[go: up one dir, main page]

JPS6254234A - Light deflecting device - Google Patents

Light deflecting device

Info

Publication number
JPS6254234A
JPS6254234A JP19413985A JP19413985A JPS6254234A JP S6254234 A JPS6254234 A JP S6254234A JP 19413985 A JP19413985 A JP 19413985A JP 19413985 A JP19413985 A JP 19413985A JP S6254234 A JPS6254234 A JP S6254234A
Authority
JP
Japan
Prior art keywords
light
optical member
optical
intensity
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19413985A
Other languages
Japanese (ja)
Inventor
Masahiro Aoki
雅弘 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP19413985A priority Critical patent/JPS6254234A/en
Publication of JPS6254234A publication Critical patent/JPS6254234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To have no mechanical movable part and to make a device small in size and light in weight by changing the inclination of the strength of the light due to the second optical member to make the space strength distribution of the control light to the optical member where the spatial distribution of the refractive ratio to the deflected component is changed, into the linear spatially. CONSTITUTION:When uniformly bright illuminating light 9 passes through a filter 2 from the light source, the space strength distribution of a control light 10 is as the figure [a], and by the converting process of light strength external electric field refractive ratio, the refractive ratio distribution of a liquid crystal 11 included in the first optical member 1 has the constant inclination in the (x) direction as the actual line of the figure (a). When the parallel beam is made incident on such a medium n(x) as shown in a figure (b), between light paths A-A'-A'' of a beam I in the medium and light paths B-B'-B'' of a beam II, the light path difference almost in the direct proportion to a distance A-B occurs, the coming-out beam is almost parallel and comes out at an angle theta0 smaller than the incident beam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、トラッキングサーゲ、光カード書込み読出し
装置、高解儂度カメラの固体撮儂素子等に広く応用可能
な光偏向器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical deflector that can be widely applied to tracking lasers, optical card writing/reading devices, solid-state imaging devices of high-resolution cameras, and the like.

回転多面鋺、■ホログラムレンズを用いたものや、■音
響光学効果による回折を用いたもの尋が実用化されてい
る。
Rotating polygons, (1) those using hologram lenses, and (2) those using diffraction due to the acousto-optic effect have been put into practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の偏向器のうち、豹三者はいずれも機株的ti
J動部分を必要とし、光学系もかなシ複雑でかつ大規模
なものとなり、小型軽量を必須条件とする機器への応用
が困難であった。
Among the conventional deflectors mentioned above, all of the three leopard deflectors have mechanical characteristics.
This requires J moving parts, and the optical system is also quite complex and large-scale, making it difficult to apply it to equipment that requires compact size and light weight.

また光音響効果を利用するものにあっては、可動部がな
く、小型軽量化には適しているが、ニオブ酸すチウム尋
の高価格な結晶材料を必要としているうえ、表面弾性波
を制御する信号として数IQMHg以上の高周波および
高電圧を有する信号を必要とする。したがってコスト低
減をはかシ難いという問題があった。
In addition, devices that utilize photoacoustic effects have no moving parts and are suitable for making them smaller and lighter, but they require expensive crystal materials such as lithium niobate, and they also control surface acoustic waves. A signal having a high frequency of several IQMHg or more and a high voltage is required as a signal to perform this. Therefore, there was a problem in that it was difficult to reduce costs.

そこで本発明は機械的可動部分をも九ず、小型軽量でか
つ安価に製作可能な光偏向器を提供することを目的とす
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an optical deflector that does not require any mechanically movable parts, is small, lightweight, and can be manufactured at low cost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決し目的を達成するために次の
ような手段t−購じ九ことを特徴としている。
In order to solve the above problems and achieve the objects, the present invention is characterized by the following means.

すなわち、制御光の空間的強度分布の変化にしたがうて
被制御光の所定の偏光成分に対する空間的屈折率分布を
変化させ得る第1の光学部材を用iる。セして上記第1
の光学部材の制御光の空間強度分布が空間的に線形とな
るように制御光t−空間的に強ザ!脚する第2の光学部
材を用いる。また前記空間的線形分布した制御光強度の
空間的な傾斜tを使化さ−I+−得る手段を設ける。
That is, a first optical member is used that can change the spatial refractive index distribution for a predetermined polarization component of the controlled light in accordance with the change in the spatial intensity distribution of the control light. above 1st
The control light t is spatially strong so that the spatial intensity distribution of the control light of the optical member is spatially linear. A second optical member is used. Further, means is provided to obtain the spatial gradient t of the spatially linearly distributed control light intensity.

