加すれば
駆動体3に曲げ振動の進行波を作れる。FIG. 8 is an enlarged view of the contact situation between the moving body 6 and the driving body 3. Vo-sin (
ωt) and another electrode group BKVg-005(ωt), by applying voltages whose phases are shifted by π/2 from each other, a traveling wave of bending vibration can be created in the circumferential direction of the driving body 3. Generally speaking, if the amplitude of a traveling wave is ξ, then ξ=ξg −cos (cc
+t−kx ) ・・・−・(1) However, ξ
0: Instantaneous value of wave size: Wave number (=2π/λ) λ: Wavelength X: Can be expressed as position. Equation (1) is ξ=ξG-(Co!l(ωt)-cot(kx)+5i
n(ωt)−gin(kx)) ・−・−(2), Equation (2) is a wave whose traveling wave is temporally out of phase by π/2 with cos(ωt) and 5in(ωt), and cojs(kx) positionally out of phase by π/2 and 5in
(kx). According to the above explanation, the piezoelectric bodies 2 are positioned at π/
Since the electrode groups M and B have a phase shift of 2 (=λ/4), the temporal phase difference of π/B from the output of the oscillator with a frequency output equal to the resonant frequency of the driver 3
By creating an AC voltage shifted by 2 and applying it to the electrode group, a traveling wave of bending vibration can be created in the driving body 3.
第8図は駆動体のム点が進行波によって、長軸2W、短
軸2uの楕円運動をしている様子を示し駆動体3上に置
かれた動体6が楕円の頂点で接触することにより、波の
進行方向とは逆方向にV=ωUの速度で運動する様子を
示している。即ち動体6は任意の静圧で駆動体3に押し
付けられて、駆動体3の表面に接触し、動体6と駆動体
3との摩擦力で波の進行方向と逆方向に速度マで駆動さ
れる。Figure 8 shows how the point of the driving body moves in an ellipse with the long axis 2W and the short axis 2u due to the traveling wave. , it shows how the wave moves at a speed of V=ωU in the opposite direction to the direction of travel of the wave. That is, the moving body 6 is pressed against the driving body 3 with an arbitrary static pressure, contacts the surface of the driving body 3, and is driven by the frictional force between the moving body 6 and the driving body 3 at a velocity in the direction opposite to the direction of wave propagation. Ru.
両者の間にすベシがある持越、速度が上記のVよシも小
さくなる。If there is a gap between the two, the speed will be smaller than the above V.
上記に示した超音波モータの速度マは、マ;ωtclC
ωξ0 ・・・・・・(3)で表せ、駆
動体3の曲げ振動の振幅最大値ξ0に比例する。曲げ振
動の振幅の大きさは、印加電圧が同じでも駆動周波数が
異なれば違ってくる。第9図は駆動体3のインピーダン
スおよび感度(振幅/印加電圧、つまシ単位印加電圧で
の振幅値で定義)の周波数特性である。同図より、第6
図の電極構造の圧電体を用いたとき、駆動体3の共振は
本来の共振周波数foの下と上にそれぞれ一つ比較的大
きな共振が現れ、感度はそれぞれの共振周波数で極大と
なり、本来の共振周波数foで最大となる。The speed ma of the ultrasonic motor shown above is ma;ωtclC
ωξ0 can be expressed as (3) and is proportional to the maximum amplitude ξ0 of the bending vibration of the driving body 3. The magnitude of the amplitude of bending vibration will differ if the driving frequency is different even if the applied voltage is the same. FIG. 9 shows the frequency characteristics of the impedance and sensitivity (amplitude/applied voltage, defined as the amplitude value in units of applied voltage) of the driver 3. From the same figure, the 6th
When a piezoelectric body with the electrode structure shown in the figure is used, the resonance of the driver 3 appears as one relatively large resonance below and above the original resonant frequency fo, and the sensitivity is maximum at each resonant frequency, and the original resonance frequency is It reaches its maximum at the resonant frequency fo.
故に超音波モータを効率良く駆動するためには、駆動体
3の共振周波数で駆動するのが良い。Therefore, in order to drive the ultrasonic motor efficiently, it is preferable to drive it at the resonant frequency of the drive body 3.
