[go: up one dir, main page]

JPS6259995B2 - - Google Patents

Info

Publication number
JPS6259995B2
JPS6259995B2 JP57177523A JP17752382A JPS6259995B2 JP S6259995 B2 JPS6259995 B2 JP S6259995B2 JP 57177523 A JP57177523 A JP 57177523A JP 17752382 A JP17752382 A JP 17752382A JP S6259995 B2 JPS6259995 B2 JP S6259995B2
Authority
JP
Japan
Prior art keywords
sieve
coal
amount
classification
screen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57177523A
Other languages
Japanese (ja)
Other versions
JPS5968395A (en
Inventor
Hisao Sumino
Kazuaki Furuta
Moriaki Tsuruta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Ebara Koki KK
Original Assignee
Nippon Steel Corp
Ebara Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Ebara Koki KK filed Critical Nippon Steel Corp
Priority to JP17752382A priority Critical patent/JPS5968395A/en
Publication of JPS5968395A publication Critical patent/JPS5968395A/en
Publication of JPS6259995B2 publication Critical patent/JPS6259995B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Combined Means For Separation Of Solids (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、石炭、鉱石などの吸水粒状物を整粒
して各種処理操業を向上させるための分級方法に
関するものである。 一般に、石炭は採堀のさい不純物が混入するし
かつ石炭自体が灰分、粒度その他の炭質特性が異
なつたものの集合体であるため選炭によつて選別
処理をする必要があり、この選炭工程は粉砕、分
粒、比重選別、浮選などの処理工程から成つてい
るがどの工程でも篩分操作が整粒のために重要な
役割を演じている。 しかし従来原料炭はヤードに野積となつている
ことが多く取扱上雨が降ればぬれるし晴天が続く
と乾いてその都度切出槽に投入される原料炭の水
分変動(6〜13%)が著しい。また石炭は名柄に
よつて付着水分や粘着性或いは粒径分布が著しく
異なつていて従来の篩装置では篩分操作が篩網な
どの篩板への附着物質の影響が大きく目詰りの変
動も多い、例えば、篩網の素線への扱い物の付着
が生じしだいに生長して、素線が太くなり即ち、
当初、網目の目開きSが使用時間経過とともにS
>S1>S2と減少し、最終的にはSo=0となつて
目詰り現象を生じふるいの機能を果たさなくなる
欠点があつた。 特に素線間に生長する付着物はねつとりやわら
かく網線に接触するとどの部分からも発生生長し
振動篩の振動では、振り落とす力がなくデツキブ
ラシでこすつても落ちにくいし、乾燥すると固ま
つて篩分け作業に支障となる。これらが障害とな
つて実際には石炭を分級し整粒することが困難で
あつた。 また目詰り防止用のクリーナつきの篩を用いて
も石炭の名柄ごと或いは水分変動によつて篩の分
級能力の上限値が異なるため物性が悪いときには 分級効率 =網下回収率 即ち(篩下物量/分級点以下の粒子の量 が低下し、所期の目的とする分級精度が得られな
い欠点があつた。 本発明は、これら網面に生ずる目詰り現象並び
に付着の阻止を適確に行ない、従来のものの欠点
を除き、網面を常時清浄に維持せしめ、分級効率
の低下を効果的に防止して効率よく篩分作業が可
能で湿炭篩分の容易性と粉砕度や調整性も良好で
操作効率をも大巾に向上しうる石炭分級システム
を提供することを目的とするものである。 本発明は、コークス製造のための石炭粉砕調粒
設備であつて石炭の処理流れに沿つて切出量(供
給量)計量器1次篩が配置され、該1次篩の後前
には1次篩篩上物量計量器、粉砕機、粉砕物計量
器、2次篩、2次篩の産物計量器が順次配置さ
れ、2次篩の篩上産物は粉砕機に再投入される経
路を有し、前述の各機器は落差ないし搬送装置に
よつて接続され連携運転される設備において 石炭供給(切出量):Q〔Kg〕 1次篩の篩上産物量:qu1〔Kg〕 1次篩の篩下産物量:ql1〔Kg〕 2次篩への供給量:Q〔Kg〕 2次篩の篩上産物量:qu2〔Kg〕 2次篩の篩下産物量:ql2〔Kg〕 1次篩への供給速の 分級点:Pt1mm 1次篩への供給炭の d>Pt1の粒子分布比率:
α% 1次篩への供給炭の d≦Pt1の粒子分布比率:
β% 2次篩への供給炭の 分級点:Pt2mm 2次篩への供給炭の d>Pt2の粒子分布比率:
α% 2次篩への供給炭の d≦Pt2の粒子分布比率:
β% 分級効率……定数C1、C2 とするとき Q×β×C1≦ql1→Q≦ql1/β×C1×β×C2≦ql2→Q≦ql2/β×C2 となるように切出量を制御するとともに、前記1
次篩、2次篩の篩分工程で横線のない縦線条が平
行に配列された縦格子状スクリーンの振動縦線網
上に石炭の流れ方向に移動自在に乗せ、かつ幅方
向にも移動可能に配備して各篩分工程の縦線網に
付着した物質を縦線の振動モードの変化によつて
剥離・除去する接触体を有し、かつ接触体の移動
を篩分け産物の網篩板下産物回収率にもとずいて
連けい制御するクリーナ付の機構を有する篩で分
級することを特徴とする石炭の粉砕調粒方法であ
る。 本発明を実施例につき図面を用いて説明すれ
ば、原料ヤードAより搬送装置Bで原料炭を貯留
槽Cに投入し、不変制御機構つきの切出装置D例
えばベルトコンベヤで分散配分した石炭供給量
(切出量)Qは直接又は計量器付搬送装置E
を経て1次篩F1に定量供給され篩い分け選別さ
れる。この1次篩F1の後段又は前段に粉砕機G
例えばクラツシヤ、ブレーカー等を計量器付搬送
装置H,I,Jが必要に応じ附設されて配備され
て2次篩F2に連絡されている。該2次篩F2で得
られる篩上産物は計量器付搬送装置Kで物量qu2
が測定されて前記粉砕機Gに循環されて再投入さ
れる一方、前記1次篩F1と2次篩F2との篩下産
物もその物量ql1,ql2が計量付搬送装置I,Lで
それぞれ測定されて製品となる。 そしてこれら篩上下の産物量ql1,ql2の変動に
対応して前記石炭供給量Q或いは2次篩F2
への供給量Q若しくは両者を自動的に制御す
るようになつている。 例えば今仮にPt=6mmで分級する場合原料炭
100Kg中の粒径分布を Pt>dmm:80Kg Pt≦dmm:20Kg とすると篩が100%の効率で分級した場合は
The present invention relates to a classification method for sizing water-absorbing granules such as coal and ore to improve various processing operations. In general, coal is contaminated with impurities during mining, and since the coal itself is a collection of materials with different ash content, particle size, and other coal properties, it must be sorted through coal preparation, and this coal preparation process involves pulverization. It consists of processing steps such as sizing, gravity sorting, flotation, etc. In each step, the sieving operation plays an important role for grain size adjustment. However, conventionally, coking coal is often piled up in open yards in yards, and when handled, it gets wet when it rains and dries out when it is sunny, resulting in moisture fluctuations (6-13%) in the coking coal that is put into the cutting tank each time. Significant. In addition, the adhering moisture, stickiness, and particle size distribution of coal vary significantly depending on the name of the coal, and in conventional sieving equipment, the sieving operation is affected by the adhering substances to the sieve plate such as the sieve screen, and the clogging rate fluctuates significantly. For example, substances to be handled may adhere to the strands of the sieve screen and gradually grow, making the strands thicker, i.e.
Initially, the mesh opening S decreased as the usage time elapsed.
