[go: up one dir, main page]

JPS6261056A - Photoconductor - Google Patents

Photoconductor

Info

Publication number
JPS6261056A
JPS6261056A JP60201109A JP20110985A JPS6261056A JP S6261056 A JPS6261056 A JP S6261056A JP 60201109 A JP60201109 A JP 60201109A JP 20110985 A JP20110985 A JP 20110985A JP S6261056 A JPS6261056 A JP S6261056A
Authority
JP
Japan
Prior art keywords
layer
photoconductor
photosensitive member
charge
charge transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60201109A
Other languages
Japanese (ja)
Inventor
Eiichiro Tanaka
栄一郎 田中
Koji Akiyama
浩二 秋山
Akio Takimoto
昭雄 滝本
Masanori Watanabe
正則 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60201109A priority Critical patent/JPS6261056A/en
Publication of JPS6261056A publication Critical patent/JPS6261056A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08292Germanium-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電荷蓄積モードで利用する光(ここでは、広
義の光を示し、可視光線、X線、紫外線。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to light (here, light in a broad sense, visible light, X-rays, ultraviolet light, etc.) used in charge accumulation mode.

赤外線等を含む電磁波を言う)に感度を有する光導電体
に関し、電子写真装置、その他の撮像装置に利用される
It relates to a photoconductor that is sensitive to electromagnetic waves (including infrared rays, etc.) and is used in electrophotographic devices and other imaging devices.

従来の技術 電荷蓄積モードで利用する撮像管、固体撮像装置、ある
いは電子写真用感光部材における光導電体として、高い
光感度と無公害性、高い硬度を有することから、10〜
40atm%の水素を局在化状態密度を減少せしめる修
飾物質として含む非晶質シリコン(以下、a−8tと記
す)が注目されており、電子写真感光部材として利用さ
れている。
Conventional technology As a photoconductor in image pickup tubes, solid-state imaging devices, or photosensitive members for electrophotography used in charge accumulation mode, it has high photosensitivity, non-pollution, and high hardness.
BACKGROUND ART Amorphous silicon (hereinafter referred to as a-8t) containing 40 atm % of hydrogen as a modifier for reducing the localized density of states has attracted attention and is used as an electrophotographic photosensitive member.

しかしながら、上記のa−8tで構成される電子写真感
光部材では暗抵抗値、光応答性、電荷蓄積に伴う帯電電
位の低さ、あるいは、耐湿性等の使用環境特性の点など
、総合的な特性向上がまだまだ必要である。
However, the electrophotographic photosensitive material made of the above a-8t has poor overall characteristics such as dark resistance, photoresponsiveness, low charging potential due to charge accumulation, and usage environment characteristics such as moisture resistance. Improvements in characteristics are still needed.

例えば、第1の問題としてa−8iを感光部材に用いた
電子写真感光体は、他の感光部材である有機光導電体(
以下、oPCと記す)あるいはSeに比較して比誘電率
が太き((OPC:〜3. Se:〜6. a−3i 
:〜11)静電容量が大きいため、表面への帯電処理の
際大きな帯電電流を必要とする。このため、他の電子写
真感光体材料(OPC。
For example, the first problem is that an electrophotographic photoreceptor using a-8i as a photosensitive member has problems with an organic photoconductor (
(hereinafter referred to as oPC) or has a thicker dielectric constant than Se ((OPC: ~3. Se: ~6. a-3i
:~11) Since the capacitance is large, a large charging current is required when charging the surface. For this reason, other electrophotographic photoreceptor materials (OPC).

Se等では600〜800V )に比べ、低い表面電位
(400V前後)で使用しなければならないのが現状で
ある。またこのことにより、例えば、通常の電子写真装
置として2成分現像剤を用いる一般の複写機では、特に
適当な電荷量をもつトナーを用いて画像の複写をおこな
う場合、高い飽和濃度の画像を連続して安定に得るのは
困難となる。
Currently, it is necessary to use a surface potential that is lower (about 400 V) compared to 600 to 800 V for Se, etc. This also means that, for example, in a typical electrophotographic copying machine that uses a two-component developer, it is difficult to continuously produce images with high saturation density, especially when copying images using toner with an appropriate amount of charge. It is difficult to obtain it stably.