発明が解決しようとする問題点
ところが、駆動体3の共振周波数は第10図に示すよう
に、駆動体3と動体6を押し付けるための静荷重および
負荷によって変化し、駆動体3の温度によっても変化す
る。一般に駆動体の温度が高くなると共振周波数は低く
なる。駆動体3は駆動中に機械損失によって発熱するの
で、共振周波数は負荷変動と発熱により刻々変化する。Problem to be solved by the invention However, as shown in FIG. Change. Generally, as the temperature of the driving body increases, the resonant frequency decreases. Since the driving body 3 generates heat due to mechanical loss during driving, the resonant frequency changes every moment due to load fluctuations and heat generation.
つまシ駆動体3を上記のように一定周波数の発振回路を
用いて駆動する場合、常に効率の良い最適駆動は出来な
い。When the tab drive body 3 is driven using an oscillation circuit with a constant frequency as described above, it is not always possible to perform efficient and optimal driving.
本発明はかかる点に鑑みてなされたもので、駆動体の共
振周波数が変化しても常に効率の良い最適駆動が可能な
超音波モータ駆動装置を提供することを目的としている
。The present invention has been made in view of the above points, and an object of the present invention is to provide an ultrasonic motor drive device that can always perform efficient and optimal drive even if the resonant frequency of the drive body changes.
問題点を解決するだめの手段
電圧制御発振回路の出力で圧電体を含む駆動体を駆動し
、圧電体への流入電流のうちの駆動電圧と同相成分を検
出回路で検出し、上記検出値を設定時間毎のタイミング
で記憶回路に記憶し、一つ前のタイミングにおける記憶
回路の記憶績、果と現在の記憶結果とを比較回路で比較
し、その比較結果により、前記検出値が犬となる側に前
記発振回路の制御端子の電圧値を変化させて、前記電圧
制御発振回路の発振周波数を設定する。The only way to solve the problem is to use the output of the voltage controlled oscillation circuit to drive the drive body including the piezoelectric body, detect the in-phase component of the drive voltage of the current flowing into the piezoelectric body with a detection circuit, and use the detected value as described above. The data is stored in the memory circuit at each set time, and the comparison circuit compares the memory result of the memory circuit at the previous timing with the current memory result, and based on the comparison result, the detected value becomes a dog. The oscillation frequency of the voltage controlled oscillation circuit is set by changing the voltage value of the control terminal of the oscillation circuit.
作用
一つ前の記憶結果が現在の記憶結果より大きい場合であ
って、発振回路の一つ前の記憶時の制御電圧よシ現在の
記憶時の制御電圧を大きくしている時には、制御電圧を
小さくシ、反対に一つ前の記憶時の制御電圧より現在の
記憶時の制御電圧を小さくしている時には、制御電圧を
大きくする。When the previous memory result is larger than the current memory result, and the control voltage at the current memory is larger than the control voltage at the previous memory of the oscillation circuit, the control voltage is On the other hand, when the control voltage during the current storage is smaller than the control voltage during the previous storage, the control voltage is increased.
また一つ前の記憶結果が現在の記憶結果よシ小さい場合
であって、一つ前の記憶時の制御電圧が現在のそれより
も大きい時にはさらに小さくし、一つ前の記憶時の制御
電圧が現在のそれよシも小さい時にはさらに小さくする
。In addition, if the previous memory result is smaller than the current memory result, and the control voltage at the previous memory is higher than the current one, the control voltage at the previous memory is made smaller. However, when it is smaller than the current size, it will be made even smaller.
故に負荷や温度によって駆動体の共振周波数が変化して
も、常に発振回路の出力周波数を上記共振周波数にあわ
せる。つまり、同印加電圧に対して同相電流が一番大き
くなる共振周波数で圧電駆動体を駆動することができる
。Therefore, even if the resonant frequency of the driver changes due to load or temperature, the output frequency of the oscillation circuit is always adjusted to the resonant frequency. In other words, the piezoelectric driver can be driven at the resonant frequency at which the common-mode current is largest for the same applied voltage.
