JPS62288135A - Tellurite glass - Google Patents
Tellurite glassInfo
- Publication number
- JPS62288135A JPS62288135A JP13089686A JP13089686A JPS62288135A JP S62288135 A JPS62288135 A JP S62288135A JP 13089686 A JP13089686 A JP 13089686A JP 13089686 A JP13089686 A JP 13089686A JP S62288135 A JPS62288135 A JP S62288135A
- Authority
- JP
- Japan
- Prior art keywords
- mol
- total amount
- glass
- pbo
- zno
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 38
- SITVSCPRJNYAGV-UHFFFAOYSA-L tellurite Chemical compound [O-][Te]([O-])=O SITVSCPRJNYAGV-UHFFFAOYSA-L 0.000 title abstract 3
- 230000003287 optical effect Effects 0.000 claims abstract description 17
- 150000004820 halides Chemical class 0.000 claims abstract description 11
- 150000001450 anions Chemical group 0.000 claims description 3
- 230000001902 propagating effect Effects 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 15
- 239000000203 mixture Substances 0.000 abstract description 7
- KOPBYBDAPCDYFK-UHFFFAOYSA-N Cs2O Inorganic materials [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 abstract description 3
- AKUNKIJLSDQFLS-UHFFFAOYSA-M dicesium;hydroxide Chemical compound [OH-].[Cs+].[Cs+] AKUNKIJLSDQFLS-UHFFFAOYSA-M 0.000 abstract description 3
- 229910001953 rubidium(I) oxide Inorganic materials 0.000 abstract description 3
- 229910003069 TeO2 Inorganic materials 0.000 abstract 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 abstract 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 abstract 2
- LAJZODKXOMJMPK-UHFFFAOYSA-N tellurium dioxide Chemical compound O=[Te]=O LAJZODKXOMJMPK-UHFFFAOYSA-N 0.000 abstract 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N Li2O Inorganic materials [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 abstract 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N Na2O Inorganic materials [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 abstract 1
- XUCJHNOBJLKZNU-UHFFFAOYSA-M dilithium;hydroxide Chemical compound [Li+].[Li+].[OH-] XUCJHNOBJLKZNU-UHFFFAOYSA-M 0.000 abstract 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 abstract 1
- 238000002156 mixing Methods 0.000 abstract 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 abstract 1
- NOTVAPJNGZMVSD-UHFFFAOYSA-N potassium monoxide Inorganic materials [K]O[K] NOTVAPJNGZMVSD-UHFFFAOYSA-N 0.000 abstract 1
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 abstract 1
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten(VI) oxide Inorganic materials O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 6
- 238000004017 vitrification Methods 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000005304 optical glass Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000004031 devitrification Methods 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000011358 absorbing material Substances 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- 239000006121 base glass Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/23—Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔産業上の利用分野〕
本発明はチルライトガラスに関し、特に光変調・光偏向
素子などの音響光学素子用の音響光学媒体や、高屈折率
ガラス及び低融点ガラスなどの各種光学ガラスに利用可
能なチルライトガラスに関する。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to chill light glass, particularly as an acousto-optic medium for acousto-optic devices such as light modulation and light deflection elements, and a high refractive glass. The present invention relates to chill light glass that can be used for various optical glasses such as low melting point glass and low melting point glass.
従来のチルライトガラスとしては、高屈折高分散光学ガ
ラス及び音響光学素子用媒体としてそれぞれ次のものが
知られている。As conventional chill light glasses, the following are known as high refractive index high dispersion optical glasses and media for acousto-optic elements.
(1)モル%で、Te Ozが50〜65、WO,+が
20〜30、Liz Oが10〜20からなる基礎ガラ
スに、K20 が2〜10、Mg Oが1〜4、Ba
Oが1〜6、Zn Oが1〜8、Cd Oが1〜5 、
Ti O□が1.5〜6 、Pb Oが0.5〜10、
La、 0.が0.5〜5、B20.が1〜6 、Nb
z Os が1〜6及びBi202が2〜8の1種又は
2種以上を含有させて100%としたチルライトガラス
(特公昭4B −9083号公報、以下、「従来例1」
という、)。(1) In mol%, a base glass consisting of 50-65 TeOz, 20-30 WO,+, 10-20 LizO, 2-10 K20, 1-4 MgO, and 1-4 Ba
O is 1-6, ZnO is 1-8, CdO is 1-5,
TiO□ is 1.5-6, PbO is 0.5-10,
La, 0. is 0.5 to 5, B20. is 1 to 6, Nb
Chillite glass containing one or more of zOs from 1 to 6 and Bi202 from 2 to 8 to 100% (Japanese Patent Publication No. 4B-9083, hereinafter referred to as "Conventional Example 1")
).