更に、静電容量の大きい感光部材は光感度特性において
は、比誘電率の小さい感光部材に比べ、表面の電荷量が
多い表面電位を下げるのによシ多くの光子(photo
n )を必要とし、実用上不利な点が多い。
Furthermore, in terms of photosensitivity characteristics, a photosensitive member with a large capacitance has a large amount of surface charge, and in order to lower the surface potential, it produces more photons than a photosensitive member with a small dielectric constant.
n) and has many practical disadvantages.

次に、第2の問題として光導電部材を高抵抗化し表面電
位を向上させるために酸素、炭素、窒素等を添加し使用
する場合、従来ではその使用時に残留電位が多くのこる
、また繰シ返し使用時による疲労の蓄積によるゴースト
現象を発生する、あるいは、光応答性が悪化する等の問
題があった。
Next, the second problem is that when adding oxygen, carbon, nitrogen, etc. to a photoconductive member in order to increase its resistance and improve its surface potential, conventionally, a large amount of residual potential is generated during use, and There have been problems such as a ghost phenomenon occurring due to accumulation of fatigue during use or deterioration of photoresponsiveness.

更には、第3の問題として感光部材の構成によっては高
温、高湿時において画像の「ボケjか生じる等の問題も
無視できない。
Furthermore, as a third problem, depending on the structure of the photosensitive member, images may become blurred at high temperatures and high humidity, which cannot be ignored.

第1の静電容量を減少せしめる手段として、特開昭54
−143645公報には有機半導体材料を用いた機能分
離型の感光部材が、また特開昭66−24355号公報
には無機半導体材料を用いた機能分離型感光部材が開示
されている。
As a means for reducing the first capacitance, Japanese Patent Laid-Open No. 54
JP-A-143645 discloses a functionally separated type photosensitive member using an organic semiconductor material, and JP-A-66-24355 discloses a functionally separated type photosensitive member using an inorganic semiconductor material.

発明が解決しようとする問題点 前者の有機半導体材料を用いた場合、a−8iの持つ高
い硬度の特徴を生かした長寿命感光部材として機能しな
くなるため、決して有効な手段とは言えない。
Problems to be Solved by the Invention If the former organic semiconductor material is used, it will not function as a long-life photosensitive member that takes advantage of the high hardness characteristic of A-8i, so it cannot be said to be an effective means.

また、後者では多結晶しやすいカルコゲン材料、あるい
は比誘電率の大きい材料(SiCでは〜1o)等のため
、比抵抗の大きい材料を使用することによる帯電電圧の
向上が期待されても前記第2の問題であった残留電位の
増加等の問題が解決されず、a−Stの特徴である長寿
命で、高感度で、低残留電位のままで、高い帯電電位の
あるいは早い光応答性を有した感光部材を得ることはで
きないと雷光励起によって移動可能なキャリアを発生す
る電荷発生層と、上記キャリアが効率よく注入され効果
的に輸送される電荷移動層とが積層された構造を有し、
上記電荷移動層が窒化ゲルマニュームを主成分とする。
In addition, since the latter is a chalcogen material that tends to be polycrystalline or a material with a high relative dielectric constant (~1o for SiC), even if an improvement in charging voltage is expected by using a material with a large specific resistance, the second Problems such as an increase in residual potential were not solved, and a-St's characteristics of long life, high sensitivity, and low residual potential remained, and it did not have a high charging potential or fast photoresponsiveness. It is impossible to obtain a photosensitive member having a structure in which a charge generation layer that generates movable carriers by lightning excitation and a charge transfer layer in which the carriers are efficiently injected and effectively transported,
The charge transfer layer has germanium nitride as a main component.