実施例 以下図に従って本発明の実施例について説明を行なう。Example Embodiments of the present invention will be described below with reference to the drawings.
第1図は本発明の1実施例を示すブロック図である。第
2図は、第5図及び第6図に示した圧電駆動体3におけ
る圧電体2の電極群ムまたはBから見た共振周波数付近
での等価回路で、第2図の(a)は共振周波数付近での
等価回路、(b)は共振周波数での等価回路を示す。同
図において、c。FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2 is an equivalent circuit near the resonance frequency when viewed from the electrode group M or B of the piezoelectric body 2 in the piezoelectric drive body 3 shown in FIGS. 5 and 6, and (a) in FIG. An equivalent circuit near the frequency; (b) shows an equivalent circuit at the resonant frequency. In the same figure, c.
は電気的容量を表わし、C1は機械的弾性、Llは質量
、R1は機械的損失を表わし、前記Coを電気腕、CI
+ LlおよびR1の直列回路を機械腕と言う。共振
周波数ではC1とLlが共振する。またisは電気的電
流、−は機械的電流(つま多速度)を表わす。故に駆動
体3を共振周波数で駆動すれば、同電圧で鐘が最大に流
れる。つまり最大の変位を得られることになシ、(3)
式より最大の動体6の速度が得られることになる。represents electrical capacity, C1 is mechanical elasticity, Ll is mass, R1 is mechanical loss, Co is electric arm, CI is
+ The series circuit of Ll and R1 is called a mechanical arm. At the resonant frequency, C1 and Ll resonate. Further, is represents an electrical current, and - represents a mechanical current (Tsumari speed). Therefore, if the driver 3 is driven at the resonant frequency, the bell will flow to the maximum with the same voltage. In other words, the maximum displacement can be obtained (3)
The maximum speed of the moving body 6 can be obtained from the formula.
第1図において、R1は圧電駆動体3の圧電セラミック
2に接続された圧電セラミック2への流入電流の検出用
抵抗、C1,C2は圧電セラミック2の電極群ム、Bと
裏面の電極間の電気的容量と同じ値のコンデンサ、R2
は抵抗R1と同じ値の抵抗である。故に抵抗R1と抵抗
R2の端子電圧の差を差動増幅器1oでとれば、電気的
電流ioは相殺されて機械的電流ムだけが出力として取
シ出され、この−を最大になるように制御すれば同一印
加電圧で振幅ξGが最大にでき最適駆動ができる。In FIG. 1, R1 is a resistance for detecting the inflow current to the piezoelectric ceramic 2 connected to the piezoelectric ceramic 2 of the piezoelectric driver 3, C1 and C2 are the electrode group of the piezoelectric ceramic 2, and between B and the back electrode. A capacitor with the same value as the electrical capacitance, R2
is a resistance having the same value as the resistance R1. Therefore, if the difference between the terminal voltages of resistor R1 and resistor R2 is taken by a differential amplifier 1o, the electrical current io will be canceled out and only the mechanical current m will be taken out as an output, and this - will be controlled to be maximum. Then, the amplitude ξG can be maximized with the same applied voltage, and optimal driving can be achieved.
7は電圧制御発振回路で、発振周波数制御端子7!Lの
電圧値によって、第3図に示すように発振周波数が変え
られる。8は90°移相器で発振回路7の出力を90°
だけ移相する。発振器7の出力と900移相された信号
は、それぞれ電力増幅器9龜。7 is a voltage controlled oscillation circuit, and oscillation frequency control terminal 7! Depending on the voltage value of L, the oscillation frequency can be changed as shown in FIG. 8 is a 90° phase shifter that shifts the output of the oscillation circuit 7 to 90°.
phase shift. The output of the oscillator 7 and the signal phase-shifted by 900 are respectively sent to the power amplifier 9.