>S 1 >S 2 and finally S o =0, resulting in a clogging phenomenon and no longer functioning as a sieve. In particular, the deposits that grow between the strands are soft and grow from any part of the wire when they come into contact with the wire, and the vibration of a vibrating sieve does not have the strength to shake them off, so it is difficult to remove them even when scrubbed with a debris brush, and they harden when dry. This will interfere with the sieving work. These obstacles have made it difficult to actually classify and size the coal. Furthermore, even if a sieve equipped with a cleaner to prevent clogging is used, the upper limit of the sieve's classification ability varies depending on the type of coal or moisture fluctuations, so if the physical properties are poor, the classification efficiency = under-sieve recovery rate, i.e. (amount of under-sieve material). /The amount of particles below the classification point decreased, and the desired classification accuracy could not be obtained.The present invention appropriately prevents the clogging phenomenon and adhesion that occur on the mesh surface. , except for the drawbacks of the conventional ones, it keeps the screen surface clean at all times, effectively prevents the drop in classification efficiency, allows efficient sieving work, and improves the ease of wet coal sieving and the degree of grinding and adjustment. It is an object of the present invention to provide a coal classification system that is favorable and can greatly improve operational efficiency.The present invention is a coal pulverizing and granulating equipment for coke production that A primary sieve with a cutout amount (feed amount) measuring device is arranged, and in front of and behind the primary sieve, there is a material measuring device on the primary sieve, a crusher, a crushed material measuring device, a secondary sieve, and a secondary sieve. The sieved product of the secondary sieve has a path to be re-injected into the crusher, and each of the above-mentioned devices is connected by a head or a conveying device and is operated in coordination with the coal. Supply (cutting amount): Q 1 [Kg] Amount of product on the sieve of the primary sieve: qu 1 [Kg] Amount of product under the sieve of the primary sieve: ql 1 [Kg] Amount of supply to the secondary sieve: Q 2 [Kg] Amount of product on the sieve of the secondary sieve: qu 2 [Kg] Amount of product under the sieve of the secondary sieve: ql 2 [Kg] Classification point of feed rate to the primary sieve: Pt 1 mm Particle distribution ratio of d>Pt 1 in supplied coal:
α 1 % Particle distribution ratio of d≦Pt 1 in coal fed to the primary sieve:
β 1 % Classification point of coal fed to secondary sieve: Pt 2 mm Particle distribution ratio of d>Pt 2 of coal fed to secondary sieve:
α 2 % Particle distribution ratio of d≦Pt 2 in the coal fed to the secondary sieve:
β 2 % Classification efficiency...When constants C 1 and C 2 , Q 1 ×β 1 ×C 1 ≦ql 1 →Q 1 ≦ql 11 ×C 1 Q 2 ×β 2 ×C 2 ≦ql 2 →The cutting amount is controlled so that Q 2 ≦ql 22 ×C 2 , and the above 1
During the sieving process of the secondary sieve, the coal is placed on a vibrating vertical line network of a vertical lattice-like screen in which vertical lines without horizontal lines are arranged in parallel, so that it can move freely in the flow direction and also move in the width direction. It has a contact body that can be arranged to peel off and remove substances attached to the vertical wire mesh in each sieving process by changing the vibration mode of the vertical wire, and the movement of the contact body can be used to move the material through the mesh sieve of the sieved product. This is a method for pulverizing and granulating coal, which is characterized by classification using a sieve equipped with a mechanism equipped with a cleaner that performs continuous control based on the recovery rate of coal. The present invention will be described with reference to the drawings in an embodiment. Raw coal is fed from a raw material yard A into a storage tank C by a conveyance device B, and the amount of coal supplied is dispersed and distributed by a cutting device D with a constant control mechanism, for example, a belt conveyor. (Cutting amount) Q 1 is direct or conveyance device E with measuring device
A fixed amount is supplied to the primary sieve F1 , where it is sieved and sorted. A crusher G is installed after or before this primary sieve F1 .
For example, crushers, breakers, etc., and conveying devices H, I, and J with measuring instruments are attached and provided as necessary, and are connected to the secondary sieve F2 . The sieved product obtained by the secondary sieve F 2 is transferred to a conveying device K with a weighing device in quantity qu 2
is measured, circulated and re-injected into the pulverizer G, and the amounts ql 1 and ql 2 of the unsifted products from the primary sieve F 1 and secondary sieve F 2 are transferred to the weighing conveyor I, Each is measured in L and becomes a product. Then, in response to fluctuations in the product amounts ql 1 and ql 2 above and below the sieve, the coal supply amount Q 1 or the secondary sieve F 2
The supply amount Q2 or both are automatically controlled. For example, if we classify Pt=6mm, coking coal
If the particle size distribution in 100Kg is Pt>dmm:80Kg Pt≦dmm:20Kg, if the sieve classifies with 100% efficiency,

