[go: up one dir, main page]

JPS624814B2 - - Google Patents

Info

Publication number
JPS624814B2
JPS624814B2 JP54048230A JP4823079A JPS624814B2 JP S624814 B2 JPS624814 B2 JP S624814B2 JP 54048230 A JP54048230 A JP 54048230A JP 4823079 A JP4823079 A JP 4823079A JP S624814 B2 JPS624814 B2 JP S624814B2
Authority
JP
Japan
Prior art keywords
collector
cylindrical ceramic
collectors
electron beam
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54048230A
Other languages
Japanese (ja)
Other versions
JPS55139740A (en
Inventor
Shunichi Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4823079A priority Critical patent/JPS55139740A/en
Publication of JPS55139740A publication Critical patent/JPS55139740A/en
Publication of JPS624814B2 publication Critical patent/JPS624814B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/027Collectors
    • H01J23/0275Multistage collectors

Landscapes

  • Microwave Tubes (AREA)

Description

【発明の詳細な説明】 本発明は、増幅作用に寄与した電子ビームを最
終的に捕獲するコレクタを有する電子ビーム管の
うち、能率改善のため、前記コレクタを多段に構
成した多段コレクタ形電子ビーム管に関する。
Detailed Description of the Invention The present invention provides a multi-stage collector type electron beam tube in which the collector is configured in multiple stages in order to improve efficiency in an electron beam tube having a collector that ultimately captures the electron beam that has contributed to the amplification effect. Regarding pipes.

進行波管などの電子ビーム管において、電子銃
から発せられた電子ビームは、高周波回路部で高
周波の増幅作用を行なつた後コレクタに捕獲され
る。この際、電子ビームをしてコレクタに衝突す
るエネルギーが小さくなるような状態でコレクタ
に到達させると電子ビーム管の能率は大となる。
このような能率改善のため、コレクタ電圧を高周
波回路部電圧より下げる方法が一般に用いられて
来た。しかし、高周波の増幅作用に関与した電子
ビームの速度にはバラツキがあるから、これら速
度のバラツキを有する電子ビームを単一コレクタ
で捕獲するには、最も速度が遅い電子がコレクタ
に到達し得る電圧をコレクタ電圧としなければな
らず、能率の大幅な改善は難しい。このため、さ
らに能率を改善する目的で、コレクタを複数個に
分割した種々の電子ビーム管が考えられている。
たしかに、コレクタの分割数を増し、高周波回路
部より離れるに従つて高周波回路電圧より順次低
い電圧を各コレクタに個々に印加すれば、高周波
の増幅作用に関与した電子ビームはコレクタに速
度選別されて捕獲される。すなわち、速度の遅い
電子ビームは高い電位のコレクタに、また、速度
の速い電子ビームは低い電位のコレクタに捕獲さ
れるので能率が改善される。しかしながら、コレ
クタを複数個に分割するには各コレクタ間を電気
的に絶縁する必要があると共に、各コレクタの冷
却のため、個々のコレクタ外周部には接地点より
電気的に絶縁された放熱体を装着する必要があ
り、コレクタ部の構造が複雑化し、放熱体などを
含めたコレクタ部の大形化、重量増などの欠点が
あつた。また、個々のコレクタの冷却のため各コ
レクタ間または各コレクタと接地点間の電気的絶
縁を十分とりにくい欠点もあつた。特にコレクタ
を3段以上に分割した場合前記の欠点が顕著に現
われる。
In an electron beam tube such as a traveling wave tube, an electron beam emitted from an electron gun undergoes high frequency amplification in a high frequency circuit section and is then captured by a collector. At this time, the efficiency of the electron beam tube increases if the electron beam reaches the collector in a state in which the energy of collision with the collector is reduced.
In order to improve efficiency, a method has generally been used in which the collector voltage is lowered than the high frequency circuit voltage. However, since there are variations in the speed of the electron beams involved in the high-frequency amplification effect, in order to capture electron beams with these variations in speed with a single collector, it is necessary to apply a voltage that allows the slowest electrons to reach the collector. collector voltage, making it difficult to significantly improve efficiency. For this reason, various electron beam tubes in which the collector is divided into a plurality of pieces have been considered in order to further improve efficiency.
It is true that if the number of collector divisions is increased and voltages that are sequentially lower than the high-frequency circuit voltage are applied to each collector individually as the distance from the high-frequency circuit increases, the electron beams involved in the high-frequency amplification effect will be speed-sorted by the collector. be captured. That is, a slow electron beam is captured by a collector with a high potential, and a fast electron beam is captured by a collector with a low potential, improving efficiency. However, in order to divide the collector into multiple pieces, it is necessary to electrically insulate each collector, and in order to cool each collector, a heat sink is installed on the outer periphery of each collector, which is electrically insulated from the ground point. It was necessary to attach the collector part, which complicated the structure of the collector part, and there were drawbacks such as an increase in the size and weight of the collector part including the heat sink. Furthermore, in order to cool the individual collectors, it is difficult to provide sufficient electrical insulation between the collectors or between each collector and the ground point. In particular, when the collector is divided into three or more stages, the above-mentioned drawbacks become noticeable.