9bで増幅されて、位置的に90’位相の異なる2つの
電極群ム、Bに入力される。12aLと12bは記憶回
路であシ、差動増幅器10の出力を整流回路11により
直流に変換した値を記憶する。13はタイミング回路で
記憶回路12&および12bに記憶する時間を制御する
。The signal is amplified at step 9b and input to two electrode groups B whose positions differ in phase by 90'. Memory circuits 12aL and 12b store values obtained by converting the output of the differential amplifier 10 into direct current by the rectifier circuit 11. Reference numeral 13 denotes a timing circuit that controls the storage time in the storage circuits 12& and 12b.
今、ある時間に制御回路14により、制御端子71Lに
制御電圧が印加されていると、発振器7は第3図の発振
器の発振周波数の制御特性によって決まる周波数で発振
する。例えば制御端子の電圧をvlとすれば、発振周波
数はflとなる。この発振出力は90°移相器8に入力
されてeo’移相されて後、あるいは直接に電力増幅器
ea、ebにそれぞれ入力されて、動体6を所定の速度
で回転するために必要なレベルにまで増幅される。増幅
された信号は電極群ム、Bに入力され、前述したように
駆動体3に曲げ振動の進行波を作る。この時に流入する
機械的電流−を差動増幅器1oにより得て、整流回路1
1で交流値を直流に変換して、タイミング回路13の作
るタイミングで記憶回路121Lに記憶する。Now, when a control voltage is applied to the control terminal 71L by the control circuit 14 at a certain time, the oscillator 7 oscillates at a frequency determined by the control characteristics of the oscillation frequency of the oscillator shown in FIG. For example, if the voltage at the control terminal is vl, the oscillation frequency is fl. This oscillation output is inputted to a 90° phase shifter 8 and phase-shifted to eo', or directly inputted to power amplifiers ea and eb, respectively, to obtain the level required to rotate the moving object 6 at a predetermined speed. is amplified to. The amplified signal is input to the electrode group M, B, and creates a traveling wave of bending vibration in the driving body 3 as described above. The mechanical current flowing in at this time is obtained by the differential amplifier 1o, and the rectifier circuit 1
1 converts the AC value to DC and stores it in the storage circuit 121L at the timing created by the timing circuit 13.
次に制御回路16は端子71Lに印加する制御電圧を設
定値だけ増加して第3図のV、にする。すると発振器7
の発振周波数はf3となる。このf3による駆動的での
機械的電流−をタイミング回路13により記憶回路12
bに記憶し、一つ前の記憶回路121の記憶結果と比較
器14で比較して、機械的電流−が小さくなった時には
、制御電圧をv5よF)Vlにもどし、大きくなった時
にはv2を再び設定値だけ増加して、その時の機械的電
流−を記憶回路12&に記憶して比較器14で比較する
。Next, the control circuit 16 increases the control voltage applied to the terminal 71L by a set value to V in FIG. Then oscillator 7
The oscillation frequency of is f3. The mechanical current generated by this f3 is transferred to the memory circuit 12 by the timing circuit 13.
b and compares it with the memory result of the previous memory circuit 121 in the comparator 14. When the mechanical current - becomes small, the control voltage is returned to v5 to Vl, and when it becomes large, it is set to v2. is increased again by the set value, and the mechanical current at that time is stored in the memory circuit 12& and compared by the comparator 14.
このように、制御電圧を増加させて、その時の機械的電
流−が増加した時には再び制御電圧を設定値だけ増加し
、同様に制御電圧を増加させて、機械的電流−が減少し
た時には制御電圧を設定値だけ減少させる。また、制御
電圧を減少させて、機械的電流−が増加した時には制御
電圧をさらに設定値だけ減少させ、同様に制御電圧を減
少させて、機械的電流−が減少した時には制御電圧を設
定値だけ増加する。この結果、制御電圧の可変範囲を駆
動体3の共振周波数の変化する範囲に一致させておけば
、制御回路16は常に駆動体3の駆動周波数を共振周波
数に一致させるように発振器7の出力周波数を制御する
。故に、常に同一印加電圧に対して最大の機械的電流−
が得られる効率の良い駆動ができる。In this way, when the control voltage is increased and the mechanical current increases, the control voltage is increased again by the set value, and when the control voltage is similarly increased and the mechanical current decreases, the control voltage is increased. is decreased by the set value. Also, when the control voltage is decreased and the mechanical current increases, the control voltage is further decreased by the set value, and in the same way, when the control voltage is decreased and the mechanical current decreases, the control voltage is reduced by the set value. To increase. As a result, if the variable range of the control voltage is made to match the range in which the resonant frequency of the driver 3 changes, the control circuit 16 adjusts the output frequency of the oscillator 7 so that the drive frequency of the driver 3 always matches the resonant frequency. control. Therefore, the maximum mechanical current for the same applied voltage is always −
Efficient driving is possible.