〔作用〕[Effect]

仁のような手段を講じ虎仁とてよシ、ある定められた方
向に偏光した被制御光の平面波は、屈折率が空間的に線
形に変化している領域を通過することになシ、その進行
方向が変化する。
By taking measures like Jin's, Torahi and Teyoshi found that a plane wave of controlled light polarized in a certain direction does not pass through a region where the refractive index spatially changes linearly. Its direction of movement changes.

この進行方向の変化量は前記制御光強度の空間的な傾斜
量ft変化させ得る手段により変化させることができる
。したがって被制御光の平面波の出射方向を任意に制御
することができ、十分大きな開口を有する集光レンズに
よりその焦点平面内で光点”t7!査することができる
The amount of change in the traveling direction can be changed by a means that can change the spatial gradient ft of the control light intensity. Therefore, the emission direction of the plane wave of the controlled light can be arbitrarily controlled, and a light spot "t7!" can be scanned within its focal plane using a condensing lens having a sufficiently large aperture.

〔実施例〕〔Example〕

第1図は本発明の第1の実施例を示す図である。!!1
図において1は液晶を含む第1の光学部材であり、2は
フィルタとしての第2の光学部材である。Sは点光源ま
たは物体の光点であり、4けコリメートレンズ*SVi
ポーラライザ、yFi襲光レンズ、8け上記集光レンズ
の焦平面である。
FIG. 1 is a diagram showing a first embodiment of the present invention. ! ! 1
In the figure, 1 is a first optical member containing liquid crystal, and 2 is a second optical member as a filter. S is a point light source or a light spot of an object, and 4-digit collimating lens *SVi
This is the focal plane of the polarizer, the yFi light attack lens, and the 8-digit condenser lens.

第2図は、前記第1の光学部材Iの構造を示す断面図で
ある。鴎2図において11は液晶、11m、111bは
上記液晶の再任に配置された内部誘電体層、13m、1
3bは透明電極、14は誘電体ミラー、15は光吸収層
、16紘光導1!膜、77a、Z7bはガラス板、18
はスペーサ、19は透明電極xsa、xsblFAI続
されたAC電源である。つまシ液晶11が、12m、1
3mを積層した上部ガラス板11mと、111b、14
.15.1fj、IBaf積層した下部ガラス板17m
との間に、スペーサ18奢介在させた領域内に封入され
たものとなっている。
FIG. 2 is a sectional view showing the structure of the first optical member I. In the figure 2, 11 is a liquid crystal, 11m, 111b is an internal dielectric layer arranged to replace the liquid crystal, 13m, 1
3b is a transparent electrode, 14 is a dielectric mirror, 15 is a light absorption layer, 16 is a light guide 1! Membrane, 77a, Z7b is glass plate, 18
19 is a spacer, and 19 is an AC power supply connected to transparent electrodes xsa and xsblFAI. The grip liquid crystal 11 is 12m, 1
Upper glass plate 11m laminated with 3m glass, 111b, 14
.. 15.1fj, IBaf laminated lower glass plate 17m
It is enclosed in a region with a spacer 18 interposed therebetween.

かくして制御光10が存在しないとき、光導電膜16の
ダイオード効果と誘電体ミラー14のコンデンサ効果に
より、液晶11の両端に発生する電位1−jAc電諒の
8ttIl数、電圧によらず実効的に零である。制御光
10が一定強度を持った場合、光導電111gは低抵抗
体と等価になるため、液晶11の両端に電位差が生じる
Thus, when the control light 10 is not present, due to the diode effect of the photoconductive film 16 and the capacitor effect of the dielectric mirror 14, the number of 8ttIl of the electric potential 1-jAc generated across the liquid crystal 11 is effectively increased regardless of the voltage. It is zero. When the control light 10 has a constant intensity, the photoconductor 111g is equivalent to a low-resistance material, so a potential difference occurs between both ends of the liquid crystal 11.