【表】 となる。 ところでこのとき水分等分級性能変動要因が変
化すると100Kgを供給した場合でも第1表の如く
変動する。
[Table] becomes. By the way, if the moisture classification performance fluctuation factors change at this time, the fluctuations will occur as shown in Table 1 even when 100 kg is supplied.

【表】 ↓ ↓ ↓
50 45 40
(ハ)の場合、網下回収率ηは η=40/80=50% となる。このことは本来の網下粒子が50%網上に
流れたことになる。 供給量を下げると網下回収率が改善される。即
ち、各名柄における網の単位面積当りの通過量は
限界があり、それ以上の負荷をかけると全て網上
で流出するので、このような場合、原料炭の粒径
分布は各名柄毎に既知であるので篩上篩下の産物
量を測定することにより現在の分級効率を連続的
に把握することができるためこの測定によつて分
級が所期の分級効率と比較し、効率低下の場合は
篩への供給量を下げるように制御する。 したがつて、ある名柄で分級点以下の粒子の分
布が80%とし、篩下回収率の要求値を70%とする
と 供給量×0.8×0.7≦篩下産物量 となるような運転をするため、供給量を変化させ
ればよいことになる。 これら制御方式に際しては石炭供給量Q
いは2次篩F2への供給量Qに関係する供給
装置例えば切出装置D、搬送装置E,H,J或い
は粉砕機Gの運転状態を変化させるため駆動源の
断続又は可変速運転操作するようにしたり、ホツ
パ或いは流過量を調整する部材を調節したりさら
には1次篩F1、2次篩F2の振動状態若しくは篩
板での付着物質の排除部材における移動操作を可
変制御したものにセツトするのが好ましい。 これらの場合、前記1次篩F1、2次篩F2とし
て用いられる振動篩は多段の網を有する振動ふる
いの網の上面にあつて、該網面に接触し移動可能
に支えられ、移動する接触体が該網面に接触力を
与えることにより、該網面に付着した扱い物をは
らい除ける除去機構を設けた振動ふるいを用い、
前記除去機構が機械的駆動力によつて移動し、か
つ移動区域がふるいの有効面積全域におよぶよう
にしたものがよい。例えば、振動ふるい本体1は
金網スクリーン等の縦線網2を備え、振動モータ
3によつて振動するように支持装置枠体にバネ1
1によつて支えられている。即ち、振動ふるい本
体1はフレーム20に吊金具21及びバネ11に
より弾性的に吊され、モータ3あるいは電磁バイ
ブレーターなどの発振機により振動するようにな
つていて分散板22及び複数個(図においては5
個)の縦線網2,2………が上下に段階をなし、
かつ各縦線網は傾斜して設けられている。各縦線
網は枠体に傾斜方向に平行に多数の縦線条を張つ
て網目を形成しており横線条はないか著しく少な
い。また縦線条の間隔は上段の縦線網から下段に
なるに従い狭く配列されている。前記発振機は2
組用い回転方向を逆にし必要な振動条件を与える
ことができる。条線としては縦条線のほか剛体の
幅の狭いバーを並べて構成してもよい。 運転に当たつては、発振機により振動ふるい本
体1を振動せしめた状態で石炭を分散板22に供
給すれば、振動により下方に進むと共に幅方向に
も均一に近く分散し、最上板の縦線網2上に落下
し、振動及び傾斜によつて出口側の方向に移動し
ながら縦線条の間隔より小なる粒子は落下して次
の下段の縦線網2上に落ち、この過程が繰返され
て最下段の縦線網2を通過して落下したものと落
下しないものとに分級する。前記縦線網2上には
それぞれ、縦線網に付着した物質を剥離除去する
排除部材、例えば接触体4が縦線網の有効面積全
域におよんで移動するように配備される。 この接触体4は、本実施例では、流体シリンダ
5のロツド10に取付られ、空気圧又は油圧の操
作で軸方向に往復直線運動するが、ねじ機構、ラ
ツク機構、鎖伝動機構などによる往復直線運動機
構を用いることもできる。シリンダ5は旋回芯軸
受機構6で旋回芯に対し首振り運動が可能に支え
られている。そして接触体4は重量の不均衡によ
つて荷重を加えても差し支えないし、接触せずに
近傍に位置するように保持させてもよい。 前記シリンダ5を支えた横送りフレームにはモ
ータ14、伝導装置13によつて送りねじ7が駆
動されることにより、横方向即ち縦線網の巾方向
の往復直線運動が与えられるように構成されてい
る。この場合、縦線網の網と接触体4との関係は
第7図に示すように接触体4はX方向に動く、こ
のとき網体は振動しており、振巾はVである。振
動による網面位置の時間変化と接触体の軌跡を表
わしたものが第8図で接触体4が石炭の流れ方向
に沿つて移動し、その軸方向移動速度をxとする
とストロークsの間を移動するのに要する時間t
はt=s/xである。この場合において横方向の
移動速度uはu≦t/lとなるような速度を保つ
ことによつて接触体を網の全面に接触させること
ができしたがたて網のふるい有効全体にかき取る
ことができ、極めて効果的に付着物を除去でき
て、網を清浄に保つことができる。特に接触体4
が線条接触する部分は局部的に線条がたわむこと
になり、接触しない部分との間に段差が生じて、
目詰り物質の剥離機能を大巾に高めることができ
る。 上記の如き篩分装置の使用によつて、従来ふる
い分けが困難であつた石炭の分級ができる利点を
有するとともに、本装置が多段であると、排出側
に設けたダンパの切替えによつて分級点を短時間
で変更する利点も生じる。 さらに石炭中の水分の分布を塊状炭と粉状炭で
比較すると等重量の表面積を塊状炭acm2粉状炭b
cm2とするときa<bとなり、水分表面積と正の相
関を有するので、粉状炭の方が水分値が高い。こ
のような石炭を分級すると篩上産物となる塊状炭
は原炭より水分が低下するためこれを破砕処理す
る場合、打撃手、ケーシングへの付着が少なくで
きる利点が生じる。したがつて破砕したものは水
分値が低下しているので、これを分級するに当つ
てふるいへの付着を一層少なくできる効果を生じ
ふるい分け困難な石炭の分級−破砕−分級−破砕
とくり返すような炭質調整に極めて有効な働きを
提供することができる。 図中5′はバランスウエイト、8は軸受、9は
支柱、13は巻掛伝動又は歯車伝導装置、14は
モータ、15は投入ホツパ、16は排出シユー
ト、17はガイドレール、18はカバー、19は
網支えフレーム、20′は移動カラー、24はロ
ーラ、25はガイドレールである。 なお前記シリンダ5は各縦線網2ごとに設けら
れる接触体4にそれぞれ配備されているが連結杆
を介在させて複数個の接触体4を一つのシリンダ
5で往復させることができる。 また振動ふるいの上面にあつて縦線網ボール状
の打撃体を数珠状に長手方向に連らねて、移動片
に沿設し、反動的に振動する縦線網2面を連打接
触して付着物を脱落させるようにしたり紐状体で
打撃子を引き上げ自重によつて間歇的に落下させ
て付着物を脱落されるようにすることもできる。 しかして振動ふるい本体1は振動モータ3で振
動され分散板22を径て供給される石炭などのば
らものが縦線網2上に落ちスクリーン間隔より小
さい粒子が次々と下方の縦線網2上に通過して出
口方向に移動して分級篩分けができるものである
が、分級効率で各篩分工程への石炭の供給量が調
整され、且つこの縦線網2の振動に伴つてシリン
ダ5を起動させロツド10を介して接触体4を往
復運動させて縦線網2上を長手方向に移動を繰り
返えさせつつ、縦線網2の巾方向にも駆動装置1
4で送り螺軸7を回転させ送りフレーム12を移
動させて縦線網2の有効面積全域に接触体4を動
かし縦線網2に付着したり、成長しつつある付着
物を縦線網2の振動作用と相俟つて剥離乃至払い
落し縦線網2の目詰りを有効に防止するとともに
縦線網面を清浄に維持することができ分級効率を
著しく高めることができるものである。 本発明は、篩分工程において縦線網の振動によ
る打撃力による付着粒子のはたき落し効果と接触
体の移動による付着粒子の掻き取り作用と共に縦
線網の素線間の変位による付着物剥離作用とで縦
線網面に発生する付着物の排除が適確に可能とな
り振動スクリーンを常時清浄に維持できるので振
動ふるいの目詰り、付着による分級効率の低下を
防ぐことができるし、整粒作業の保守保安も簡単
で作業能率も大巾に高めることができ湿炭篩分が
容易化され、しかも振動による網面位置の時間変
化と接触体の移動変化で篩有効面全体をかき取
り、縦線網についた付着物の排除が効率よく行な
われると共に回収率にもとずいて制御するので水
分変動にも速応した運転操業が可能でコークス製
造に有効な石炭処理ができるほか、粉塵発生、騒
音等の規制にも十分対応できる利益がある。
[Table] ↓ ↓ ↓
50 45 40