第4図は機械的電流−のみを取シ出す別の回路例でS#
)、圧電セラミック2と並列に昇圧トラ/ス161L、
16bのインダクタンスLがはいシ、このインダクタン
スLを容量値coとで駆動周波数近傍で並列共振をする
ように選んである。これにより抵抗R1には機械的電流
−に比例した端子電圧が発生する。Figure 4 is another example of a circuit that draws only the mechanical current.
), step-up transformer/s 161L in parallel with piezoelectric ceramic 2,
The inductance L of 16b is selected so that this inductance L and the capacitance value co resonate in parallel near the driving frequency. As a result, a terminal voltage proportional to the mechanical current - is generated across the resistor R1.
発明の効果
本発明によれば、温度や静荷重および負荷の変動などに
より、圧電駆動体のインピーダンス特性や共振周波数が
変化しても、常に安定に最適駆動ができる。Effects of the Invention According to the present invention, even if the impedance characteristics and resonant frequency of the piezoelectric drive body change due to changes in temperature, static load, load, etc., stable and optimum driving can be performed at all times.
第1図は本発明の一実施例の超音波モータ駆動は第1図
の実施例に用いた電圧制御発振回路の制御特性図、第4
図は圧電体に流入する機械的電流検出回路の他の例を示
すブロック図、第6図は従来の超音波モータの断面図、
第6図は第1図に用いられている圧電体の形状と電極構
造を示す平面図、第7図は超音波モータの駆動体部の振
動状態を示すモデル図、第8図は超音波モータの原理の
説明図、第9図は駆動体のインピーダンスと感度の周波
数特性図、第10図は駆動体のインピーダンス特性の負
荷による変化を示す特性図である。
7・・・・・・電圧制御発振器、8・・・・・・9o度
移相器、91L、9b・・・・・・電力増幅器、1o・
・・・・・差動増幅器、11・・・・・・整流回路、1
2a、12b・・・・・・記憶回路、13・・・・・・
タイミング回路、14・・・・・・比較器、15・・・
・・・制御回路、161L、16b・・・・・・昇圧ト
ランス。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
(α) C11)
第3図
発採回冶i’制御電、圧、(v)
第4図
第5図
第6図
跳7図
第8図FIG. 1 is a control characteristic diagram of the voltage controlled oscillation circuit used in the embodiment of FIG. 1, and FIG.
The figure is a block diagram showing another example of a mechanical current detection circuit flowing into a piezoelectric body, and FIG. 6 is a cross-sectional view of a conventional ultrasonic motor.
Figure 6 is a plan view showing the shape and electrode structure of the piezoelectric body used in Figure 1, Figure 7 is a model diagram showing the vibration state of the driving body of the ultrasonic motor, and Figure 8 is the ultrasonic motor. FIG. 9 is a frequency characteristic diagram of impedance and sensitivity of the driving body, and FIG. 10 is a characteristic diagram showing changes in impedance characteristics of the driving body due to load. 7...Voltage controlled oscillator, 8...9o degree phase shifter, 91L, 9b...power amplifier, 1o...
... Differential amplifier, 11 ... Rectifier circuit, 1
2a, 12b... Memory circuit, 13...
Timing circuit, 14... Comparator, 15...