液晶分子が第3図(a)のようにガラス面および紙面に
平行に配回されているとすると、外部電界Eが00とき
、液晶分子の配向方向と同じ方向に偏光している被制御
光20に対する液晶11の屈折率は、異常光に対する屈
折率n・になる。
Assuming that the liquid crystal molecules are arranged parallel to the glass surface and the paper surface as shown in Figure 3(a), when the external electric field E is 00, the controlled light is polarized in the same direction as the alignment direction of the liquid crystal molecules. The refractive index of the liquid crystal 11 with respect to 20 is the refractive index n· for extraordinary light.

外部電界Eが生じると、液晶分子の分極に外力が働き飽
和電位B、に達すると第3図(C)のような状態となシ
、液晶の屈折率は常光線に対する屈折率n0に等しくな
る。中間の電位li!、では第3図(b)の状態であシ
、その屈折率n1はn・< n 1 < n eの範囲
で変化する。
When an external electric field E is generated, an external force acts on the polarization of the liquid crystal molecules, and when the saturation potential B is reached, a state as shown in Figure 3 (C) occurs, and the refractive index of the liquid crystal becomes equal to the refractive index n0 for ordinary rays. . Intermediate potential li! , the refractive index n1 changes in the range n·<n1<ne.

#I4図(a) (b)は、前記第2の光学部材2を示
す図である。第2の光学部材lは同図(1)に示すよう
なものであシ、同図(b)に示すようにX方向に線形K
W化する強度透過率分布をもったフィルタである。
#I4 Figures (a) and (b) are diagrams showing the second optical member 2. The second optical member l is as shown in the same figure (1), and as shown in the same figure (b), it is
This is a filter with a W-shaped intensity transmittance distribution.

このように構成され九第1の実施例においては、図示し
ない光源から一様な明るさの照明光9がフィルタ2を通
過すると、制御光IOの空間強度分布は第5図の〔1〕
のようになり、光強度→外部電界→屈折率の変換プロセ
スにより第1の光学部材1に含まれる液晶11の屈折率
分布は第6図(a)の実線のようにX方向に対して一定
の傾きをもつ。このような媒質n (x)に@6図(b
)に示すように、平行光線が入射すると、媒質中の光線
1の光路A −A’−A“と、光線鳳の光路B −B’
−B”との間には、距11A−BKはば正□比例した光
路差が生じる。したがって出射光線はほぼ平行でかつ入
射光線よ匂小さな角度θ0で出射する。
In the first embodiment configured in this way, when illumination light 9 of uniform brightness from a light source (not shown) passes through the filter 2, the spatial intensity distribution of the control light IO is as shown in [1] in FIG.
Through the conversion process of light intensity → external electric field → refractive index, the refractive index distribution of the liquid crystal 11 included in the first optical member 1 is constant in the X direction as shown by the solid line in FIG. 6(a). has a slope of In such a medium n (x) @6 figure (b
), when a parallel ray is incident, the optical path of ray 1 in the medium is A-A'-A'', and the optical path of ray 1 is B-B'.
-B'', an optical path difference occurs which is proportional to the distance 11A-BK. Therefore, the emitted light rays are almost parallel and emitted at an angle θ0 smaller than that of the incident light rays.

一様な照明光90強度が増加すると、制御光10の強度
分布は第5図の(b)のようになp1液晶の屈折率分布
は第6図(a)の点線のような傾きをもち、光線■と履
との液晶中の光路差が増光源または物体の光点Sの像を
、一様な照明光90強イ変化によって焦平面8上でaH
bのように移動させることができる。
When the uniform illumination light 90 intensity increases, the intensity distribution of the control light 10 becomes as shown in FIG. 5(b), and the refractive index distribution of the p1 liquid crystal has a slope as shown in the dotted line in FIG. 6(a). , the optical path difference in the liquid crystal between the light beam and the light beam changes the image of the light point S of the brightening source or object to aH on the focal plane 8 due to the uniform illumination light 90 intensity change.
It can be moved as shown in b.