本発明は、複数個に分割したコレクタを有し、
複数個のコレクタが接地点から電気的に絶縁され
ている電子ビーム管において、コレクタ部の真空
封止面を増大させることなくコレクタに発生する
熱を簡単な構造でもつて外部に効果的に伝達させ
ることにより、十分な冷却効果を得るようにし
て、加えて接地点よりコレクタの電気的絶縁を容
易とした多段コレクタ形電子ビーム管を提供する
ことにある。
The present invention has a collector divided into a plurality of pieces,
In an electron beam tube where multiple collectors are electrically insulated from the ground point, the heat generated in the collector is effectively transferred to the outside with a simple structure without increasing the vacuum sealing surface of the collector part. The object of the present invention is to provide a multi-stage collector type electron beam tube in which a sufficient cooling effect can be obtained and, in addition, the collector can be easily electrically insulated from a ground point.

本発明は、電子ビームを発生する電子銃と、高
周波の相互作用が行なわれる高周波回路部と、電
子ビームを集束するための磁界集束装置と、相互
作用が行なわれた電子ビームを捕獲するコレクタ
とを具備し、かつ、コレクタは複数個のコレクタ
からなる多段コレクタ形電子ビーム管において、
高周波回路部の出力側端部に真空外囲器の一部と
なる円筒セラミツクの一端をロー付などにより固
定し、円筒セラミツクの内面に接触するように複
数個のコレクタを同軸的に軸方向に間隔を置いて
配設し、円筒セラミツクの他の端部はセラミツク
板または金属板により真空封止され、各コレクタ
への印加電圧は円筒セラミツクの側面に明けられ
た複数個の穴を通して突出されたコレクタリード
により供給するようにしたことを特徴とする。
The present invention includes an electron gun that generates an electron beam, a high-frequency circuit section that performs high-frequency interaction, a magnetic field focusing device that focuses the electron beam, and a collector that captures the interacted electron beam. In a multi-stage collector type electron beam tube, the collector is composed of a plurality of collectors,
One end of the cylindrical ceramic, which will become part of the vacuum envelope, is fixed to the output end of the high-frequency circuit section by brazing, etc., and multiple collectors are coaxially aligned in the axial direction so as to contact the inner surface of the cylindrical ceramic. The other end of the cylindrical ceramic was vacuum-sealed with a ceramic plate or a metal plate, and the voltage applied to each collector was projected through a plurality of holes drilled in the side of the cylindrical ceramic. It is characterized in that it is supplied through a collector lead.