In the case of (c), the recovery rate η under the screen is η = 40/80 = 50%. This means that 50% of the original particles under the mesh flowed onto the mesh. Reducing the feed rate improves the undernet recovery rate. In other words, there is a limit to the amount that can pass per unit area of the net for each name, and if a load beyond that is applied, all of it will flow out on the net, so in such a case, the particle size distribution of coking coal will be different for each name. Since the current classification efficiency can be continuously grasped by measuring the amount of product above and below the sieve, this measurement can be used to compare the classification efficiency with the desired classification efficiency and identify any decrease in efficiency. In this case, the amount fed to the sieve is controlled to be lowered. Therefore, if the distribution of particles below the classification point is 80% in a certain name, and the required value of the under-sieve recovery rate is 70%, the operation will be such that the amount of feed x 0.8 x 0.7 ≦ the amount of under-sieve product. Therefore, it is only necessary to change the supply amount. In these control methods, the operating state of the supply device related to the coal supply amount Q1 or the supply amount Q2 to the secondary sieve F2, such as the cutting device D, the conveying devices E, H, J, or the crusher G, is changed. Therefore, the driving source may be operated intermittently or at variable speed, the hopper or the member that adjusts the flow rate may be adjusted, and the vibration state of the primary sieve F 1 and the secondary sieve F 2 or the adhesion of substances on the sieve plate may be adjusted. It is preferable to set the movement operation of the removal member to be variably controlled. In these cases, the vibrating sieves used as the primary sieve F 1 and the secondary sieve F 2 are placed on the upper surface of the vibrating sieve having a multi-stage mesh, are movably supported in contact with the mesh surface, and are movably supported. Using a vibrating sieve equipped with a removal mechanism that removes the objects adhering to the screen surface by applying a contact force to the screen surface with a contacting body,
Preferably, the removal mechanism is moved by a mechanical driving force, and the moving area covers the entire effective area of the sieve. For example, the vibrating sieve main body 1 is equipped with a vertical wire mesh 2 such as a wire mesh screen, and a spring 1 is attached to the support device frame so as to be vibrated by a vibration motor 3.
It is supported by 1. That is, the vibrating sieve main body 1 is elastically suspended from a frame 20 by a hanging fitting 21 and a spring 11, and is vibrated by a motor 3 or an oscillator such as an electromagnetic vibrator. 5
The vertical line network 2, 2...... of vertical lines of
Moreover, each vertical line network is provided at an angle. Each vertical line network has a large number of vertical lines extending parallel to the inclination direction to form a network, and there are no or very few horizontal lines. Further, the intervals between the vertical lines are arranged narrower from the upper vertical line network to the lower level. The oscillator is 2
The necessary vibration conditions can be provided by reversing the direction of rotation during assembly. The striations may be formed by arranging rigid narrow bars in addition to vertical striations. During operation, if coal is supplied to the dispersion plate 22 while the vibrating sieve main body 1 is vibrated by an oscillator, the vibration will cause it to advance downward and be almost uniformly dispersed in the width direction. Particles falling onto the wire net 2 and moving toward the exit side due to vibration and inclination, particles smaller than the spacing between the vertical wires fall and fall onto the next lower vertical wire net 2, and this process continues. It is repeatedly classified into those that have passed through the vertical line network 2 at the bottom and those that have fallen and those that have not fallen. On each of the vertical wire networks 2, a removal