(2)モル%で、Te Oxが60〜75、Zn Oが
5〜20゜Na、 OとLid Oの合量が5〜20.
Pb Oが0〜15、Ba Oが0〜16及びLa、
0.が0〜10なる組成を有するチルライトガラス(
特公昭52−28454号公報、以下、「従来例2」と
いう。)。(2) In terms of mol%, TeOx is 60-75, ZnO is 5-20°Na, and the total amount of O and LidO is 5-20.
PbO is 0-15, BaO is 0-16 and La,
0. Chillite glass having a composition of 0 to 10 (
Japanese Patent Publication No. 52-28454, hereinafter referred to as "Conventional Example 2". ).
従来例1のチルライトガラスは失透に対し安定で、化学
的耐久性を向上することができ、従来例2のチルライト
ガラスはフィギュア オブ・メ・ノッ)Me の値を
高くし、超音波吸収を少なくすることができる点でそれ
ぞれ特徴を有する。The chill-light glass of Conventional Example 1 is stable against devitrification and can improve chemical durability, while the chill-light glass of Conventional Example 2 has a high figure of Me value and is resistant to ultrasonic waves. Each has its own characteristics in that it can reduce absorption.
チルライトガラスの代表的応用例として、音言光学変調
素子の基本的構成は、チルライトガラスをブロック状に
加工した音響光学媒体と、この媒体の上面に接着された
トランスジューサと、このトランスジューサと対向する
媒体の下面に設置された吸音材とからなり、その作用に
ついては、変調信号をトランスジューサに印加して、超
音波信号に変換し、この超音波信号を媒体内に伝搬する
一方、この伝搬する超音波の波面に対してブラック角θ
、でレーザビームを媒体側面から入射した場合、出射レ
ーザビームとしては直進する0次光の他に、前記波面の
反射点を中心にして0次光の光路から2θ8だけ回折す
る1次回折光が出射する。As a typical application example of chill light glass, the basic configuration of an acoustic optical modulator is: an acousto-optic medium made of chill light glass processed into a block shape, a transducer bonded to the top surface of this medium, and a transducer facing the transducer. It consists of a sound-absorbing material placed on the bottom surface of the medium, and its action is to apply a modulated signal to a transducer, convert it into an ultrasonic signal, and propagate this ultrasonic signal into the medium, while Black angle θ with respect to the ultrasonic wavefront
, when a laser beam is incident from the side of the medium, in addition to the 0th-order light that travels straight, the 1st-order diffracted light that is diffracted by 2θ8 from the optical path of the 0th-order light around the reflection point of the wavefront is emitted. do.
しかしながら、従来例1及び2のチルライトガラスを音
響光学素子の音響光学媒体に使用した場合、前述した1
次回折光の出射レーザビームが位置ドリフトを発生して
しまう。この位置ドリフト量は、トランスジュ−サに印
加する電力がIWであるとき、通常0.1〜0.15m
rad であり、その発生原因は、トランスジューサ
、接着層及び媒体の温度上昇によるものと思われる。か
\る温度上昇は媒体中に屈折率の変化をもたらし、次式
で表わされる光路長の温度変化dS/dTの大小により
、位置ドリフト量が左右すると考えられる。However, when the chill light glasses of Conventional Examples 1 and 2 are used as an acousto-optic medium of an acousto-optic element, the above-mentioned 1
The output laser beam of the next diffracted light will cause a positional drift. This positional drift amount is usually 0.1 to 0.15 m when the power applied to the transducer is IW.
rad, and its occurrence is thought to be due to an increase in the temperature of the transducer, adhesive layer, and medium. Such a temperature rise causes a change in the refractive index in the medium, and it is thought that the amount of positional drift is influenced by the magnitude of the temperature change dS/dT in the optical path length, which is expressed by the following equation.
dS/dT −(dn/dt )+α(n−1)ここで
、dn/dtは屈折率nの温度変化、αは膨張率である
。dS/dT - (dn/dt)+α(n-1) where dn/dt is the temperature change in the refractive index n, and α is the expansion coefficient.
超音波吸収の大きいガラスを、音響光学素子として使用
する場合、超音波の吸収されたエネルギーは熱に変換さ
れる為、媒体中に屈折率の変化をもたらし、波面歪みを
生じさせる原因となる。又、超音波吸収の小さいものに
比べて同じ光変調偏向効果を得るのに、より多くのパワ
ーが必要となる。When glass with high ultrasonic absorption is used as an acousto-optic element, the absorbed energy of the ultrasonic waves is converted into heat, causing a change in the refractive index in the medium and causing wavefront distortion. Moreover, more power is required to obtain the same optical modulation and deflection effect than a type with low ultrasonic absorption.