作  用 窒化ゲルマニュームは、窒素の組成比によってその光学
的禁止帯幅が1.3〜3.OeV  と大きく変化する
にも拘らずn型伝導を示す。また、その大きな光学的禁
止帯幅の材料でも活性化エネルギーがO,S〜0.9e
Vと小さく、電子の移動度が大きいため、電荷発生層か
ら窒化ゲルマニュームの伝導帯に効率よく電子が注入さ
れるべく、それぞれの光学的禁止帯幅を制御すれば容易
に良好な感光部材が得られる。また、窒化ゲルマニュー
ムの比誘電率は、光学的禁止帯幅が1.6〜3 * O
e Vの材料で4〜8と小さい。
Function Germanium nitride has an optical bandgap width of 1.3 to 3.3, depending on the nitrogen composition ratio. Despite the large change in OeV, it exhibits n-type conduction. In addition, even in materials with such a large optical bandgap, the activation energy is O,S~0.9e.
Since V is small and electron mobility is high, a good photosensitive member can be easily obtained by controlling the width of each optical band gap so that electrons can be efficiently injected from the charge generation layer into the conduction band of germanium nitride. It will be done. In addition, the dielectric constant of germanium nitride has an optical bandgap width of 1.6 to 3*O
e V material and small at 4 to 8.

このような窒化ゲルマニュームを電荷移動層として感光
部材に使用することによって、a−8iあるいはa−G
oなどの比誘電率の大きな感光層を電荷発生層として用
いても全体として比誘電率の小さい感光部材かえられ、
実用上高い光感度の、また高い表面電位の感光部材が得
られる。
By using such germanium nitride as a charge transfer layer in a photosensitive member, a-8i or a-G
Even if a photosensitive layer with a large dielectric constant such as O is used as a charge generation layer, a photosensitive member with a small dielectric constant as a whole can be changed,
A photosensitive member with practically high photosensitivity and high surface potential can be obtained.

実施例 窒化ゲルff 二、 −ム(以下、a−Ge1−xN、
(0くxく1)と記し水素あるいはハロゲン原子を含む
膜を言う)膜の作成には、GeH4,Ge2H6゜Ge
3H8,GeF4.GeHF3.GeHCl3.GeH
3F。
Example nitride gel ff 2, -m (hereinafter a-Ge1-xN,
(denoted as 0 x 1), which refers to a film containing hydrogen or halogen atoms), GeH4, Ge2H6゜Ge
3H8, GeF4. GeHF3. GeHCl3. GeH
3F.

GeCl4.GeHCl3.GeH2C12,GeHC
l3N2.NH3,H2NNH2,NH3,NH4N3
.F3N、F4N2等のN原子の原料ガスを用いたプラ
ズマCVD法や、ターゲットをGeまたはGe3N4と
した反Ar、H2,N2.NH3中での反応性スパッタ
法や、応性蒸着法か使用される。また、光導電層として
のa−8tは、SiH4,5i2H,,5t3H8,5
tF4゜SiHF3,5tH2F2,5tH3F、5i
C14,5tHC13゜S 1H2C12,S 1H3
C1等のSt原子の原料ガスあるいはこれらのガスをN
2 y A r p He等のガスで希釈したガスを用
いたプラズマCVD法または、Stをターゲットとし、
A r s HR中での反応性スパッタ法や反応性蒸着
法で形成できる。非晶質ゲルマニューム(以下a−Go
と記す)は、上記のGo原子の原料ガスあるbはこれら
のガスをN2 s A r +He等で希釈したガスを
用いたプラズマCVD1またはGeをターゲットとした
A r s N2中での反応性スパッタ法や反応性蒸着
法で形成され、a−5iGeも同様に、上記のGo原子
の原料ガスと81原子の原料ガスの混合ガスあるいは、
この混合ガスをN2 、 A r 、 He等のガスで
希釈したガスをもちいたプラズマCVD法や、SiとG
oの混合されたターゲットあるいはSiとGoの2枚の
ターゲットを用いた反応性スパッタ法や反応性蒸着法で
形成される。
GeCl4. GeHCl3. GeH2C12, GeHC
l3N2. NH3, H2NNH2, NH3, NH4N3
.. Plasma CVD method using raw material gas of N atoms such as F3N, F4N2, anti-Ar, H2, N2. A reactive sputtering method in NH3 or a reactive vapor deposition method may be used. Moreover, a-8t as a photoconductive layer is SiH4,5i2H,,5t3H8,5
tF4゜SiHF3,5tH2F2,5tH3F,5i
C14,5tHC13゜S 1H2C12,S 1H3
Raw material gas of St atoms such as C1 or these gases are converted into N
Plasma CVD method using a gas diluted with a gas such as 2 y A r p He or using St as a target,
It can be formed by a reactive sputtering method or a reactive vapor deposition method in Ars HR. Amorphous germanium (hereinafter a-Go)
) is the raw material gas for the Go atoms mentioned above; b is plasma CVD1 using these gases diluted with N2 s Ar + He, etc. or reactive sputtering in Ar s N 2 with Ge as the target. Similarly, a-5iGe is formed using a mixed gas of the above-mentioned Go atom source gas and 81 atom source gas, or
Plasma CVD method using gas diluted with gas such as N2, Ar, He, etc. or Si and G
It is formed by a reactive sputtering method or a reactive evaporation method using a mixed target of O or two targets of Si and Go.