member, for example a contact member 4, for peeling off and removing substances attached to the vertical wire network is arranged so as to move over the entire effective area of the vertical wire network. In this embodiment, the contact body 4 is attached to the rod 10 of the fluid cylinder 5, and is reciprocated and linearly moved in the axial direction by pneumatic or hydraulic operation. Mechanisms can also be used. The cylinder 5 is supported by a pivot bearing mechanism 6 so as to be able to swing relative to the pivot. The contact body 4 may be subjected to a load due to weight imbalance, or it may be held close to the contact body 4 without contacting it. The transverse feed frame supporting the cylinder 5 is configured to be given reciprocating linear motion in the transverse direction, that is, in the width direction of the vertical wire network, by driving the feed screw 7 by a motor 14 and a transmission device 13. ing. In this case, the relationship between the vertical line network and the contact body 4 is as shown in FIG. 7, where the contact body 4 moves in the X direction. At this time, the net body is vibrating and the amplitude is V. Figure 8 shows the temporal change in the position of the mesh surface due to vibration and the locus of the contacting body. When the contacting body 4 moves along the flow direction of coal and its axial movement speed is x, the distance between the strokes s and Time required to move t
is t=s/x. In this case, by keeping the lateral movement speed u such that u≦t/l, the contacting body could be brought into contact with the entire surface of the net, but the sieve of the vertical screen could be scraped over the entire effective area. It is possible to remove deposits very effectively and keep the net clean. Especially contact body 4
In the area where the filament contacts, the filament will bend locally, creating a step between it and the part that does not make contact.
The ability to remove clogging substances can be greatly improved. The use of the above-mentioned sieving device has the advantage of being able to classify coal, which was difficult to sieve conventionally, and since this device has multiple stages, the sifting point can be changed by switching the damper installed on the discharge side. There is also the advantage of being able to change in a short time. Furthermore, comparing the distribution of moisture in coal between lump coal and pulverized coal, the surface area of equal weight of lump coal a cm 2 pulverized coal b
cm 2 , a<b, and there is a positive correlation with the moisture surface area, so pulverized charcoal has a higher moisture value. When such coal is classified, the lump coal, which is a sieved product, has a lower moisture content than the raw coal, so when it is crushed, it has the advantage of being less likely to stick to the striker and casing. Therefore, since the moisture content of the crushed coal is lowered, this has the effect of further reducing adhesion to the sieve when classifying it, and the process of classifying - crushing - classifying - crushing is repeated for coal that is difficult to sieve. It can provide an extremely effective function in regulating carbon quality. In the figure, 5' is a balance weight, 8 is a bearing, 9 is a column, 13 is a winding transmission or gear transmission, 14 is a motor, 15 is a charging hopper, 16 is a discharge chute, 17 is a guide rail, 18 is a cover, 19 20' is a moving collar, 24 is a roller, and 25 is a guide rail. Although the cylinders 5 are provided for each of the contact bodies 4 provided for each vertical line network 2, a plurality of contact bodies 4 can be reciprocated by one cylinder 5 by interposing a connecting rod. In addition, on the top surface of the vibrating sieve, vertical line mesh ball-shaped hitting bodies are arranged in the longitudinal direction like beads and placed along the moving piece, and the two sides of the vertical line mesh vibrating in a reactionary manner are repeatedly struck and