つぎに図面を参照して本発明を詳細に説明す
る。第1図a,bは本発明を実施した3段のコレ
クタを有する進行波管を示し、この進行波管は電
子銃1、高周波回路部(遅波回路)2、高周波入
力部3、高周波出力部4、磁界集束装置5、コレ
クタ10及び放熱体17などを含み、電子銃側は
支持台18を介して保持板6の上に載置固定され
ている。しかし、コレクタ10は第1コレクタ
7、第2コレクタ8、第3コレクタ9とを軸方向
に間隔を置いて分配された状態で円筒セラミツク
11の内周面に配設される。円筒セラミツク11
の内部は段状になつており、第1〜第3コレクタ
7,8,9は段部に突き当るように挿入され軸方
向の位置出しが行なわれ、コレクタ7,8,9は
各々電気的に絶縁される。円筒セラミツク11は
絶縁石類の中で熱伝導率がよく緻密質のベリリ
ア、セラミツク、またはアルミナセラミツクから
なり、その両端面にはメタライズ加工が施されて
おり一端は高周波回路部2の端面にロー付により
固着され、反対側の端面はセラミツク波12がロ
ー付により固着され真空封止される。また円筒セ
ラミツク11の側面にはコレクタリード取り出し
用の小さな直径1mm程度の穴13があらかじめ明
けられ、この穴13にはメタライズ加工が施され
ている。コレクタリード14,15,16は穴1
3部にロー付により各々固定され、コレクタリー
ド14,15,16を介して第1〜第3コレクタ
7,8,9に電圧が印加される。コレクタ10の
材料には熱伝導率がよく溶融点温度が高い銅、モ
リブデンまたはニツケルなどが使用される。第1
〜第3コレクタ7,8,9の外面と円筒セラミツ
ク11の内面の接触をよくするには、第1〜第3
コレクタ7,8,9の外径と円筒セラミツク11
の内径とをほぼ等しくしてかん合をよくすればよ
いが、第1〜第3コレクタ7,8,9の側面に長
手方向に延在した割り溝を設けて円筒セラミツク
11の内径よりコレクタ7,8,9の外径を大き
目にして軸方向に機械的な力を加えてコレクタ
7,8,9を円筒セラミツク11へ挿入すれば、
コレクタ10と円筒セラミツク11との接触はさ
らに改善され、コレクタ7,8,9は安定に保持
固定される。また、第1〜第3コレクタ7,8,
9と接触する円筒セラミツク11の内面にあらか
じめ局部的にメタライズ加工を施しておけば円筒
セラミツク11と第1〜第3コレクタ7,8,9
をロー付により保持固定することも出来る。この
ような進行波管において、電子銃1から発せられ
た電子ビームは磁界集束装置5により集束され、
高周波回路部2の中心軸部を通過しこの間に高周
波入力部3から印加された高周波と相互作用によ
る増幅作用が行なわれて高周波出力は高周波出力
部4から取り出される。高周波増幅作用を行なつ
た電子ビームの速度にはバラツキがあるので、電
子ビームの速度に応じて、電子ビームは各々電位
の異なる第1〜第3コレクタ7,8,9のいずれ
かに捕獲される。この場合、第1〜第3コレクタ
7,8,9で発生する熱を円筒セラミツク11及
び放熱体17へ伝達させ、コレクタ7,8,9を
冷却している。このような構造にすれば、第1〜
第3コレクタ7,8,9で発生する熱は円筒セラ
ミツク11を介して放熱体17へ伝達されるの
で、第1〜第3コレクタ7,8,9に各々放熱体
を直接取付けて各コレクタ7,8,9を冷却する
必要はなく、コレクタの分割数に関係なく、熱流
し場(保持板6)へ通じる放熱体17への熱伝導
路は一径路だけとなり、コレクタ部構造が簡単化
されると共にコレクタ部の小形化、軽量化に対し
て極めて有利となる。また、第1〜第3コレクタ
7,8,9外面に露出しておらず接地点に対して
円筒セラミツク11により十分電気的に絶縁する
ことが出来る。第1〜第3コレクタ7,8,9と
放熱体17間の熱抵抗は、円筒セラミツク11の
熱伝導率及び寸法で決まり、第1〜第3コレクタ
7,8,9に消費される電力及びコレクタ許容温
度を考慮して円筒セラミツク11の寸法を選定す
ることで円筒セラミツク11は熱伝導径路として
の役目を十分はたすことが出来る。放熱体17と
円筒セラミツク11の接触部には伝導性の良い接
着材を介在させることにより放熱体と円筒セラミ
ツク11間の熱抵抗を改善することが可能であ
る。
Next, the present invention will be explained in detail with reference to the drawings. 1a and 1b show a traveling wave tube having a three-stage collector embodying the present invention, which consists of an electron gun 1, a high frequency circuit section (slow wave circuit) 2, a high frequency input section 3, a high frequency output 4, a magnetic field focusing device 5, a collector 10, a heat radiator 17, etc., and the electron gun side is placed and fixed on a holding plate 6 via a support 18. However, the collector 10 is arranged on the inner circumferential surface of the cylindrical ceramic 11 in a state where the first collector 7, the second collector 8, and the third collector 9 are distributed at intervals in the axial direction. Cylindrical ceramic 11
The inside of the is stepped, and the first to third collectors 7, 8, and 9 are inserted so as to butt against the steps to perform axial positioning, and the collectors 7, 8, and 9 are electrically connected to each other. insulated. The cylindrical ceramic 11 is made of beryllia, ceramic, or alumina ceramic, which has a high thermal conductivity among insulating stones and is dense. Both end faces of the cylindrical ceramic 11 are metallized, and one end is rolled onto the end face of the high frequency circuit section 2. The ceramic wave 12 is fixed by brazing on the opposite end face and vacuum sealed. Further, a small hole 13 with a diameter of about 1 mm is pre-drilled on the side surface of the cylindrical ceramic 11 for taking out the collector lead, and this hole 13 is metallized. Collector leads 14, 15, 16 are holes 1
The three parts are each fixed by brazing, and a voltage is applied to the first to third collectors 7, 8, 9 via collector leads 14, 15, 16. The material used for the collector 10 is copper, molybdenum, nickel, or the like, which has good thermal conductivity and a high melting point temperature. 1st
