[go: up one dir, main page]

JPS6233317A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS6233317A
JPS6233317A JP60172851A JP17285185A JPS6233317A JP S6233317 A JPS6233317 A JP S6233317A JP 60172851 A JP60172851 A JP 60172851A JP 17285185 A JP17285185 A JP 17285185A JP S6233317 A JPS6233317 A JP S6233317A
Authority
JP
Japan
Prior art keywords
film
thin film
magnetic head
head
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60172851A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoda
養田 広
Nobumasa Kaminaka
紙中 伸征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60172851A priority Critical patent/JPS6233317A/en
Publication of JPS6233317A publication Critical patent/JPS6233317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高密度磁気記録媒体の再生に用いる薄膜磁気
ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film magnetic head used for reproducing high density magnetic recording media.

従来の技術 従来この種の薄膜磁気ヘッドは、例えば第4図に示すよ
うな構造になっていた。すなわち、Mn−Zn  フェ
ライトなどの強磁性体基板(1)の表面に8102など
の絶縁膜(2)を介してAuなどのバイアス用導体薄膜
線(3)が形成される。さらに絶縁膜(4)を介してト
ラック巾方向の両端に電極(図示せず)の付いたNi−
Feなど磁気抵抗効果(MR)膜(5)よりなるMR素
子が形成され、その上に絶縁膜(6)を介して0o−Z
rなどのアモルファス磁性膜よりなるコア<7) 、 
<8+が形成されている。
2. Description of the Related Art Conventionally, this type of thin film magnetic head has had a structure as shown in FIG. 4, for example. That is, a bias conductor thin film line (3) such as Au is formed on the surface of a ferromagnetic substrate (1) such as Mn--Zn ferrite with an insulating film (2) such as 8102 interposed therebetween. Furthermore, a Ni-
An MR element made of a magnetoresistive (MR) film (5) such as Fe is formed, and an 0o-Z
Core made of an amorphous magnetic film such as r<7),
<8+ is formed.

発明が解決しようとする問題点 MR素子の出力Eは、MR膜(5)に流れる電流密度を
J1比抵抗変化をΔρ、長さを2としてに=、T−Δρ
、+e と表わせる。△ρ、ノはMR*子の材料、形状によって
決まるものであるから、ヘッド出力を増加するにはJを
増やすのが可能な手段である。
Problem to be Solved by the Invention The output E of the MR element is calculated as follows, where the current density flowing through the MR film (5), J1 specific resistance change is Δρ, and the length is 2 =, T-Δρ
, +e. Since Δρ and ρ are determined by the material and shape of the MR element, increasing J is a possible means of increasing the head output.

しかしながら、Jは無制限に増やせるものではなく、膜
の周囲の材料による放熱量で決まる最大電流密度があり
、たとえば5102膜上のNi−Fe膜の場合、約50
 mA/μRである。これ以上の電流を流すとMR膜は
溶断するので、この電流密度がヘッド出力を決める。
However, J cannot be increased without limit, and there is a maximum current density determined by the amount of heat dissipated by the materials surrounding the film. For example, in the case of a Ni-Fe film on a 5102 film, about 50
mA/μR. If more current is applied, the MR film will melt, so this current density determines the head output.

そこで本発明はMR膜からの放熱を良好にする材料と構
成によりMR膜に流せる電流を大きくしてヘッドの出力
を増加することを目的としている。
Therefore, an object of the present invention is to increase the output of the head by increasing the current that can be passed through the MR film using materials and structures that improve heat dissipation from the MR film.

問題点を解決するための手段 本発明はX磁気記録媒体からの信号磁束を6手枠蕃半鴫
仔鴫基板上に形成した#耐磁気抵抗効果素子の抵抗変化
として検出する薄膜磁気ヘッドにおいて、前記磁気抵抗
効果素子を少く共放熱性、硬度性がダイヤモンド板と等
効の基板上に形成するにある。
Means for Solving the Problems The present invention provides a thin film magnetic head that detects signal magnetic flux from an X magnetic recording medium as a resistance change of an anti-magnetoresistance effect element formed on a six-handed frame substrate. The magnetoresistance effect element is formed on a substrate having a low co-heat dissipation property and hardness equivalent to that of a diamond plate.