...Control circuit, 161L, 16b...Step-up transformer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (α) C11) Figure 3 Control voltage, pressure, (v) Figure 4 Figure 5 Figure 6 Jump Figure 7 Figure 8
Claims (1)
記圧電駆動体に電圧を印加することにより、上記駆動体
に曲げ振動を励起して進行波を作り、上記弾性体の貼合
せ面に相対する面上の質点を楕円運動させることにより
、前記弾性体上に置かれた物体を移動させる超音波モー
タにおいて、制御端子に印加する電圧を制御することに
より周波数を可変できる、前記圧電体を駆動するための
交流電圧を発生する電圧制御発振回路と、前記圧電体に
上記駆動電圧を印加した時に流入する電流の機械腕に流
入する電流成分の検出回路と、上記電流検出回路の出力
を設定時間おきに記憶する記憶回路と、上記記憶回路の
一つ前の時点での出力と現在の出力とを比較する比較回
路と、上記比較回路の比較結果により常に上記圧電体に
流入する上記電流成分が最大になるように、前記発振回
路の発振周波数を前記制御端子の印加電圧により制御す
る制御回路とを具備することを特徴とする超音波モータ
駆動装置。A piezoelectric driving body is formed by laminating an elastic body and a piezoelectric body, and by applying a voltage to the piezoelectric driving body, bending vibration is excited in the driving body to create a traveling wave, and the pasting of the elastic body is performed. In an ultrasonic motor that moves an object placed on the elastic body by elliptically moving a mass point on a surface facing the surface, the piezoelectric motor can vary the frequency by controlling a voltage applied to a control terminal. a voltage controlled oscillation circuit that generates an alternating current voltage for driving the body; a detection circuit for detecting a current component flowing into the mechanical arm of the current that flows when the drive voltage is applied to the piezoelectric body; and an output of the current detection circuit. a memory circuit that stores the current output at set time intervals, a comparison circuit that compares the previous output of the memory circuit with the current output, and a comparison circuit that constantly flows into the piezoelectric body based on the comparison result of the comparison circuit. An ultrasonic motor drive device comprising: a control circuit that controls the oscillation frequency of the oscillation circuit by a voltage applied to the control terminal so that the current component is maximized.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60139446A JPH0815398B2 (en) | 1985-06-26 | 1985-06-26 | Ultrasonic motor drive |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60139446A JPH0815398B2 (en) | 1985-06-26 | 1985-06-26 | Ultrasonic motor drive |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS622869A true JPS622869A (en) | 1987-01-08 |
| JPH0815398B2 JPH0815398B2 (en) | 1996-02-14 |
Family
ID=15245392
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP60139446A Expired - Lifetime JPH0815398B2 (en) | 1985-06-26 | 1985-06-26 | Ultrasonic motor drive |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0815398B2 (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63206170A (en) * | 1987-02-19 | 1988-08-25 | Nikon Corp | Ultrasonic motor drive circuit |
| JPS63249477A (en) * | 1987-04-02 | 1988-10-17 | Matsushita Electric Ind Co Ltd | Ultrasonic motor drive device |
| JPH02119586A (en) * | 1988-10-27 | 1990-05-07 | Seiko Instr Inc | Ultrasonic motor unit |
| US4926084A (en) * | 1988-05-06 | 1990-05-15 | Canon Kabushiki Kaisha | Driving apparatus for a vibration wave motor |
| JPH02214481A (en) * | 1989-02-10 | 1990-08-27 | Matsushita Electric Ind Co Ltd | Apparatus for driving ultrasonic motor |
| US4998048A (en) * | 1988-05-30 | 1991-03-05 | Canon Kabushiki Kaisha | Driving device for vibration wave driven motor |
| US5457362A (en) * | 1991-10-22 | 1995-10-10 | Robert Bosch Gmbh | Process and device for controlling the frequency of a traveling wave motor |
| US5777445A (en) * | 1995-12-07 | 1998-07-07 | Nikon Corporation | Drive device of vibration actuator |
| JP2002359988A (en) * | 2001-05-31 | 2002-12-13 | Nidec Copal Corp | Ultrasonic motor control circuit |