これらの事は、長円形断面の入射ビームを用いる光偏向
器において、特に顕著となる。又、超音波吸収は、一般
的に超音波の周波数の二乗に比例する為、超音波吸収の
大きな媒体では高い周波数にすればする程、回折効率が
落ちる結果となる。These things are particularly noticeable in optical deflectors that use an incident beam with an oval cross section. Furthermore, since ultrasonic absorption is generally proportional to the square of the ultrasonic frequency, in a medium that has a large ultrasonic absorption, the higher the frequency, the lower the diffraction efficiency will be.
本発明は、上述した位置ドリフトの発生という問題点を
解決し、かつ超音波吸収を小さくするためになされたも
のであり、音響光学素子用媒体において光路長の温度依
存性を少なくし、かつ超音波吸収の小さいチルライトガ
ラスを提供することを目的とし、先の従来例1及び2の
チルライトガラスよりも、音響光学素子としての光路長
の温度変化ds/dT bよびフィギュア・オブ・メリ
ットMeの性能を落とす事なく、超音波吸収を小さくし
たチルライトガラスを提供する為になされたものである
。The present invention was made in order to solve the above-mentioned problem of occurrence of positional drift and to reduce ultrasonic absorption. The purpose is to provide a chill light glass that absorbs small sound waves, and the temperature change ds/dT b of the optical path length as an acousto-optic element and the figure of merit Me are better than the chill light glasses of conventional examples 1 and 2. This was done in order to provide a chill light glass that reduces ultrasonic absorption without reducing its performance.
本発明者は、上記目的を達成するために鋭意研究を積み
重ねた結果、特に光路長の温度変化dS/dTを小さく
するのに有効な修飾酸化物として、アルカリ土類金属酸
化物ではHa Oと、アルカリ金属酸化物ではに20
、Rb2O及びC52Oの成分、特にRhZ O及びC
s、Oの成分を見い出し、さらにこれらの酸化物をハロ
ゲン化物に置き換える事により、顕著に、超音波吸収を
効果的に小さくする事を見い出した。As a result of extensive research in order to achieve the above object, the present inventor found that among alkaline earth metal oxides, HaO and , for alkali metal oxides 20
, Rb2O and C52O components, especially RhZO and C
By discovering the s and O components and further replacing these oxides with halides, we have found that ultrasonic absorption can be significantly and effectively reduced.
そこで、音響光学的性質の点からフィギュア・オブ・メ
リットMe の値が高いチルライトガラスの組成に上
記修飾酸化物とハロゲン化物を含有させる適当量を見い
出して、本発明を完成するに至った。Therefore, from the viewpoint of acousto-optical properties, the present invention was completed by finding an appropriate amount of the above-mentioned modified oxide and halide in the composition of chillite glass having a high figure of merit Me value.
本発明によるチルライトガラスは、モル%で、Te O
,が60〜85(望ましくは、60〜80)、Lid
Oが0〜25(同、0〜10)、Na、 Oが0〜35
(同、0〜10)、K2Oが0〜25(同2O〜20)
、Rb、 Oが0〜25(同、0〜20) 、Cst
Oが0〜15(同2O〜10) 、Mg Oが0〜10
(同2O〜5)、Ca Oが0〜5(同2O〜2)、S
rOが0〜5(同、0〜2) 、Ba Oが1〜30(
同、1〜20) 、Zn Oが0〜30(同2O〜20
) 、Pb Oが0〜30(同2O〜15) 及びL
ag 03 とZr O□ とTi Ox とN
b2 os とTat Os とWOz の合量
が0〜5(同、0〜2)であり、かつKg OとRh、
0 とCs、 Oの合量又はKt Oを除いたRb
z OとCst Oの合量が1〜25(同、1〜20)
であり、Zn Oとpb oの合量が1〜30(同、1
〜25)であり、前記酸化物のハロゲン化物が、陰イオ
ンモル%で、F が0〜20、Cλが0〜18、Brが
0〜18、F % CL Brの合量F+Cj+Brが
0〜20である組成を含有していることを特徴とする。The chillite glass according to the invention contains, in mol %, TeO
, is 60 to 85 (preferably 60 to 80), Lid
O is 0-25 (same, 0-10), Na, O is 0-35
(same, 0-10), K2O is 0-25 (same, 20-20)
, Rb, O is 0 to 25 (same, 0 to 20), Cst
O is 0-15 (same as 2O-10), MgO is 0-10
(same 2O~5), CaO 0~5 (same 2O~2), S
rO is 0-5 (same, 0-2), BaO is 1-30 (
1 to 20), ZnO is 0 to 30 (2O to 20)
), PbO is 0 to 30 (same as 2O to 15) and L
ag 03 and Zr O□ and Ti Ox and N
The total amount of b2 os, Tat Os and WOz is 0 to 5 (same, 0 to 2), and Kg O and Rh,
0 and Cs, total amount of O or Kt Rb excluding O
The total amount of z O and Cst O is 1 to 25 (same, 1 to 20)
and the total amount of ZnO and pbo is 1 to 30 (same, 1
~25), and the halide of the oxide is anion mol%, F is 0 to 20, Cλ is 0 to 18, Br is 0 to 18, and the total amount of F%CLBr is F+Cj+Br is 0 to 20. It is characterized by containing a certain composition.