ポーラライザ5の偏光方向と液晶分子の無電界時の配向
方向がともに第1図におけるy方向であシミ界による液
晶分子の回転がy−s平面内で生起するものとすれば、
液晶11の入射光に対する屈折率分布は入射角には依存
しない。
Assuming that the polarization direction of the polarizer 5 and the orientation direction of the liquid crystal molecules in the absence of an electric field are both the y direction in FIG. 1, and the rotation of the liquid crystal molecules due to the stain field occurs within the y-s plane,
The refractive index distribution of the liquid crystal 11 for incident light does not depend on the incident angle.

つぎに第2の実施例について説明する。前記第1の実施
例では照明光9の強度t−変化させるととくよって液晶
11の屈折率分布の傾きを変えるようにしたが、本実施
例では照明光90強度は一定すなわち制御光10の強度
の分布は、例えば#!5図の〔1〕のような状態に一定
化し、液晶11に印加するAC[源19の電圧′に変化
させるようにした。このようにした場合においても前記
実施例と同様に液晶の屈折率分布を第6図(a)の実線
状態から点線状態へ変化させることができる。
Next, a second embodiment will be explained. In the first embodiment, the slope of the refractive index distribution of the liquid crystal 11 is changed by changing the intensity t of the illumination light 9, but in this embodiment, the intensity of the illumination light 90 is constant, that is, the intensity of the control light 10 is changed. For example, the distribution of #! The voltage was kept constant at the state shown in [1] in FIG. 5, and the AC applied to the liquid crystal 11 was changed to the voltage of the source 19. Even in this case, the refractive index distribution of the liquid crystal can be changed from the solid line state in FIG. 6(a) to the dotted line state as in the previous embodiment.

つぎに第3の実施例について説明する。1記第1の実施
例においては線形な光強度分布を実現する#!2の光学
部材2として第4図(a)に示すような透過型フィルタ
を用いたが、本実施例においては第2の光学部材2とし
て本出願人が先に出願した特願昭59−277745号
および特願昭60−024645号において提案した平
面導波路型光′fjI/I會利用するようにした。
Next, a third embodiment will be explained. 1. In the first embodiment, #! realizes a linear light intensity distribution. As the second optical member 2, a transmission type filter as shown in FIG. 4(a) was used. The planar waveguide type optical 'fj I/I meeting proposed in No. 1998 and Japanese Patent Application No. 1983-024645 was utilized.

第7図(a)は平面導波路型光fjIAt−示す断面図
である。クラッド層21と2Jとに挾まれた欠陥NtP
有するコア層j2と、光拡散層24とからなり、コア層
22の片方の端面に図示しない光源よシ集光レンズ25
により光を導入するものとなす。コア層21t−図中右
方へ伝搬する光は欠陥Nよシ上部りラシト層2Sを透過
したのち、散乱層24で散乱される。伝搬される光は入
射端面よシ遠ざかるに従って徐々に弱くなるので欠陥N
の分布を適当に調整することにより、散し得る。
FIG. 7(a) is a sectional view showing the planar waveguide type light fjIAt. Defect NtP sandwiched between cladding layers 21 and 2J
It consists of a core layer j2 having
It is assumed that light is introduced by this. Core layer 21t - Light propagating to the right in the figure passes through defect N and upper Rashito layer 2S, and is then scattered by scattering layer 24. Since the propagated light gradually becomes weaker as it moves away from the incident end face, the defect N
can be dispersed by appropriately adjusting the distribution of

つぎに第4の実施例について説明する。Next, a fourth embodiment will be described.

−1〇− 前記各実施例では第1図に示すように入射光は液晶層と
誘電体ミラーを含む前記第1の光学部材を1回だけ通過
するように構成されている。
-10- In each of the above embodiments, as shown in FIG. 1, the incident light is configured to pass through the first optical member including a liquid crystal layer and a dielectric mirror only once.

液晶層に可能な屈折率変化量と、層の厚みには限界があ
り、1回のみの通過によって変化する平WJfJ!lの
傾きもそれほど大きな値は期待できない。そζで本実施
例で拡第8図に示すように全反射ミラー30を光学部材
1の上方に配置することによシ入射平面波が複数回液晶
層を通過するような構成とし念ものである。第2の光学
部材2も通過回数に従って複数個必要になる。
There is a limit to the amount of refractive index change that can be made in the liquid crystal layer and the layer thickness, and the flat WJfJ! The slope of l cannot be expected to have such a large value. Therefore, in this embodiment, a total reflection mirror 30 is placed above the optical member 1, as shown in enlarged FIG. 8, so that the incident plane wave passes through the liquid crystal layer multiple times. . A plurality of second optical members 2 are also required depending on the number of passes.