作用 本発明は上記した構成により、MR膜からの放熱が良好
で従来の2倍以上の電流密度で動作させることが可能と
なり高出力が得られる。
Function: Due to the above-described configuration, the present invention has good heat dissipation from the MR film, and can be operated at a current density that is more than twice that of the conventional device, thereby achieving high output.

実施例 第1図は本発明の薄膜ヘッドの一実施例の断面図を示す
Embodiment FIG. 1 shows a sectional view of an embodiment of the thin film head of the present invention.

厚さo−s mmのダイヤモンド板(9)の上に、厚さ
0、05 p73のNi−lFe膜からなるMR膜Ql
が形成され抵抗変化検出用のAuやOnなどの電極(図
示せず)がトラック巾方向の両端につけられてMR素子
となる。その上に0.3μm厚の非磁性絶縁膜αυを介
してCo−Nb−Zrなどのアモルファス磁性膜やN1
−Fθ、センダストなどの強磁性薄膜からなる磁気コア
QB、α謙が形成される。非磁性絶縁膜0υはダイヤモ
ンド膜のような熱伝導性の良い膜の方がより効果的であ
るがMR膜α〔からの熱は大部分基板に逃げるので81
0.やA40sのような一般的な絶縁膜を用いても従来
のフェライト基板を用いたヘッドに比べて大きな電流を
流すことができる。
An MR film Ql made of a Ni-lFe film with a thickness of 0.05p73 is placed on the diamond plate (9) with a thickness of os mm.
is formed, and electrodes (not shown) of Au, On, etc. for resistance change detection are attached to both ends in the track width direction to form an MR element. On top of that, an amorphous magnetic film such as Co-Nb-Zr or an N1
-Fθ, magnetic cores QB and α made of a ferromagnetic thin film such as Sendust are formed. For the non-magnetic insulating film 0υ, a film with good thermal conductivity such as a diamond film is more effective, but most of the heat from the MR film α [81
0. Even if a general insulating film such as A40S or A40S is used, a larger current can be passed compared to a head using a conventional ferrite substrate.

さらに絶縁膜α荀を介してMR膜αlにバイアス磁界を
印加するためのAuやCu、A7などからなるバイアス
用導体薄膜αり、非磁性絶縁膜αGを挾んで強磁性薄膜
からなる磁気コアαηが形成される。
Furthermore, there is a bias conductor thin film α made of Au, Cu, A7, etc. for applying a bias magnetic field to the MR film αl via an insulating film α, and a magnetic core αη made of a ferromagnetic thin film sandwiching a nonmagnetic insulating film αG. is formed.

本発明の薄膜磁気ヘッドは磁気コアα謙とαDで作られ
るギャップで検出した磁気記録媒体からの信号磁束をM
R膜α値に導ひきMR膜a1の抵抗変化として検知する
。ダイヤモンドの熱伝導率は約2100w/、−にで銀
の約50倍と非常に良いので、その上に直接形成したM
R膜+IIは従来のSin、膜の上に形成した場合に比
べて溶断電流密度は2倍以上になった。またダイヤモン
ドはビッカース硬度が10000kf/mrnと非常に
硬いのでヘッド基板に用いた場合摩耗しにくい。
The thin film magnetic head of the present invention converts the signal magnetic flux from the magnetic recording medium detected in the gap formed by the magnetic cores α and αD into M
The R film α value is detected as a resistance change of the MR film a1. The thermal conductivity of diamond is approximately 2100 w/-, which is approximately 50 times that of silver, so diamond is formed directly on it.
The fusing current density of the R film +II was more than double that of the case where it was formed on the conventional Sin film. Furthermore, since diamond is very hard with a Vickers hardness of 10,000 kf/mrn, it is difficult to wear when used for the head substrate.