ただし、ガラス溶融パッチとして、前記ハロゲン化物以
外の酸化物には、主として炭酸塩が用いられる。However, as the glass melting patch, carbonates are mainly used as oxides other than the halides.
次に、本発明のチルライトガラスの組成成分の限定理由
について述べる。Next, the reasons for limiting the compositional components of the chillite glass of the present invention will be described.
先ず、Te O,は一般にその含有量が多い程、超音波
吸収が小さく、屈折率が大きく、フィギュア・オブ・メ
リットMe値が大きくなって望ましいが、85モル%を
越えるとガラス化が不安定になり、前述した光路長の温
度変換dS/dTを大きくする傾向が現われ、前述した
修飾酸化物を含有しても、このdS/dTを小さくする
ことが困難になる。一方、Te O,の含有量が60モ
ル%を下まわると、フィギュア・オブ・メリットMe値
が小さくなる。そこで、Te O,を60〜85モル%
(望ましくは60〜80モル%)に限定した。First, the higher the TeO content, the lower the ultrasonic absorption, the higher the refractive index, and the higher the figure of merit Me value, which is desirable, but if it exceeds 85 mol%, vitrification becomes unstable. Therefore, there is a tendency to increase the temperature conversion dS/dT of the optical path length described above, and even if the modified oxide described above is contained, it becomes difficult to reduce this dS/dT. On the other hand, when the content of Te 2 O, is less than 60 mol %, the figure of merit Me value becomes small. Therefore, 60 to 85 mol% of TeO,
(preferably 60 to 80 mol%).
次に、Liz O% Nag 01K2O、R1)t
O及びCs*Oはそれぞれガラス化を安定にし、失透温
度を下げるように作用するものであるが、各含有量゛が
多すぎては上記作用が得られなくなることから、Lit
Oを0〜25モル%(望ましくは2O〜10モル%)
、Na、 0を0〜35モル%(同2O〜10モル%
)、Kg 0 を0〜25モル%(同2O〜20モル
%)。Next, Liz O% Nag 01K2O, R1)t
O and Cs*O each act to stabilize vitrification and lower the devitrification temperature, but if the content of each is too large, the above effects cannot be obtained.
O from 0 to 25 mol% (preferably 2O to 10 mol%)
, Na, 0 to 35 mol% (same 2O to 10 mol%
), Kg 0 from 0 to 25 mol% (Kg 0 to 20 mol%).
Rbz Oを0〜25モル%(同2O〜20モル%)及
びCs、 0を0〜15モル%(同2O〜10モル%)
に限定した。ここで、K、 OとRh、 0とCsg
Oの合量、特にRh、 OとCs2Oの合量は、光路長
の温度変化dS/dTを小さくするのに必須成分であり
、これ等の含量が1モル%を下まわるとdS/dTの減
少効果が得られず、25モル%を越えるとガラス化が不
安定になることから、それ等の含量を1〜25モル%(
望ましくは、1〜20モル%)に限定した。0 to 25 mol% of Rbz O (20 to 20 mol%) and 0 to 15 mol% of Cs, 0 (20 to 10 mol%)
limited to. Here, K, O and Rh, 0 and Csg
The total amount of O, especially the total amount of Rh, O and Cs2O, is an essential component to reduce the temperature change dS/dT of the optical path length, and when the content of these is less than 1 mol%, the dS/dT decreases. Since no reduction effect can be obtained and vitrification becomes unstable if it exceeds 25 mol%, the content should be reduced from 1 to 25 mol% (
Desirably, it was limited to 1 to 20 mol%).
次に、Mg 01Ca 01Sr O及びBa Oは、
これ等を含有すると、屈折率をアルカリ成分程下げるこ
とな(、ガラス化を安定にし、かつ耐水性をよくするが
、主として耐失透性を考慮して、Mg Oを0〜lOモ
ル%(望ましくは2O〜5モル%) 、Ca Oを0〜
5モル%(同2O〜2モル%) 、Sr Oを0〜5モ
ル%(同2O〜2モル%)と限定し、BaOについては
、上記作用の他に、光路長の温度変化dS/dTを小さ
くするのに必須成分であり、1モル%を下まわるとds
/dTの減少効果が得られないことから、1〜30モル
%(同、1〜20モル%)に限定した。Next, Mg 01Ca 01Sr O and Ba O are
If these are contained, the refractive index will not be lowered as much as the alkali component (, vitrification will be stabilized, and water resistance will be improved. Desirably 2O to 5 mol%), CaO from 0 to 5% by mole)
5 mol% (same 2O~2 mol%), SrO is limited to 0~5 mol% (same 2O~2 mol%), and for BaO, in addition to the above effects, temperature change in optical path length dS/dT It is an essential component to reduce the ds when it is less than 1 mol%
Since the effect of reducing /dT could not be obtained, the amount was limited to 1 to 30 mol% (same as 1 to 20 mol%).