下記の実施例1および実施例2では反応性スパッタ法を
用いた例について、実施例3および実施例4ではプラズ
マCVD法を用いた例について説明する。
Examples 1 and 2 below will be described using a reactive sputtering method, and Examples 3 and 4 will be described using a plasma CVD method.

実施例1 第1図に示した本実施例の光導電体の断面図を参照して
説明する。
Example 1 A description will be given with reference to the cross-sectional view of the photoconductor of this example shown in FIG.

鏡面研磨したアルぐニウム(At)基板11をマグネト
ロンスパッタ装置内に配置し、2×1O−6Tort以
下に排気後、基板温度を260℃に上昇させた。Go多
結晶をターゲットとし、Arを1〜3 mTorr 、
 N2を2〜e mTorr装置内に導入し、周波数1
3.56MHzの高周波電力300〜500Wによシ、
電荷移動層であるa −Gth 、−エNx層12を1
5μm形成した。続いてArを1〜10mTorr 。
A mirror-polished aluminum (At) substrate 11 was placed in a magnetron sputtering device, and after exhausting to 2×1 O −6 Tort or less, the substrate temperature was raised to 260° C. Targeting Go polycrystal, Ar at 1-3 mTorr,
Introduce N2 into the 2~e mTorr device and set the frequency 1
3.56MHz high frequency power 300~500W,
The charge transfer layer a-Gth, -dNx layer 12 is
A thickness of 5 μm was formed. Subsequently, Ar was applied at 1 to 10 mTorr.

N2を0.3〜4mTorr導入し、多結晶をターゲッ
トとして、放電電力200〜aoowにて電荷発生層で
あるa−31層13を1μm形成した。
N2 was introduced at 0.3 to 4 mTorr, and an A-31 layer 13 having a thickness of 1 μm as a charge generation layer was formed using a polycrystal as a target at a discharge power of 200 to aoow.

この時のa−Go、−!N工層12の比誘電率は6〜7
で電荷発生層であるa−8L層13は10〜11であっ
た。また、第1図の構造の光導電体を電子写真感光部材
として、負帯電にてその感光体特性を評価すると、全体
の膜厚が16μmであるにも拘らず飽和帯電電位110
ov、残留電位1sV以下と電位受容度が非常に大きい
、残留電位の小さい電子写真感光体が得られた。
At this time a-Go, -! The dielectric constant of the N layer 12 is 6 to 7.
The a-8L layer 13, which is a charge generation layer, had a molecular weight of 10 to 11. Furthermore, when the photoconductor characteristics of the photoconductor having the structure shown in FIG.
An electrophotographic photoreceptor with a low residual potential and a very high potential acceptability of 1 sV or less was obtained.

しかし、このような感光層が表面に形成された感光体は
、帯電の繰り返しに比例して帯電電位が減少する傾向に
ある。これは、自由表面にある感光層のa−3Lはオゾ
ン等の影響により表面酸化が急速に進み、酸化層中の捕
獲準位が表面の電荷の注入を促進するためと考えられる
However, in a photoreceptor having such a photosensitive layer formed on its surface, the charging potential tends to decrease in proportion to repeated charging. This is considered to be because surface oxidation of a-3L in the photosensitive layer on the free surface progresses rapidly due to the influence of ozone, etc., and the trap level in the oxidized layer promotes the injection of charges on the surface.