brought into contact with each other. It is also possible to make the attached material fall off, or to pull up the striker with a string-like body and allow it to fall intermittently under its own weight, thereby causing the attached material to fall off. The vibrating sieve main body 1 is vibrated by a vibrating motor 3, and loose materials such as coal, which are fed through a dispersion plate 22, fall onto the vertical wire mesh 2, and particles smaller than the screen spacing are successively deposited onto the vertical wire mesh 2 below. The amount of coal supplied to each sieving process is adjusted depending on the classification efficiency, and as the vertical wire network 2 vibrates, the cylinder 5 The drive device 1 is actuated to reciprocate the contact body 4 via the rod 10 and repeatedly move in the longitudinal direction on the vertical wire network 2, while also moving the drive device 1 in the width direction of the vertical wire network 2.
4, the feed screw shaft 7 is rotated to move the feed frame 12, and the contact body 4 is moved over the entire effective area of the vertical wire network 2 to remove deposits that are attached to or growing on the vertical wire network 2. In combination with the vibration action of the present invention, it is possible to effectively prevent clogging of the peeling or brushing off vertical wire mesh 2, and to maintain the surface of the vertical wire mesh clean, thereby significantly increasing classification efficiency. In the sieving process, the present invention has an effect of knocking off adhered particles by the striking force caused by the vibration of the vertical wire mesh, a scraping effect of the adhered particles by the movement of the contact body, and an action of removing the deposits by the displacement between the strands of the vertical wire mesh. This makes it possible to accurately remove the deposits that occur on the vertical wire mesh surface, and the vibrating screen can be kept clean at all times, which prevents clogging of the vibrating sieve and a decrease in classification efficiency due to adhesion, and improves the sizing process. The maintenance and security of the sieve is simple, and the work efficiency is greatly improved, making it easier to sieve wet coal.Moreover, the entire effective sieve surface is scraped off by time changes in the position of the screen surface due to vibrations and changes in the movement of the contacting body. Since the removal of deposits on the wire network is carried out efficiently and the control is based on the recovery rate, it is possible to operate quickly in response to changes in moisture content, and it is possible to treat coal effectively for coke production, as well as reduce dust generation. It has the advantage of being sufficient to comply with noise regulations.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は系統説
明図、第2図は篩分装置の側面図、第3図は正面
図、第4図は一部の拡大側面図、第5図は、第4
図A−A線における矢視図、第6図は一部の斜面
図、第7図及び第8図は作用状態の説明図であ
る。 A……原料ヤード、B……搬送装置、C……貯
留槽、D……切出装置、E,H,I,J,K,L
……搬送装置、G……粉砕機、F1……1次篩、
F2……2次篩、1……振動ふるい本体、2……
縦線網、3……振動モータ、4……接触体、5…
…流体シリンダ、6……旋回芯軸受機構、7……
送りねじ、10……ロツド、11……バネ、12
……送りフレーム、13……伝導装置、14……
モータ、20……フレーム、21……吊金具。
The drawings show an embodiment of the present invention, and FIG. 1 is an explanatory diagram of the system, FIG. 2 is a side view of the sieving device, FIG. 3 is a front view, FIG. 4 is a partially enlarged side view, and FIG. is the fourth
FIG. 6 is a partial perspective view, and FIGS. 7 and 8 are explanatory views of the operating state. A... Raw material yard, B... Conveying device, C... Storage tank, D... Cutting device, E, H, I, J, K, L
...conveying device, G ... crusher, F 1 ... primary sieve,
F 2 ... Secondary sieve, 1 ... Vibrating sieve main body, 2 ...
Vertical line network, 3... Vibration motor, 4... Contact body, 5...
...Fluid cylinder, 6...Swivel core bearing mechanism, 7...
Feed screw, 10...Rod, 11...Spring, 12
...Feeding frame, 13...Transmission device, 14...
Motor, 20...Frame, 21...Hanging fittings.