次に、Zn O及びPbOは、何れか少なくとも一方を
含有すると、耐水性と耐失透性を良好にするが、それぞ
れ多すぎるとガラス化が不安定になることから、Zn
Oを0〜30モル%(望ましくは2O〜20モル%)
、Pb Oを0〜30モル%(同2O〜15モル%)と
し、かつZn OとPbOの合量を1〜30モル%(同
、1〜25モル%)に限定した。Next, when containing at least one of ZnO and PbO, water resistance and devitrification resistance are improved, but too much of each makes vitrification unstable.
O from 0 to 30 mol% (preferably 2O to 20 mol%)
, PbO was set at 0 to 30 mol% (20 to 15 mol%), and the total amount of ZnO and PbO was limited to 1 to 30 mol% (1 to 25 mol%).
La20:l 、Zr OH、Ti Ot 、Nbz
Os 、Tag 05 及び−03は、それぞれ
耐水性を良好にし、硬度を高める効果を奏するが、それ
等の含量が多すぎると、ガラス化が不安定になると共に
難溶になり、更には光路長の温度変化dS/dTを大き
くする傾向が現われ、前述した修飾酸化物を含有しても
、このdS/dTを小さくすることが困難になることを
考慮して、それ等の含量を0〜5モル%(望ましくは2
O〜2モル%)に限定した。La20:l, ZrOH, TiOt, Nbz
Os, Tag 05, and -03 each have the effect of improving water resistance and increasing hardness, but if their content is too large, vitrification becomes unstable, it becomes difficult to dissolve, and furthermore, the optical path length decreases. There is a tendency to increase the temperature change dS/dT of Mol% (preferably 2
(0~2 mol%).
ガラス中のハロゲンは、超音波吸収を小さくする効果が
ある為、Fが20モル%、cJが18モル%、Brが1
8モル%、かつFと載とBrの合量が20モル%を越え
るとガラスが不安定になることから、Fが0〜20モル
%、C又が0〜18モル%、Brが0〜18モル%、F
、 Cf1l、Brの合量F+Cl+Brが0〜20
モル%に限定した。Halogen in glass has the effect of reducing ultrasonic absorption, so F is 20 mol%, cJ is 18 mol%, and Br is 1
8 mol%, and if the total amount of F, Br and Br exceeds 20 mol%, the glass becomes unstable. 18 mol%, F
, Cf1l, total amount of Br F+Cl+Br is 0 to 20
Limited to mol%.
本発明のチルライトガラスによる実施例1〜12と、比
較例1〜4の成分組成(モル%)及び20〜40℃にお
ける光路長の温度変化dS/dT (Xl0−6/de
g )とフィギュア・オブ・メリットMe(×10−1
11sec3/g )及び超音波吸収(dB/cm )
を表に記載する。Component composition (mol%) of Examples 1 to 12 and Comparative Examples 1 to 4 using the chill light glass of the present invention and temperature change in optical path length at 20 to 40°C dS/dT (Xl0-6/de
g ) and Figure of Merit Me (×10-1
11sec3/g ) and ultrasound absorption (dB/cm )
are listed in the table.
これ等のチルライトガラスは、それぞれの組成になるよ
うに調合した原料(バッチ)を金製ルツボに入れて、6
00〜800℃で溶解し、攪拌清澄した後、鋳込んで徐
冷して製造される。ハロゲン(F、 CJi、 Br
)添加チルライトガラスは、金製の蓋をして、同様に製
造される。そして、光路長の温度変化ds/dTについ
ては、これ等のチルライトガラスをディスク状(直径1
5mm 、厚さ511IIll)に加工・研暦したもの
を資料として、20℃から40℃まで昇温速度的1℃/
minで加熱して、屈折率nをスペクトロメータ(精密
分光計)で測定し、dS/dTと膨張率αを干渉膨張計
を用いて測定して先の式より計算して求め、フィギュア
・オブ・メリットMe値については、これ等のチルライ
トガラスを〔従来の技術〕の項で記述したようにブロッ
ク状の音響光学媒体に加工し、音響光学変調素子を製作
して、ディキソン・ツーヘン法により求めた。また超音
波吸収の測定は試料中に超音波パルスを送り、その往復
による減衰を測定する超音波パルスエコー法によって行
った。These chill light glasses are made by putting raw materials (batches) prepared to each composition into a metal crucible, and then
It is produced by melting at 00 to 800°C, stirring and clarifying, then casting and slowly cooling. Halogen (F, CJi, Br
) Doped chillite glass is produced similarly, with a gold lid. Regarding the temperature change ds/dT of the optical path length, we used these chill light glasses in a disk shape (diameter 1
5mm, thickness 511IIll) as data, the heating rate was 1℃/1℃ from 20℃ to 40℃.