このため、第2図のように感光層の自由表面に新たな表
面層14として、5t1−、N、、5t1−xC,。
Therefore, as shown in FIG. 2, a new surface layer 14 is formed on the free surface of the photosensitive layer, 5t1-, N, , 5t1-xC,.

ae、−xC,、A11−xO,、A11−xN!、 
(0(x(1)a−C:H(非晶質カーボン)等の層を
0.06〜1μm形成することによって帯電電位の変化
を小さくし、また高温、高湿時の画像の「ボケ」の発生
を防ぐことができた。
ae, -xC,, A11-xO,, A11-xN! ,
(By forming a layer such as 0(x(1)a-C:H (amorphous carbon) with a thickness of 0.06 to 1 μm, changes in the charging potential can be reduced, and the "blurring" of images at high temperatures and high humidity can be reduced.) ” could be prevented from occurring.

実施例2 本実施例における撮像管ターゲットを第3図に示す。I
rO透明電極3oを表面に形成したガラス基板31をマ
グネトロンスパッタ装置内に配置し、基準温度を250
℃でG@多結晶をターゲットとし、Ar : 1〜3m
Torr 、 N2:2〜6mTorr 、放電電力3
00〜500Wでa−Ge 1−xNx層32を3閾形
成した。次に、83多結晶をターゲットとしAr: 1
〜10mTorr 、水素で希釈した2 0 ppm濃
度のB 2H6:0 、3−0.4mTor r 、放
電電力2oo〜5ooWで、B添加したa−8L層33
を0.5μm形成し、続いて、電子ビームランデインク
層として5b283層34を0.1μm蒸着して、撮像
管ターゲットを製作した。
Example 2 An image pickup tube target in this example is shown in FIG. I
A glass substrate 31 with an rO transparent electrode 3o formed on its surface is placed in a magnetron sputtering device, and the reference temperature is set to 250°C.
G@polycrystalline target at °C, Ar: 1-3m
Torr, N2: 2-6mTorr, discharge power 3
Three threshold a-Ge 1-xNx layers 32 were formed at 00 to 500W. Next, using 83 polycrystal as a target, Ar: 1
~10 mTorr, 20 ppm concentration of B2H6:0 diluted with hydrogen, 3-0.4 mTorr, discharge power 2oo~5ooW, B doped a-8L layer 33
was formed to a thickness of 0.5 μm, and then a 5B283 layer 34 was deposited to a thickness of 0.1 μm as an electron beam Rande ink layer to fabricate an image pickup tube target.

この時、a −Go 1−8Nx層の比誘電率は小さく
4〜5で、a−8i層は10〜11.2であった。この
ような撮像管は容量性残像が少なく、極めて良好な撮像
が可能であった。
At this time, the dielectric constant of the a-Go 1-8Nx layer was small, 4 to 5, and that of the a-8i layer was 10 to 11.2. Such an imaging tube had little capacitive afterimage and was capable of extremely good imaging.

また、光感度層であるa−3LにはBが81に対し約1
〜5 ppm含まれ、光励起キャリアである電子と正孔
は効率よく層内を移動し電子は電荷移動層であるa−G
ol−xNx層32に注入される。Ge1−rNxN白
層は工TO側からの正孔の注入阻止層として機能し、さ
らに光学的禁止帯幅が大きいにも拘らずa−5iからの
電子の注入は効率良く、留像および焼きつけもなく良好
な画像かえられた。
In addition, in the photosensitive layer a-3L, B is about 1 to 81.
Contains ~5 ppm, and electrons and holes, which are photoexcited carriers, move efficiently within the layer, and electrons move through the a-G layer, which is a charge transfer layer.
is implanted into the ol-xNx layer 32. The Ge1-rNxN white layer functions as a layer for blocking the injection of holes from the TO side, and even though the optical bandgap is large, the injection of electrons from the a-5i is efficient, and image retention and burn-in are prevented. I was able to get a good image without any issues.

実施例3 本実施例における電子写真感光部材を第4図に示す。鏡
面研磨した90φX310wのA1 ドラム基板4oを
、電極間距離55mmの容量結合方式プラズマCVD装
置内に1本配置し、反応容器内を5x10−6Torr
以下に排気後、AI基板40を150−250℃に加熱
した。Ge F4: 1−5 sccm 。
Example 3 An electrophotographic photosensitive member in this example is shown in FIG. A mirror-polished 90φ x 310w A1 drum substrate 4o is placed in a capacitively coupled plasma CVD device with a distance between electrodes of 55 mm, and the inside of the reaction vessel is heated to 5 x 10-6 Torr.
After evacuation, the AI substrate 40 was heated to 150-250°C. GeF4: 1-5 sccm.