Claims (1)

【特許請求の範囲】 1 コークス製造のための設備で石炭を粉砕、搬
送、篩分けする工程を有し、この篩分工程で、横
線のない縦線条が平行に配列された縦格子状スク
リーンの振動縦線網上に石炭の流れ方向に移動自
在に乗せ、かつ幅方向にも移動可能に配備して各
篩分工程の縦線網に付着した物質を剥離除去する
前記接触体の移動を篩分け産物の網下産物回収率
にもとずいて連けい制御すると共に、前記篩分工
程で篩い分けられた選炭量と分級点以下の粒子量
との比率による各分級効率で各篩分工程への供給
量を Qf×β×C≦ql……Qf≦ql/β×C 但し、Qf……切出量〔Kg〕 ql……篩の篩下物量〔Kg〕 Pt……篩への供給炭の分級点〔mm〕 α……篩への供給炭のd>Ptの粒子分布比率
〔%〕 β……篩への供給炭のd≦Ptの粒子分布比率
〔%〕 C……分級効率定数 として調節することを特徴とする石炭分級方法。 2 前記供給量制御が、複数の篩板を傾斜配備さ
れた振動篩で行なわれる篩分工程の一次篩網又は
二次篩網の篩板の篩網上又は篩網下の産物量を測
定することにより所定の分級効率を維持するよう
に篩への供給量を増減するものである特許請求の
範囲第1項記載の分級方法。 3 前記粉砕工程が二次篩以下の篩上物質を少な
くとも前段の粉砕装置に循環再投入して微粉化す
るものである特許請求の範囲第2項記載の分級方
法。
[Claims] 1 A coke manufacturing facility includes a step of crushing, transporting, and sifting coal, and in this sifting step, a vertical lattice screen in which vertical stripes without horizontal lines are arranged in parallel. The contacting body is placed on the vibrating vertical wire network so as to be movable in the flow direction of the coal, and is also movable in the width direction, so that the contact body is moved to peel off and remove substances attached to the vertical wire network in each sieving process. Continuous control is performed based on the sieve product recovery rate of the sieved product, and each sieving process is carried out at each classification efficiency based on the ratio of the amount of cleaned coal sieved in the sieving process to the amount of particles below the classification point. Qf×β×C≦ql……Qf≦ql/β×C However, Qf…cutting amount [Kg] ql…amount of material under the sieve [Kg] Pt…coal supplied to the sieve Classification point [mm] α...Particle distribution ratio of d>Pt in the coal fed to the sieve [%] β...Particle distribution ratio of d≦Pt in the coal fed to the sieve [%] C...Classification efficiency constant A coal classification method characterized by adjusting as follows. 2. The supply amount control measures the amount of product on or under the sieve screen of the sieve plate of the primary sieve screen or secondary sieve screen in the sieving process performed using a vibrating sieve in which a plurality of sieve plates are arranged at an angle. The classification method according to claim 1, wherein the amount fed to the sieve is increased or decreased so as to maintain a predetermined classification efficiency. 3. The classification method according to claim 2, wherein the pulverizing step involves recycling and reintroducing the sieve material below the secondary sieve into at least the preceding pulverizer to pulverize it.
JP17752382A 1982-10-12 1982-10-12 Classification of coal Granted JPS5968395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17752382A JPS5968395A (en) 1982-10-12 1982-10-12 Classification of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17752382A JPS5968395A (en) 1982-10-12 1982-10-12 Classification of coal