The refractive index n is measured using a spectrometer (precision spectrometer), and the dS/dT and expansion coefficient α are measured using an interference dilatometer and calculated from the above formula.・As for the merit Me value, these chill light glasses are processed into a block-shaped acousto-optic medium as described in the [prior art] section, an acousto-optic modulation element is manufactured, and the result is obtained by the Dickson-Zuhen method. I asked for it. Ultrasonic absorption was measured using the ultrasonic pulse-echo method, which sends an ultrasonic pulse into the sample and measures the attenuation due to its reciprocation.
表の記載から明らかな通り、比較例1の酸化物の一部を
ハロゲン化物に置き換えた実施例1.2.3、比較例2
の酸化物の一部をハロゲン化物に置き換えた実施例4,
5,6、比較例3の酸化物の一部をハロゲン化物に置き
換えた実施例7,8゜9、および比較例4の酸化物の一
部をハロゲン化物に置き換えた実施例10.11.12
は、それぞれの比較例と対比して、フィギュア・オプ・
メリットMe値についてほとんど同等に維持し、かつ、
光路長の温度変化dS/dTの絶対値を2. OX 1
0− ’/deg以下にすると同時に、超音波吸収の値
が、75〜50%程度まで減少している事が判る。As is clear from the table, Example 1.2.3 and Comparative Example 2 in which a part of the oxide in Comparative Example 1 was replaced with a halide.
Example 4 in which a part of the oxide was replaced with a halide,
Examples 7 and 8゜9 in which a part of the oxide in Comparative Example 3 was replaced with a halide, and Example 10.11.12 in which a part of the oxide in Comparative Example 4 was replaced with a halide.
compared to each comparative example.
Maintaining almost the same merit Me value, and
The absolute value of the optical path length temperature change dS/dT is 2. OX1
It can be seen that the value of ultrasonic absorption decreases to about 75 to 50% at the same time when the value is reduced to 0-'/deg or less.
その他の光学特性については、屈折率が1.9〜2.2
、融点に関する屈伏点が280〜330℃であった。Regarding other optical properties, the refractive index is 1.9 to 2.2.
The yield point regarding the melting point was 280-330°C.
本発明のチルライトガラスの応用例については、上述し
た音響光学変調素子の他に音響光学偏向素子などの音響
光学素子や、各種光学ガラスとして特徴を活かして利用
することができる。As for application examples of the chill light glass of the present invention, in addition to the above-mentioned acousto-optic modulation element, it can be used as an acousto-optic element such as an acousto-optic deflection element, and various optical glasses by taking advantage of its characteristics.
以上のとおり、本発明のチルライトガラスは、フィギュ
ア・オブ・メリットMeを良好な値に維持して、光路長
の温度変化dS/dTを小さくし、かつ超音波吸収を小
さくすることができ、特に音響光学素子用の音響光学媒
体において実用的価値は多大である。なお、各種光学ガ
ラスに使用可能であることはいうまでもない。As described above, the chill light glass of the present invention can maintain the figure of merit Me at a good value, reduce the temperature change dS/dT of the optical path length, and reduce ultrasonic absorption. In particular, it has great practical value in acousto-optic media for acousto-optic devices. Note that it goes without saying that it can be used for various optical glasses.
Claims (4)
が0〜25、Na_2Oが0〜35、K_2Oが0〜2
5、Rb_2Oが0〜25、Cs_2Oが0〜15、M
gOが0〜10、CaOが0〜5、SrOが0〜5、B
aOが1〜30、ZnOが0〜30、PbOが0〜30
及びLa_2O_3とZrO_2とTiO_2とNb_
2O_5とTa_2O_5とWO_3の合量が0〜5で
あり、かつK_2OとRb_2OとCs_2Oの合量が
1〜25、ZnOとPbOの合量が1〜30であり、前
記酸化物のハロゲン化物が、陰イオンモル%で、Fが0
〜20、Clが0〜18、Brが0〜18、FとClと
Brの合量F+Cl+Brが0〜20である組成を有す
ることを特徴とするチルライトガラス。(1) In mol%, TeO_2 is 60-85, Li_2O
is 0-25, Na_2O is 0-35, K_2O is 0-2
5, Rb_2O is 0-25, Cs_2O is 0-15, M
gO is 0-10, CaO is 0-5, SrO is 0-5, B
aO is 1-30, ZnO is 0-30, PbO is 0-30
and La_2O_3 and ZrO_2 and TiO_2 and Nb_
The total amount of 2O_5, Ta_2O_5 and WO_3 is 0 to 5, the total amount of K_2O, Rb_2O and Cs_2O is 1 to 25, the total amount of ZnO and PbO is 1 to 30, and the halide of the oxide is Anion mole%, F is 0
-20, Cl is 0-18, Br is 0-18, and the total amount of F, Cl, and Br, F+Cl+Br, is 0-20.