各光学部材2a〜2nは光束が液晶層内に存在する範囲
(図ではたての点線の範囲)よシ十分余裕があシ、同一
方向に線形な強度透過率分布を有していれば良い。
It is sufficient for each optical member 2a to 2n to have a sufficient margin beyond the range where the light beam exists in the liquid crystal layer (the range indicated by the vertical dotted line in the figure) and to have a linear intensity transmittance distribution in the same direction. .

なお2a〜2nは同一基板内に容易に作成し得ることは
云うまでもない。
It goes without saying that 2a to 2n can be easily formed within the same substrate.

つぎに第5の実施例について説明する。Next, a fifth embodiment will be explained.

これまでの実施例では第2の光学部材の透過率分布はい
づれもtX1図に於けるX方向とじたため光点の走査は
同図紙面内で行なうものであっ九。
In the previous embodiments, the transmittance distribution of the second optical member was all fixed in the X direction in the tX1 diagram, so the scanning of the light spot was performed within the plane of the diagram.

第2の光学部材2の透過率分布砂S同図y方向に対して
線形であるとすれば、前述し′fc原理から容易に類推
されるようにビームの走査方向は紙面に垂直(X方向)
となる。
If the transmittance distribution sand S of the second optical member 2 is linear with respect to the y direction in the figure, the beam scanning direction is perpendicular to the plane of the paper (in the X direction )
becomes.

そとで本実施例では第2の光学部材として第9図のごと
きものを考える。すなわち41,42は第3図に示すと
同様なフィルタであるが41は透過率分布が同図X方向
であり42はX方向(紙面に垂直)である。一様態明光
91.92は゛、図示しない光源と7リメータレンズに
より独立に各フィルタに入射されている。ハーフミラ−
43により91と92Fi合成きれ、x−y平面に対し
て任意の強度勾配を持つ制御光10となシ前述し之第1
の光学部材Iの光導ta膜に照射される。
In this embodiment, a second optical member as shown in FIG. 9 will be considered. That is, 41 and 42 are filters similar to those shown in FIG. 3, but 41 has a transmittance distribution in the X direction in the figure, and 42 has a transmittance distribution in the X direction (perpendicular to the plane of the paper). In one embodiment, bright light 91 and 92 are independently incident on each filter by a light source and a 7 meter lens (not shown). half mirror
43, 91 and 92Fi are combined, resulting in a control light 10 having an arbitrary intensity gradient with respect to the x-y plane.
The light guide ta film of the optical member I is irradiated with light.

従って本実施例では一様照明光91と92の強度をそれ
ぞれ制御する仁とくより平面8上でビームを2次元的に
)l!査することができること【なる。
Therefore, in this embodiment, the beams are two-dimensionally ()l! be able to examine [become]

また第9図の43を偏光ビームスプリッタとし、91と
92をそれぞれ互いに直交したil[fIN偏光とすれ
ば照明光の利用効率を同上させ得る。
Furthermore, if 43 in FIG. 9 is a polarizing beam splitter and 91 and 92 are il[fIN polarized lights that are perpendicular to each other, the efficiency of use of illumination light can be increased.

以上の説明では第1の光学部材として液晶と光導電層を
積層したデバイスを用いたが、例えばB、S、0のよう
な光導電性と電気光学効果の両方の機能を待つ材料、ま
たは両機能を同時に実現させ得るデバイスならばどのよ
うなものでも適用可能である。
In the above explanation, a device in which a liquid crystal and a photoconductive layer are laminated is used as the first optical member, but materials such as B, S, and 0 that have both photoconductive and electro-optic effects, or both Any device can be applied as long as it can simultaneously realize the functions.