ヘッド基板としては前記ダイヤモンド板の他に金属やセ
ラミックからなる基板の表面にダイヤモンド膜や高硬度
炭素膜を形成したものを用いても、膜を通しての放熱に
よりダイヤモンド板の場合に近い大きな溶断電流密度が
得られる。高硬度炭素膜はエカーボン(イオンビームス
パッタ法で作成された炭素膜)に代表されるダイヤモン
ド膜に近い性質をもつ炭素膜を総称する。ダイヤモンド
膜あるいは高硬度炭素膜は、真空中でOH4ガスに高周
波を印加してプラズマ化したものに電圧を加えて加速し
基板に堆積する方法や炭素をターゲットトシてアルゴン
ガスでスパッタし基板を同時に水素ガスでたたくなどの
方法で比較的低温でも基板上に成膜することができる。
Even if a head substrate made of metal or ceramic with a diamond film or a high-hardness carbon film formed on the surface of the substrate is used instead of the diamond plate mentioned above, a large fusing current density similar to that of a diamond plate can be achieved due to heat dissipation through the film. is obtained. High-hardness carbon film is a general term for carbon films that have properties similar to diamond films, such as ecarbon (a carbon film created by ion beam sputtering). Diamond films or high-hardness carbon films can be made by applying high frequency to OH4 gas in a vacuum to turn it into plasma, applying voltage to accelerate it and depositing it on the substrate, or by sputtering carbon onto the substrate with argon gas and simultaneously depositing it on the substrate. A film can be formed on a substrate even at a relatively low temperature using methods such as bombardment with hydrogen gas.

結晶性のダイヤモンド膜になるかダイヤモンドに近い高
硬度炭素膜になるかは成膜条件によって変化するが、適
当な成膜条件を選べば高硬度炭素膜でもダイヤモンドに
近い性質の膜が得られる。
Whether a crystalline diamond film or a high-hardness carbon film similar to diamond will be obtained depends on the film formation conditions, but even a high-hardness carbon film with properties similar to diamond can be obtained if appropriate film formation conditions are selected.

第2図に従来の8102を絶縁膜にしたヘッド(b)と
本発明の実施例のベリリア基板上に5μm厚のダイヤモ
ンド膜を形成したヘッド(L)のMR雷電流対する出力
の関係を示す。
FIG. 2 shows the relationship between the output and the MR lightning current of a conventional head (b) in which 8102 is used as an insulating film and a head (L) in which a 5 μm thick diamond film is formed on a beryllia substrate according to an embodiment of the present invention.

従来のヘッドでは50 mA/ l1rr?でMR膜が
断線するのに対して本実施例のヘッドでは100 mA
7’μ−以上の電流が流せ、それに応じて大きな出力が
得られる。
50 mA/l1rr with a conventional head? The MR film is disconnected at 100 mA in the head of this embodiment.
A current of 7'μ- or more can flow, and a correspondingly large output can be obtained.

第3図に本発明の薄膜磁気ヘッドの他の実施例を示す。FIG. 3 shows another embodiment of the thin film magnetic head of the present invention.

NiZn基板0咎の一部が切欠かれダイヤモンドブロッ
ク翰が埋め込まれている。その上にMR膜αQ1磁気コ
アαz1α滑、バイアス用導体薄膜α9がそれぞれ非磁
性導体薄膜αυ、aくを介して形成される。このヘッド
は磁気コアa3を主磁極として垂直記録媒体に記録され
た信号を効率良く再生する。MR膜は第1の実施例と同
じくダイヤモンド上に形成されるので大きな信号検出電
流を流せる。
A part of the NiZn substrate is cut out and a diamond block is embedded. Thereon, an MR film αQ1, a magnetic core αz1α, and a bias conductor thin film α9 are formed via nonmagnetic conductor thin films αυ and a, respectively. This head uses the magnetic core a3 as the main pole to efficiently reproduce signals recorded on a perpendicular recording medium. Since the MR film is formed on diamond as in the first embodiment, a large signal detection current can be passed.