が0〜10、Na_2Oが0〜10、K_2Oが0〜2
0、Rb_2Oが0〜20、Cs_2Oが0〜10、M
gOが0〜5、CaOが0〜2、SrOが0〜2、Ba
Oが1〜20、ZnOが0〜20、PbOが0〜15及
びLa_2O_3とZrO_2とTiO_2とNb_2
O_5とTa_2O_5とWO_3の合量が0〜2であ
り、かつK_2OとRb_2OとCs_2Oの合量が1
〜20、ZnOとPbOの合量が1〜25であり、前記
酸化物のハロゲン化物が、陰イオンモル%で、Fが0〜
20、Clが0〜18、Brが0〜18、FとClとB
rの合量F+Cl+Brが0〜20である組成を有する
ことを特徴とする特許請求の範囲第(1)項記載のチル
ライトガラス。(2) In mol%, TeO_2 is 60-80, Li_2O
is 0-10, Na_2O is 0-10, K_2O is 0-2
0, Rb_2O is 0-20, Cs_2O is 0-10, M
gO is 0-5, CaO is 0-2, SrO is 0-2, Ba
O is 1 to 20, ZnO is 0 to 20, PbO is 0 to 15, and La_2O_3 and ZrO_2 and TiO_2 and Nb_2
The total amount of O_5, Ta_2O_5 and WO_3 is 0 to 2, and the total amount of K_2O, Rb_2O and Cs_2O is 1.
~20, the total amount of ZnO and PbO is 1 to 25, the halide of the oxide is an anion mol%, and F is 0 to
20, Cl 0-18, Br 0-18, F, Cl and B
The chill light glass according to claim 1, characterized in that the total amount of r (F+Cl+Br) is from 0 to 20.
が1〜25モル%であることを特徴とする特許請求の範
囲第(1)項、第(2)項記載のチルライトガラス。(3) Chillite glass according to claims (1) and (2), characterized in that the total amount of Rb_2O and Cs_2O excluding K_2O is 1 to 25 mol%.
(×10^−^6/℃)の絶対値が2以下である特許請
求の範囲第(1)項、第(2)項又は第(3)項記載の
チルライトガラス。(4) Temperature change in optical path length propagating in glass dS/dT
The chill light glass according to claim (1), (2) or (3), wherein the absolute value of (x10^-^6/°C) is 2 or less.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13089686A JPH0723232B2 (en) | 1986-06-05 | 1986-06-05 | Tellurite glass and light modulating / light polarizing element using the glass |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13089686A JPH0723232B2 (en) | 1986-06-05 | 1986-06-05 | Tellurite glass and light modulating / light polarizing element using the glass |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS62288135A true JPS62288135A (en) | 1987-12-15 |
| JPH0723232B2 JPH0723232B2 (en) | 1995-03-15 |
Family
ID=15045247
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP13089686A Expired - Fee Related JPH0723232B2 (en) | 1986-06-05 | 1986-06-05 | Tellurite glass and light modulating / light polarizing element using the glass |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH0723232B2 (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6413891B1 (en) * | 1999-10-11 | 2002-07-02 | Electronics And Telecommunications Research Institute | Glass material suitable for a waveguide of an optical amplifier |
| GB2378700A (en) * | 2001-08-15 | 2003-02-19 | Agilent Technologies Inc | Tellurite glass |
| US6656859B2 (en) | 1999-10-12 | 2003-12-02 | Corning Incorporated | Tellurite glasses and optical components |
| WO2004028992A1 (en) * | 2002-09-27 | 2004-04-08 | Ericsson Telecomunicações S.A. | Tellurite glass, optical fibre, optical amplifier and light source |
| WO2005087674A1 (en) * | 2004-03-11 | 2005-09-22 | Ericsson Telecomunicações S. A. | Glass for optical amplifier fiber |
| JP2006062916A (en) * | 2004-08-27 | 2006-03-09 | Toyota Gakuen | Optical functional waveguide material and optical amplification medium, optical amplifier, laser device, light source |
| KR100869664B1 (en) | 2006-11-13 | 2008-11-21 | 한국기초과학지원연구원 | Glasses in the series of xK2O-14-xNa2O-14Nb2O5-72TeO2 |
| CN104445957A (en) * | 2014-11-17 | 2015-03-25 | 沈阳大学 | A kind of oxyfluoride tellurate glass-ceramic |
| JP2017502902A (en) * | 2013-12-19 | 2017-01-26 | オスラム ゲーエムベーハーOSRAM GmbH | Glass composition, part, and method for manufacturing part |
| CN118954949A (en) * | 2023-08-10 | 2024-11-15 | 山东大学 | Tellurite glass with excellent acousto-optic properties, preparation method and application in acousto-optic modulator |