- In order to improve the contact between the outer surfaces of the third collectors 7, 8, and 9 and the inner surface of the cylindrical ceramic 11,
Outer diameter of collectors 7, 8, 9 and cylindrical ceramic 11
The inner diameter of the cylindrical ceramic 11 may be made approximately equal to improve the fitting, but slots extending in the longitudinal direction may be provided on the side surfaces of the first to third collectors 7, 8, and 9 so that the inner diameter of the collector 7 is approximately equal to the inner diameter of the cylindrical ceramic 11. , 8, 9 by increasing their outer diameters and applying mechanical force in the axial direction to insert the collectors 7, 8, 9 into the cylindrical ceramic 11.
The contact between the collector 10 and the cylindrical ceramic 11 is further improved, and the collectors 7, 8, 9 are stably held and fixed. In addition, the first to third collectors 7, 8,
If the inner surface of the cylindrical ceramic 11 in contact with the cylindrical ceramic 11 is locally metallized in advance, the cylindrical ceramic 11 and the first to third collectors 7, 8, 9
It can also be held and fixed by brazing. In such a traveling wave tube, the electron beam emitted from the electron gun 1 is focused by the magnetic field focusing device 5,
It passes through the central axis of the high frequency circuit section 2, during which an amplification effect is performed by interaction with the high frequency applied from the high frequency input section 3, and a high frequency output is taken out from the high frequency output section 4. Since the speed of the electron beam that has undergone high-frequency amplification varies, the electron beam is captured by one of the first to third collectors 7, 8, and 9, each having a different potential, depending on the speed of the electron beam. Ru. In this case, the heat generated in the first to third collectors 7, 8, 9 is transferred to the cylindrical ceramic 11 and the heat sink 17, thereby cooling the collectors 7, 8, 9. With this structure, the first to
Since the heat generated in the third collectors 7, 8, 9 is transferred to the heat radiator 17 via the cylindrical ceramic 11, a heat radiator is directly attached to each of the first to third collectors 7, 8, 9. , 8, and 9, and regardless of the number of collector divisions, there is only one heat conduction path leading to the heat sink 17 leading to the heat flow field (retaining plate 6), and the collector structure is simplified. At the same time, it is extremely advantageous for reducing the size and weight of the collector section. Further, the first to third collectors 7, 8, 9 are not exposed on the outer surface and can be sufficiently electrically insulated from the ground point by the cylindrical ceramic 11. Thermal resistance between the first to third collectors 7, 8, 9 and the heat sink 17 is determined by the thermal conductivity and dimensions of the cylindrical ceramic 11, and the electric power consumed by the first to third collectors 7, 8, 9 and By selecting the dimensions of the cylindrical ceramic 11 in consideration of the allowable collector temperature, the cylindrical ceramic 11 can sufficiently serve as a heat conduction path. By interposing a highly conductive adhesive at the contact portion between the heat sink 17 and the cylindrical ceramic 11, it is possible to improve the thermal resistance between the heat sink and the cylindrical ceramic 11.