〔発明の効果〕〔Effect of the invention〕

本発明によれは、可動部を全くもたないので小型@鉦に
製作できると共に、格別に高価格な光学部材を用いずに
製作できるので安価なものとなる。かくして光ピツクア
ップのトラッキングサーボ、光カードの省込み読出し装
置、さらには高分解能なカメラの固体撮像装置等へ多方
面に互p広く応用iiJ能な光偏向器を提供できる。
According to the present invention, since it does not have any moving parts, it can be manufactured into a small @ gong, and it can also be manufactured at low cost because it can be manufactured without using particularly expensive optical members. In this way, it is possible to provide an optical deflector that can be widely applied to tracking servos for optical pickups, read-out devices for optical cards, solid-state imaging devices for high-resolution cameras, and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図〜第6図は本発明の第1の実施例を示す図で、第
1図は全体的構成を示す図、第2図は第1の光学部材の
構造を示す断面図、第3図(a)〜(C)は同部材の機
能を示す図、第4図(at(blは1tI2の光学部材
を示す図、第5図および第6N(a) (blは作用説
明図である。第7図(al (b)〜第9図はそれぞれ
本発明の他の実施例を示す図である。 I・・・第1の光学部材、2・・・第2の光学部材、3
・・・光源ま九は物体の光点、8・・・伯平面。 出願人代還人 弁理士 坪 井   浮 1j − 句          、Ω Φ X 第7図 fVifrn 6Q、1”A7II 特許庁長官 宇賀道部  h(り ■、事件の表示 特願昭60−194139  号 2、発明の名称 光偏向器 3、補正をする渚 事件との関係 特許出願人 名称(o37)  オIJ ンハス光学1:′!AV、
l朱式イリ14、代理人
@Figures 1 to 6 are diagrams showing the first embodiment of the present invention, in which Figure 1 is a diagram showing the overall configuration, Figure 2 is a sectional view showing the structure of the first optical member, and Figure 3 is a diagram showing the structure of the first optical member. Figures (a) to (C) are diagrams showing the functions of the same members, Figure 4 (at (bl is a diagram showing the optical member of 1tI2), Figures 5 and 6N (a) (bl is a diagram explaining the action) 7(b) to 9 are views showing other embodiments of the present invention, respectively. I...first optical member, 2...second optical member, 3
...Light source M9 is the light point of the object, 8...Baku plane. Patent attorney Patent attorney Uki Tsuboi 1j - phrase, Ω Φ Name of optical deflector 3, relation to the Nagisa incident to be corrected Name of patent applicant (o37) OIJ Nhas Optics 1:'!AV,
l Shu Shikiiri 14, Agent

Claims (8)