| US7042135B2 (en) | 2003-11-14 | 2006-05-09 | Canon Kabushiki Kaisha | Current detection circuit and current detection method |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS49133017A (en) * | 1972-11-17 | 1974-12-20 | ||
| JPS5836684A (en) * | 1981-08-28 | 1983-03-03 | 有限会社大岳製作所 | Ultrasonic oscillation method and micro-computer built-in ultrasonic oscillator |
-
1985
- 1985-06-26 JP JP60139446A patent/JPH0815398B2/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS49133017A (en) * | 1972-11-17 | 1974-12-20 | ||
| JPS5836684A (en) * | 1981-08-28 | 1983-03-03 | 有限会社大岳製作所 | Ultrasonic oscillation method and micro-computer built-in ultrasonic oscillator |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS63206170A (en) * | 1987-02-19 | 1988-08-25 | Nikon Corp | Ultrasonic motor drive circuit |
| JPS63249477A (en) * | 1987-04-02 | 1988-10-17 | Matsushita Electric Ind Co Ltd | Ultrasonic motor drive device |
| US4926084A (en) * | 1988-05-06 | 1990-05-15 | Canon Kabushiki Kaisha | Driving apparatus for a vibration wave motor |
| US4998048A (en) * | 1988-05-30 | 1991-03-05 | Canon Kabushiki Kaisha | Driving device for vibration wave driven motor |
| JPH02119586A (en) * | 1988-10-27 | 1990-05-07 | Seiko Instr Inc | Ultrasonic motor unit |
| JPH02214481A (en) * | 1989-02-10 | 1990-08-27 | Matsushita Electric Ind Co Ltd | Apparatus for driving ultrasonic motor |
| US5457362A (en) * | 1991-10-22 | 1995-10-10 | Robert Bosch Gmbh | Process and device for controlling the frequency of a traveling wave motor |
| US5777445A (en) * | 1995-12-07 | 1998-07-07 | Nikon Corporation | Drive device of vibration actuator |
| JP2002359988A (en) * | 2001-05-31 | 2002-12-13 | Nidec Copal Corp | Ultrasonic motor control circuit |
| US7042135B2 (en) | 2003-11-14 | 2006-05-09 | Canon Kabushiki Kaisha | Current detection circuit and current detection method |
| CN100437125C (en) * | 2003-11-14 | 2008-11-26 | 佳能株式会社 | Current detection circuit and current detection method |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0815398B2 (en) | 1996-02-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4888514A (en) | Driving apparatus for ultrasonic motor | |
| JPS622869A (en) | Ultrasonic motor drive device | |
| JPS6356178A (en) | Ultrasonic motor driving method | |
| JP2663380B2 (en) | Piezoelectric ultrasonic linear motor | |
| JP3172343B2 (en) | Ultrasonic motor | |
| JPS6292782A (en) | Ultrasonic motor device | |
| JP2558709B2 (en) | Ultrasonic motor drive | |
| JP2604731B2 (en) | Ultrasonic motor drive | |
| JP2506895B2 (en) | Ultrasonic motor controller | |
| JP2583904B2 (en) | Ultrasonic motor driving method | |
| JPS6292781A (en) | Ultrasonic motor device | |
| JP2574293B2 (en) | Ultrasonic motor driving method | |
| JP2636280B2 (en) | Driving method of ultrasonic motor | |
| JP3141525B2 (en) | Ultrasonic motor drive control method | |
| JPS62196084A (en) | Ultrasonic motor | |
| JPH07108103B2 (en) | Ultrasonic motor device | |
| JPH0365079A (en) | Ultrasonic motor drive control device | |
| JPH0632569B2 (en) | Ultrasonic motor driving method | |
| JPH0667233B2 (en) | Ultrasonic motor device | |
| JPH01136575A (en) | Supersonic motor driving device | |
| JPS63299788A (en) | Ultrasonic motor driving device | |
| JPH0833366A (en) | Ultrasonic motor driving method and its driving circuit | |
| JPH04331484A (en) | How to drive an ultrasonic motor | |
| JPS6356179A (en) | Driving of ultrasonic motor | |
| JPS627379A (en) | Ultrasonic wave motor apparatus |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| EXPY | Cancellation because of completion of term |