第2図a,bは本発明による電子ビーム管の他
の実施例を示し、第1図a,bと同一あるいは相
当部分は同一番号を付している。第2図aにおい
ては、円筒セラミツク11の内径は段状を有して
おらず、一様にほぼ一定であり、円筒セラミツク
11は高周波回路部2の端面にロー付により固着
され、絶縁性磁器筒19が高周波回路部2の端部
と第1コレクタ間及び第1〜第3コレクタ7,
8,9の各コレクタ間に介在されている。
FIGS. 2a and 2b show another embodiment of the electron beam tube according to the present invention, in which the same or corresponding parts as in FIGS. 1a and 1b are given the same numbers. In FIG. 2a, the inner diameter of the cylindrical ceramic 11 does not have a stepped shape and is uniformly almost constant, and the cylindrical ceramic 11 is fixed to the end face of the high frequency circuit section 2 by brazing, and The tube 19 is connected between the end of the high frequency circuit section 2 and the first collector, and between the first to third collectors 7,
It is interposed between collectors 8 and 9.

円筒セラミツク11の他の端部にはセラミツク
板12が第3コレクタ9の底部を挿さえるように
してロー付により固着され真空封止される。円筒
セラミツク11の外周には、欠き溝21が明けら
れた羽根付放熱体20が配置されている。コレク
タリード14,15,16は欠き溝21より取り
出され、高電圧印加用のリード(図示せず)が半
田付などにより接続され、欠き溝21には絶縁の
ためシリコンゴム(図示せず)などが充填され
る。第2図a,bの実施例によれば、第1図a,
bの実施例に比較して軸方向の第1〜第3コレク
タ7,8,9の相互位置は絶縁磁器筒19の寸法
によつて決まり、円筒セラミツク11と第1〜第
3コレクタ7,8,9をロー付などにより強固に
保持固定しなくとも、第1〜第3コレクタ7,
8,9を円筒セラミツク11の内部の所定位置に
保持固定することが出来る。このため、絶縁磁気
筒19の長さ調整により各コレクタ間の軸方向位
置調整を行なうことが出来ると共に、コレクタ1
0の材料には許容温度が高い炭素化合物を装分解
して作られるパイロリテイツクグラフアイト(熱
分解黒鉛)を選定することも可能となる。また羽
根付放熱体19が円筒セラミツク11の外周の全
域にわたつて包囲されており、円筒セラミツク1
1からの放熱効果が改善されコレクタの冷却のた
めには有利となる。
A ceramic plate 12 is fixed to the other end of the cylindrical ceramic 11 by brazing so as to fit the bottom of the third collector 9 and vacuum-sealed. On the outer periphery of the cylindrical ceramic 11, a vaned heat sink 20 with grooves 21 is arranged. The collector leads 14, 15, and 16 are taken out from the cutout groove 21, and a lead for high voltage application (not shown) is connected to the cutout groove 21 by soldering or the like. is filled. According to the embodiments of FIGS. 2a and 2b, FIGS.
Compared to the embodiment b, the mutual positions of the first to third collectors 7, 8, 9 in the axial direction are determined by the dimensions of the insulating porcelain cylinder 19, and the cylindrical ceramic 11 and the first to third collectors 7, 8 , 9 are not firmly held and fixed by brazing or the like, the first to third collectors 7,
8 and 9 can be held and fixed at predetermined positions inside the cylindrical ceramic 11. Therefore, by adjusting the length of the insulated magnetic cylinder 19, the axial position between the collectors can be adjusted.
It is also possible to select pyrolytic graphite (pyrolytic graphite), which is made by decomposing a carbon compound with a high permissible temperature, as the material for 0. Further, the bladed heat dissipating body 19 is surrounded over the entire outer circumference of the cylindrical ceramic 11.
The heat dissipation effect from 1 is improved, which is advantageous for cooling the collector.