【特許請求の範囲】[Claims] (1)制御光の空間強度分布に従って被制御光の少なく
とも一つの特定の方向に偏向した成分に対する屈折率の
空間的分布が変化する第1の光学部材と、この第1の光
学部材に対する前記制御光の空間強度分布を空間的に線
形となす第2の光学部材と、前記第2の光学部材による
空間的に線形分布した光の強度の傾きを変化させる手段
およびまたは前記第1の光学部材の制御光強度に対する
読出し光の屈折率変化の比率を変化させる手段とを備え
たことを特徴とする光偏向器。
(1) A first optical member in which the spatial distribution of the refractive index for a component of the controlled light that is deflected in at least one specific direction changes according to the spatial intensity distribution of the control light, and the control for the first optical member. a second optical member that makes the spatial intensity distribution of light spatially linear; a means for changing the slope of the spatially linearly distributed light intensity by the second optical member; and/or a means for changing the slope of the spatially linearly distributed light intensity by the second optical member; 1. An optical deflector comprising means for changing the ratio of change in refractive index of readout light to control light intensity.
(2)前記第2の光学部材は、複数に分割配置され、前
記第1の光学部材内に屈折率が線形に変化する領域を複
数個所に生じさせるとともに、前記制御光が複数の領域
の複数個所またはすべてを通過するように構成されたこ
とを特徴とする特許請求の範囲第1項記載の光偏向器。
(2) The second optical member is divided into a plurality of parts, and the first optical member has a plurality of regions in which the refractive index changes linearly. The optical deflector according to claim 1, characterized in that the optical deflector is configured to pass through some or all of the parts.
(3)前記第1の部材は、液晶層と光導電膜を含む多層
膜よりなり「光→屈折率」変換デバイスであることを特
徴とする特許請求の範囲第1項記載の光偏向器。
(3) The optical deflector according to claim 1, wherein the first member is a "light→refractive index" conversion device made of a multilayer film including a liquid crystal layer and a photoconductive film.
(4)前記第2の光学部材は、透過強度分布が空間的に
線形なフィルタであることを特徴とする特許請求の範囲
第1項記載の光偏向器。
(4) The optical deflector according to claim 1, wherein the second optical member is a filter having a spatially linear transmission intensity distribution.
(5)前記第2の光学部材は平面導波路型光源であるこ
とを特徴とする特許請求の範囲第1項記載の光偏向器。
(5) The optical deflector according to claim 1, wherein the second optical member is a planar waveguide type light source.
(6)前記制御光強度の空間的傾きを変化させる手段は
、前記第2の光学部材を照射する光源の強度を変化させ
るものであることを特徴とする特許請求の範囲第1項記
載の光偏向器。
(6) The light according to claim 1, wherein the means for changing the spatial gradient of the control light intensity changes the intensity of a light source that irradiates the second optical member. Deflector.
(7)前記第1の光学部材の制御光強度変化に対する読
出し光の屈折率変化の比率を変える手段は、液晶デバイ
スに印加するAC電源の電圧を変えるものであることを
特徴とする特許請求の範囲第1項記載の光偏向器。
(7) The means for changing the ratio of the refractive index change of the readout light to the control light intensity change of the first optical member changes the voltage of the AC power supply applied to the liquid crystal device. The optical deflector according to scope 1.
(8)前記第1の光学部材に入射する制御光は、第2の
光学部材を互いに直交する方向に強度透過率が線形に分
布するように設けたフィルタの透過光を合成した光であ
ることを特徴とする特許請求の範囲第1項記載の光偏向
器。
(8) The control light incident on the first optical member is light that is a combination of transmitted light from filters provided in the second optical member so that intensity transmittance is linearly distributed in mutually orthogonal directions. An optical deflector according to claim 1, characterized in that:
JP19413985A 1985-09-03 1985-09-03 Light deflecting device Pending JPS6254234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19413985A JPS6254234A (en) 1985-09-03 1985-09-03 Light deflecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19413985A JPS6254234A (en) 1985-09-03 1985-09-03 Light deflecting device

Publications (1)

Publication Number Publication Date
JPS6254234A true JPS6254234A (en) 1987-03-09

Family

ID=16319556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19413985A Pending JPS6254234A (en) 1985-09-03 1985-09-03 Light deflecting device

Country Status (1)

Country Link
JP (1) JPS6254234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123321A (en) * 1989-10-06 1991-05-27 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03123321A (en) * 1989-10-06 1991-05-27 Nippon Telegr & Teleph Corp <Ntt> Optical switch

Similar Documents

Publication Publication Date Title
US5581345A (en) Confocal laser scanning mode interference contrast microscope, and method of measuring minute step height and apparatus with said microscope
US20030142318A1 (en) Spectral image input device
EP0571564A1 (en) Optical phased arrays
US5071232A (en) Optical deflection element and space optical matrix switching device
Kulcke et al. Digital light deflectors
US5786926A (en) Electro-optical device having inverted domains formed inside a ferro-electric substrate and electro-optical unit utilizing thereof
JPH1039346A (en) Electro-optic element
WO2018076914A1 (en) Display apparatus and display method therefor
JP2001100172A (en) Spatial optical modulating device
US5007694A (en) Light wavelength converter
US6529254B1 (en) Optical element and method for manufacturing the same, and optical apparatus and method for manufacturing the same
JPS6254234A (en) Light deflecting device
GB2132374A (en) A two-dimensional acousto-optic deflection arrangement
JPS5924831A (en) Light-optical light deflector
CN114527559B (en) Phase contrast microscopic module, equipment and method based on uniaxial crystal
US4763996A (en) Spatial light modulator
US3449576A (en) Compensated path length polarized light deflector-selector
JPH02195315A (en) Optical apparatus for long-sized observation
JP2710809B2 (en) Crossed diffraction grating and polarization rotation detector using the same
JP2536931B2 (en) Spatial light modulator
JP2964467B2 (en) Multiple reflection element
JP3018538B2 (en) Optical waveguide device, confocal laser scanning differential interference microscope using the same, and information detection method
JPH09258150A (en) Electro-optic lens
JPH04294322A (en) Optical device
US5036270A (en) Apparatus for detecting electrostatic surface potential