Publications (2)

Publication Number Publication Date
JPS5968395A JPS5968395A (en) 1984-04-18
JPS6259995B2 true JPS6259995B2 (en) 1987-12-14

Family

ID=16032403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17752382A Granted JPS5968395A (en) 1982-10-12 1982-10-12 Classification of coal

Country Status (1)

Country Link
JP (1) JPS5968395A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155516A (en) * 1984-08-24 1986-03-20 Kawasaki Heavy Ind Ltd Coal fuel production method
JP4957289B2 (en) * 2007-02-26 2012-06-20 カシオ計算機株式会社 Keyboard instrument
CN103639114A (en) * 2013-12-05 2014-03-19 常熟市诚达港务机械设备厂 Coal screening machine
JP6627310B2 (en) * 2015-07-31 2020-01-08 中国電力株式会社 Coal-fired power plant

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2647554C3 (en) * 1976-10-21 1980-06-19 Bergwerksverband Gmbh, 4300 Essen Process for the treatment of coal sludge
JPS5427983U (en) * 1977-07-28 1979-02-23

Also Published As

Publication number Publication date
JPS5968395A (en) 1984-04-18

Similar Documents

Publication Publication Date Title
US7347331B2 (en) Fines removal apparatus and methods/systems regarding same
AU2003271008B2 (en) Dry separating table, a separator and equipment for the compound dry separation with this table
RU2189865C2 (en) Method of primary processing of miscellaneous wastes and waste processing plant for realization of this method
US5794865A (en) Rotary crusher/reclaimer for reclaiming and reclassifying sand and related aggregates from lump materials
CN102323127B (en) Combined sample making machine
JPH02504358A (en) Equipment for beneficiation of materials
CN213612475U (en) Anti-blocking sand screening machine
US4498981A (en) Vibrating anti-blinding cleaning and grading machines
CN213032954U (en) Sieving machine with screen cloth anti-sticking device
JPS58196875A (en) Classifier apparatus and method
CA2022483C (en) Method of and apparatus for automatically analyzing the degradation of processed leaf tobacco
CN118833653A (en) Vibrating feeder capable of adjusting inclination angle
CN209668346U (en) A kind of blanking device of steel slag vibrating sieving machine
JPS6259995B2 (en)
CN207684345U (en) A kind of oscillating feeder of even feeding
CN205146695U (en) Grain selection by winnowing shale shaker
US2228977A (en) Separator
JP3440262B2 (en) Cereal grain milling equipment
CN213854996U (en) Reclaimed material production line
CN213919145U (en) A machine-collecting residual film crushing and screening device
RU2047399C1 (en) Plant for obtaining conditioned wood raw material
CN115121473A (en) Concrete aggregate production is with hierarchical screening installation
CN223159640U (en) A powder ore screening and impurity removal device
RU170637U1 (en) Device for separation into fractions by size of bulk materials
KR100647992B1 (en) Vibrating Wire Cover Separator