NH3:190〜200secm導入し、反応容器内の
圧力を0.2〜1.0Torrに調整後、高周波電力3
00−80 oW f a−Gol−、Nx層41を1
5〜20μm形成し、GeF  :o、5−10800
m、5in4:100〜200 sccm、水素希釈し
た10ppm濃度のB2H6を5〜50 sCam導入
し、0.2〜2.0Torrに制御し放電電力150〜
500WでB添加した非晶質シリコンゲルマニューム(
以下a−3iGe:H:F  と記す)層42を1〜3
μm形成し、続いテSiH4: 5−10sccm、 
NH3: 100−200sacm導入し圧力0.2〜
1.0Torr、放電電力150〜6oOWテ5i1−
エN工層44を0 、1−0 、2prn形成して電子
写真感光部材を得た。
After introducing NH3 for 190 to 200 seconds and adjusting the pressure inside the reaction vessel to 0.2 to 1.0 Torr, high frequency power 3 was introduced.
00-80 oW f a-Gol-, Nx layer 41 to 1
5-20 μm formed, GeF: o, 5-10800
m, 5 in 4: 100 to 200 sccm, 5 to 50 sCam of B2H6 diluted with hydrogen at a concentration of 10 ppm was introduced, the discharge power was controlled to 0.2 to 2.0 Torr, and the discharge power was 150 to 200 sccm.
B-added amorphous silicon germanium (
Hereinafter referred to as a-3iGe:H:F) layer 42 is 1 to 3
μm formation followed by Te SiH4: 5-10 sccm,
NH3: 100-200 sacm introduced, pressure 0.2~
1.0Torr, discharge power 150~6oOW Te5i1-
An electrophotographic photosensitive member was obtained by forming 0, 1-0, and 2 prn layers of the electrophotographic layer 44.

この感光部材は負帯電によって使用され、その分光感度
は400〜850nmの高範囲に渡って高感度であり、
a−8i層に比較してa−3iGe : H: F層4
2を電荷発生層とすることにより赤外線領域の波長にま
で光感度の向上が見られ、この感光部材を800nmの
半導体レーザーを光源とするレーザービームプリンタに
実装し、鮮明な印字を確認した。この場合のa−Ge1
−!N工層41は、光学的禁止帯幅を狭くしておシ、比
誘電率が7〜8で、正孔のブロッキング層としてのみで
なくレーザー光の吸収層としても機能するため、AI基
板からの反射によって解像度が低下するのを防止してい
る。
This photosensitive member is used by being negatively charged, and its spectral sensitivity is high over a high range of 400 to 850 nm.
a-3iGe:H:F layer 4 compared to a-8i layer
By using No. 2 as a charge generation layer, the photosensitivity was improved to wavelengths in the infrared region, and this photosensitive member was mounted on a laser beam printer using an 800 nm semiconductor laser as a light source, and clear printing was confirmed. a-Ge1 in this case
-! The N layer 41 narrows the optical band gap and has a relative dielectric constant of 7 to 8, and functions not only as a hole blocking layer but also as a laser beam absorption layer, so it is difficult to remove from the AI substrate. This prevents the resolution from decreasing due to reflections.

また、比誘電率の比較的大きなa −Ge 1−エNx
は室温での暗比抵抗が小さい傾向が見られる。この場合
、a−Ge1−xN工にBあるいは炭素を添加すること
により高めることができる。例えば、8の比誘電率をも
つa −Ge 1−□NXは〜109Ω・ωと小さいが
、10〜0 、01 at m%のCまたはBあるいは
両者を添加することにより〜1o13Ω・−に高抵抗化
できる。このことにより、更に、階調再現が可能となり
、ハーフトーンの再現に優れた印字ができた。
In addition, a-Ge 1-ENx with a relatively large dielectric constant
There is a tendency for the dark resistivity to be small at room temperature. In this case, it can be increased by adding B or carbon to the a-Ge1-xN process. For example, a -Ge 1-□NX, which has a dielectric constant of 8, is as small as ~109 Ω・ω, but it can be increased to ~1013 Ω・− by adding 10 to 0,01 at m% of C or B, or both. It can be resisted. This further enabled gradation reproduction and printing with excellent halftone reproduction.