なお上記実施例においては、いずれも電子ビー
ム管としてコレクタを3段に分割した進行波管を
用いた場合について言及したけれども、本発明は
これに限定されることなくコレクタを多段に分割
した多重空胴クライストロンなどの電子ビーム管
に適用出来ることはもちろんである。
In the above embodiments, a traveling wave tube in which the collector is divided into three stages is used as the electron beam tube, but the present invention is not limited to this. Of course, it can be applied to electron beam tubes such as trunk klystrons.

以上のように本発明によれば、コレクタの分割
数に関係なくコレクタに発生する熱を各コレクタ
と接地点間の電気的絶縁を劣化させることなく、
またコレクタ部の真空封止面を増大させることな
く、外部に効果的に伝達させることが出来、能率
を改善する目的でコレクタを分割してもコレクタ
部の大形化、重量増を防止することが可能とな
る。特に3〜5段以上にコレクタを分割した電子
ビーム管に本発明を適用した場合に大なる効果が
得られる。
As described above, according to the present invention, regardless of the number of collector divisions, heat generated in the collector can be absorbed without deteriorating the electrical insulation between each collector and the ground point.
In addition, the vacuum can be effectively transmitted to the outside without increasing the vacuum sealing surface of the collector section, and even if the collector is divided for the purpose of improving efficiency, it is possible to prevent the collector section from increasing in size and weight. becomes possible. In particular, great effects can be obtained when the present invention is applied to an electron beam tube in which the collector is divided into three to five stages or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明による多段コレクタ形電子ビ
ーム管の一例を示す軸方向断面図、第1図bは同
じくコレクタ側からみた側面図、第2図a,bは
本発明の他の実施例のコレクタ部を示す軸方向断
面図及び側面図である。 1……電子銃、2……高周波回路部(遅波回
路)、3……高周波入力部、4……高周波出力
部、5……磁気集束装置、6……保持板、7,
8,9……第1、第2、第3コレクタ…10……
第1、第2、第3コレクタを含めたコレクタ、1
1……円筒セラミツク、12……セラミツク板、
13……円筒セラミツク11の側面に明けられた
穴、14,15,16……コレクタリード、17
……放熱体、18……支持台、19……絶縁磁器
筒、20……羽根付放熱体、21……欠き溝。
FIG. 1a is an axial sectional view showing an example of a multi-stage collector type electron beam tube according to the present invention, FIG. 1b is a side view similarly seen from the collector side, and FIGS. 2a and b are other embodiments of the present invention. FIG. 2 is an axial cross-sectional view and a side view showing a collector portion of the present invention. 1... Electron gun, 2... High frequency circuit section (slow wave circuit), 3... High frequency input section, 4... High frequency output section, 5... Magnetic focusing device, 6... Holding plate, 7,
8, 9...first, second, third collector...10...
collectors, including first, second, and third collectors; 1;
1... Cylindrical ceramic, 12... Ceramic plate,
13... Hole drilled in the side of the cylindrical ceramic 11, 14, 15, 16... Collector lead, 17
...Heat radiator, 18... Support stand, 19... Insulated porcelain tube, 20... Heat radiator with vanes, 21... Notch groove.