-
1986
- 1986-06-05 JP JP13089686A patent/JPH0723232B2/en not_active Expired - Fee Related
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6413891B1 (en) * | 1999-10-11 | 2002-07-02 | Electronics And Telecommunications Research Institute | Glass material suitable for a waveguide of an optical amplifier |
| US6656859B2 (en) | 1999-10-12 | 2003-12-02 | Corning Incorporated | Tellurite glasses and optical components |
| GB2378700A (en) * | 2001-08-15 | 2003-02-19 | Agilent Technologies Inc | Tellurite glass |
| DE10139904A1 (en) * | 2001-08-15 | 2003-02-27 | Univ Schiller Jena | Optical tellurite glasses for fiber optic amplifiers and oscillators and processes for their manufacture |
| WO2004028992A1 (en) * | 2002-09-27 | 2004-04-08 | Ericsson Telecomunicações S.A. | Tellurite glass, optical fibre, optical amplifier and light source |
| US7493008B2 (en) | 2004-03-11 | 2009-02-17 | Ericsson Telecommicacoes S.A. | Glass for optical amplifier fiber |
| WO2005087674A1 (en) * | 2004-03-11 | 2005-09-22 | Ericsson Telecomunicações S. A. | Glass for optical amplifier fiber |
| JP2006062916A (en) * | 2004-08-27 | 2006-03-09 | Toyota Gakuen | Optical functional waveguide material and optical amplification medium, optical amplifier, laser device, light source |
| KR100869664B1 (en) | 2006-11-13 | 2008-11-21 | 한국기초과학지원연구원 | Glasses in the series of xK2O-14-xNa2O-14Nb2O5-72TeO2 |
| JP2017502902A (en) * | 2013-12-19 | 2017-01-26 | オスラム ゲーエムベーハーOSRAM GmbH | Glass composition, part, and method for manufacturing part |
| US10233114B2 (en) | 2013-12-19 | 2019-03-19 | Osram Gmbh | Glass composition, component, and method for producing a component |
| CN104445957A (en) * | 2014-11-17 | 2015-03-25 | 沈阳大学 | A kind of oxyfluoride tellurate glass-ceramic |
| CN118954949A (en) * | 2023-08-10 | 2024-11-15 | 山东大学 | Tellurite glass with excellent acousto-optic properties, preparation method and application in acousto-optic modulator |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH0723232B2 (en) | 1995-03-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JPS623042A (en) | Tellurite glass | |
| JPS60221338A (en) | Optical glass | |
| JPH10208226A (en) | Crystallization glass magnetic disk substrate | |
| JPS61197443A (en) | Optical glass | |
| JP7248020B2 (en) | glass for chemical strengthening | |
| CN112512985B (en) | Crystallized glass substrate | |
| JPS62288135A (en) | Tellurite glass | |
| JPH01219036A (en) | Optical glass | |
| JPH11302031A (en) | Glass composition and substrate for information recording medium using the same | |
| JPS63265840A (en) | Optical glass | |
| JP2025013488A (en) | High refractive index phosphate glass | |
| US2523265A (en) | Ophthalmic glass | |
| JPS6114090B2 (en) | ||
| CA1203816A (en) | Thallium-containing optical glass composition | |
| JPS605037A (en) | Optical glass | |
| JPH0848538A (en) | Optical glass | |
| JPS6311292B2 (en) | ||
| JPS63274638A (en) | Composition for high refractive index low melting point glass | |
| JPH03218943A (en) | Sealing glass | |
| JPH0436104B2 (en) | ||
| US5245492A (en) | Magnetic head | |
| US4265517A (en) | Acousto-optic device and method using tellurite glass composition | |
| JPS6054247B2 (en) | optical glass | |
| US4312660A (en) | Acousto-optic device and method using tellurite glass composition | |
| WO2003062863A2 (en) | Potassium free zinc silicate glasses for ion-exchange processes |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| LAPS | Cancellation because of no payment of annual fees |