発明の効果 本発明によれば、熱伝導性の良い基板材料の上に直接M
R膜を形成することにより、MR膜に流せる電流密度が
従来のヘッド構成の場合と比べて2倍以上になるので同
じ記録媒体を用いて2倍以上の出力電圧が得られる。
Effects of the Invention According to the present invention, M
By forming the R film, the current density that can be passed through the MR film is more than twice that of a conventional head configuration, so an output voltage that is more than twice as high can be obtained using the same recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の薄膜磁気ヘッドの第1の実施例の断面
図、第2図は本発明の薄膜磁気ヘッドの特性図、第3図
は本発明の薄膜磁気ヘッドの第°2の実施例の断面図、
第4図は従来の薄膜磁気ヘッドの断面図、を示す。 9:ダイモンド板  10 : M R膜  11:絶
縁膜【2:磁気コア  13:磁気コア  14:絶縁
膜15:バイアス線16:絶縁膜17:磁気コア特許出
願人   松下電器産業株式会社代理人弁理士   阿
  部    功第1図 H1疵(1多−2 第2図
FIG. 1 is a sectional view of a first embodiment of the thin film magnetic head of the present invention, FIG. 2 is a characteristic diagram of the thin film magnetic head of the present invention, and FIG. 3 is a second embodiment of the thin film magnetic head of the present invention. Example cross section,
FIG. 4 shows a cross-sectional view of a conventional thin film magnetic head. 9: Diamond plate 10: MR film 11: Insulating film [2: Magnetic core 13: Magnetic core 14: Insulating film 15: Bias wire 16: Insulating film 17: Magnetic core Patent applicant Matsushita Electric Industrial Co., Ltd. Agent Patent attorney Isao Abe Figure 1 H1 defect (1-2 Figure 2

Claims (1)

【特許請求の範囲】 磁気記録媒体からの信号磁束を 基板上に形成した磁気抵抗効果素子の抵 抗変化として検出する薄膜磁気ヘッドにおいて、前記磁
気抵抗効果素子を少く共放熱性、硬度性がダイヤモンド
板と等効の基板上に形成することを特徴とする薄膜磁気
ヘッド。
[Claims] In a thin-film magnetic head that detects signal magnetic flux from a magnetic recording medium as a change in resistance of a magnetoresistive element formed on a substrate, the magnetoresistive element is made of a diamond plate having low co-heat dissipation properties and hardness. A thin film magnetic head characterized by being formed on a substrate having an effect equivalent to that of the thin film magnetic head.
JP60172851A 1985-08-06 1985-08-06 Thin film magnetic head Pending JPS6233317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60172851A JPS6233317A (en) 1985-08-06 1985-08-06 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60172851A JPS6233317A (en) 1985-08-06 1985-08-06 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS6233317A true JPS6233317A (en) 1987-02-13

Family

ID=15949476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60172851A Pending JPS6233317A (en) 1985-08-06 1985-08-06 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS6233317A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018442A1 (en) * 1993-12-30 1995-07-06 Seagate Technology, Inc. Amorphous diamond-like carbon gaps in magnetoresistive heads
EP0584707A3 (en) * 1992-08-21 1995-08-02 Minnesota Mining & Mfg Laminate and wear-resistant magnetic reading device formed thereon using the thin-film process.
US5557492A (en) * 1993-08-06 1996-09-17 International Business Machines Corporation Thin film magnetoresistive head with reduced lead-shield shorting
EP0685746A3 (en) * 1994-05-30 1996-12-04 Sony Corp Magneto-resistance effect device with improved thermal resistance.
US5640292A (en) * 1996-01-17 1997-06-17 Seagate Technology, Inc. Diamond-like carbon encapsulation of magnetic heads
US5644455A (en) * 1993-12-30 1997-07-01 Seagate Technology, Inc. Amorphous diamond-like carbon gaps in magnetoresistive heads
US5658470A (en) * 1995-12-13 1997-08-19 Seagate Technology, Inc. Diamond-like carbon for ion milling magnetic material
US5681426A (en) * 1995-12-13 1997-10-28 Seagate Technology, Inc. Diamond-like carbon wet etchant stop for formation of magnetic transducers
US5966273A (en) * 1993-01-26 1999-10-12 Matsushita Electric Industrial Co., Ltd. Magnetoresistive thin film head
US6038101A (en) * 1997-03-14 2000-03-14 Kabushiki Kaisha Toshiba Magnetic head and method of manufacturing magnetic head
US6331548B1 (en) * 1998-01-29 2001-12-18 Suntory Limited 1-cycloalkyl-1,8-naphthyridin-4-one derivative as type IV phosphodiesterase inhibitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132322A (en) * 1977-04-22 1978-11-18 Nec Corp Magnetic head
JPS5724017A (en) * 1980-07-21 1982-02-08 Sony Corp Magnetic resistance effect type magnetic head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132322A (en) * 1977-04-22 1978-11-18 Nec Corp Magnetic head
JPS5724017A (en) * 1980-07-21 1982-02-08 Sony Corp Magnetic resistance effect type magnetic head