Claims (1)

【特許請求の範囲】[Claims] 1 複数個のコレクタからなる多段コレクタ形電
子ビーム管において、高周波回路部の出力側端部
に真空外囲器の一部となる円筒セラミツクの一端
をロー付などにより固定し、円筒セラミツクの内
面に接触するように複数個のコレクタを同軸的に
軸方向に間隔を置いて配設し、円筒セラミツクの
他の端部は真空封止され、各コレクタへの電圧の
印加は円筒セラミツクの側面に明けられた複数個
の穴を通して突出されたコレクタリードにより供
給されることを特徴とする多段コレクタ形電子ビ
ーム管。
1. In a multistage collector type electron beam tube consisting of multiple collectors, one end of the cylindrical ceramic that will become part of the vacuum envelope is fixed to the output side end of the high frequency circuit section by brazing, etc., and the inner surface of the cylindrical ceramic is A plurality of collectors are coaxially arranged at intervals in the axial direction so as to be in contact with each other, the other end of the cylindrical ceramic is vacuum-sealed, and the voltage applied to each collector is applied to the side of the cylindrical ceramic. A multi-stage collector type electron beam tube characterized in that the electron beam tube is supplied with a collector lead protruding through a plurality of holes.
JP4823079A 1979-04-19 1979-04-19 Multistage collector type electron beam tube Granted JPS55139740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4823079A JPS55139740A (en) 1979-04-19 1979-04-19 Multistage collector type electron beam tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4823079A JPS55139740A (en) 1979-04-19 1979-04-19 Multistage collector type electron beam tube

Publications (2)

Publication Number Publication Date
JPS55139740A JPS55139740A (en) 1980-10-31
JPS624814B2 true JPS624814B2 (en) 1987-02-02

Family

ID=12797628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4823079A Granted JPS55139740A (en) 1979-04-19 1979-04-19 Multistage collector type electron beam tube

Country Status (1)

Country Link
JP (1) JPS55139740A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57124834A (en) * 1981-01-27 1982-08-03 Nec Corp Microwave tube
US5780970A (en) * 1996-10-28 1998-07-14 University Of Maryland Multi-stage depressed collector for small orbit gyrotrons

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5370659A (en) * 1976-12-06 1978-06-23 Nec Corp Multi stage collector type electron beam tube
JPS5384269U (en) * 1976-12-14 1978-07-12

Also Published As

Publication number Publication date
JPS55139740A (en) 1980-10-31

Similar Documents

Publication Publication Date Title
US3670196A (en) Helix delay line for traveling wave devices
US3662212A (en) Depressed electron beam collector
US3626230A (en) Thermally conductive electrical insulator for electron beam collectors
US6670760B2 (en) Collector structure of traveling wave tube having a lossy ceramic member
US4358707A (en) Insulated collector assembly for power electronic tubes and a tube comprising such a collector
US3717787A (en) Compact depressed electron beam collector
JP3038830B2 (en) Conduction-cooled multistage collector
US4840595A (en) Electron beam catcher for velocity modulated electron tubes
US3824425A (en) Suppressor electrode for depressed electron beam collector
JPS5835340B2 (en) Sokudohenchiyoukanyoutadanshiyudenkiyoku
JPS624814B2 (en)
JP2005513731A (en) Electrode manufacturing method and vacuum tube using the method
US3666980A (en) Depressable beam collector structure for electron tubes
KR100941689B1 (en) Soft X-ray generator for eliminating static
JPS6255259B2 (en)
US5334907A (en) Cooling device for microwave tube having heat transfer through contacting surfaces
JPS6158937B2 (en)
US3293478A (en) Traveling wave tube with longitudinal recess
JPS6055949B2 (en) Multistage collector type electron beam tube
JP2923872B2 (en) Traveling wave tube
JPS5816123Y2 (en) Multistage collector type electron beam tube
JP3334694B2 (en) Traveling wave tube
JPS5854768Y2 (en) traveling wave tube
JP3036414B2 (en) Electron gun using cold cathode
JP2647866B2 (en) Electron tube sealing structure