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609948A (en) * 1992-08-21 1997-03-11 Minnesota Mining And Manufacturing Company Laminate containing diamond-like carbon and thin-film magnetic head assembly formed thereon
EP0584707A3 (en) * 1992-08-21 1995-08-02 Minnesota Mining & Mfg Laminate and wear-resistant magnetic reading device formed thereon using the thin-film process.
EP0821349A3 (en) * 1992-08-21 1998-04-01 Minnesota Mining And Manufacturing Company Laminate and wear-resistant thin-film magnetic head assembly formed thereon
US5966273A (en) * 1993-01-26 1999-10-12 Matsushita Electric Industrial Co., Ltd. Magnetoresistive thin film head
US5557492A (en) * 1993-08-06 1996-09-17 International Business Machines Corporation Thin film magnetoresistive head with reduced lead-shield shorting
US5644455A (en) * 1993-12-30 1997-07-01 Seagate Technology, Inc. Amorphous diamond-like carbon gaps in magnetoresistive heads
WO1995018442A1 (en) * 1993-12-30 1995-07-06 Seagate Technology, Inc. Amorphous diamond-like carbon gaps in magnetoresistive heads
EP0685746A3 (en) * 1994-05-30 1996-12-04 Sony Corp Magneto-resistance effect device with improved thermal resistance.
US5903708A (en) * 1994-05-30 1999-05-11 Sony Corporation Magneto-resistance effect device with improved thermal resistance
US5658470A (en) * 1995-12-13 1997-08-19 Seagate Technology, Inc. Diamond-like carbon for ion milling magnetic material
US5681426A (en) * 1995-12-13 1997-10-28 Seagate Technology, Inc. Diamond-like carbon wet etchant stop for formation of magnetic transducers
US6215630B1 (en) 1995-12-13 2001-04-10 Seagate Technology Llc Diamond-like carbon and oxide bilayer insulator for magnetoresistive transducers
US5640292A (en) * 1996-01-17 1997-06-17 Seagate Technology, Inc. Diamond-like carbon encapsulation of magnetic heads
US5718949A (en) * 1996-01-17 1998-02-17 Seagate Technology, Inc. Diamond-like carbon encapsulation of magnetic heads
US6038101A (en) * 1997-03-14 2000-03-14 Kabushiki Kaisha Toshiba Magnetic head and method of manufacturing magnetic head
US6331548B1 (en) * 1998-01-29 2001-12-18 Suntory Limited 1-cycloalkyl-1,8-naphthyridin-4-one derivative as type IV phosphodiesterase inhibitor

Similar Documents

Publication Publication Date Title
US4896235A (en) Magnetic transducer head utilizing magnetoresistance effect
US6190764B1 (en) Inductive write head for magnetic data storage media
EP0472187B1 (en) Planar thin film magnetic head
JPS6233317A (en) Thin film magnetic head
US6101067A (en) Thin film magnetic head with a particularly shaped magnetic pole piece and spaced relative to an MR element
US4700252A (en) Magnetic thin film head
US5535077A (en) Magnetoresistive head having magnetically balanced magnetoresistive elements laminated on opposite sides of an electrically conductive film
US5014149A (en) Thin film magnetic head
JP2546875B2 (en) Magnetoresistive head
JPH0375929B2 (en)
JPH0473210B2 (en)
JPS61134913A (en) Magnetoresistive thin film head
JPH0441415B2 (en)
JPS63129511A (en) Magnetoresistive thin film magnetic head
JPH0227383Y2 (en)
US5870261A (en) Magnetoresistive head
JPH0572642B2 (en)
JP3070495B2 (en) Magnetoresistance effect type thin film transducer
JPH01201812A (en) thin film magnetic head
JPS6381616A (en) Single magnetic pole type magnetic head for perpendicular recording
JPS62146420A (en) Thin film magnetic head
JPH05101342A (en) Magneto-resistance effect type head
JPH103618A (en) Yoke type magnetic head
JPH0375926B2 (en)
JPS60115012A (en) thin film magnetic head