実施例4 実施例3と同じくプラズマCVD法により膜の形成を行
なった。基板加熱は160〜250℃に制御し、第6図
示すようにAIドラム50上に、 S IH4: 10
0−200 secm 、水素希釈をした400ppm
濃度I)BF3を100〜200 gccm 、ガス圧
力0.2〜1 、OTorr 、放電電力100〜40
0WでB添加したP型a−3t :H(B)51を0.
2〜1μm形成した。続いて5in4:10100−2
008c、水素希釈をした4 0 ppmのBF3を1
〜I Q 800m、ガス圧力0.2〜1 *0Tor
r 、放電電力100〜40oWでB添加の1型a−3
i:H層52を1〜2μm形成した。
Example 4 As in Example 3, a film was formed using the plasma CVD method. The substrate heating was controlled at 160 to 250°C, and as shown in FIG.
0-200 secm, 400ppm diluted with hydrogen
Concentration I) BF3 100-200 gccm, gas pressure 0.2-1, OTorr, discharge power 100-40
P-type a-3t with B added at 0W: H(B)51 at 0.
A thickness of 2 to 1 μm was formed. Then 5in4:10100-2
008c, 40 ppm BF3 diluted with hydrogen at 1
~IQ 800m, gas pressure 0.2~1 *0 Tor
r, type 1 a-3 with B addition at a discharge power of 100 to 40 oW
i: H layer 52 was formed to a thickness of 1 to 2 μm.

更に、GeH4: 1〜o、ssccm、N2:150
:200sccm、ガス圧力0.2〜1.0 Torr
 、放電電力300〜600Wでa−Ge1−xN工層
63を10〜20μm形成し、電子写真感光部材を形成
した。
Furthermore, GeH4: 1~o, ssccm, N2: 150
:200sccm, gas pressure 0.2-1.0 Torr
An a-Gel-xN layer 63 having a thickness of 10 to 20 μm was formed using a discharge power of 300 to 600 W to form an electrophotographic photosensitive member.

この感光体は、正帯電にて飽和帯電電位100゜〜16
00Vとすぐれ、市販の複写機に実装してテストを加え
た所、良好な画像が得られ、5o万枚以上の耐刷性が確
認された。
This photoreceptor has a saturation charging potential of 100° to 16° when positively charged.
00V, and when tested by mounting it on a commercially available copying machine, good images were obtained and printing durability of over 50,000 copies was confirmed.

発明の効果 本発明による光導電体は、電荷移動層としてa−Ge1
−xNx(o<x<1)を主成分とする層を用いること
により、電荷蓄積モードで使用する電子写真感光部材、
撮像管などの静電容量を減少せしめ、光応答の優れた高
電圧動作の可能な優れた感光部材を提供することができ
る。
Effects of the Invention The photoconductor according to the present invention uses a-Ge1 as a charge transfer layer.
An electrophotographic photosensitive member used in a charge accumulation mode by using a layer containing -xNx (o<x<1) as a main component;
It is possible to reduce the capacitance of an image pickup tube, etc., and provide an excellent photosensitive member capable of high voltage operation with excellent photoresponse.

【図面の簡単な説明】[Brief explanation of drawings]

第・1図は本発明の一実施例における光導電体の断面図
、第2図は他の実施例を示し、第1図における光導電体
に更に表面層を形成した例の断面図、第3図は本発明の
他の実施例における撮像管ターゲットへの断面図、第4
図は更に他の実施例におけるレーザービームプリンタに
好適な感光部材の断面図、第6図は更に他の実施例にお
ける正帯電に好適な感光部材の断面図である。 11・・・・・・アルミニウム基板、12・・・・・・
a−Gol、Nx層、13・・・・・・a−3i層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
1 is a cross-sectional view of a photoconductor according to one embodiment of the present invention, and FIG. 2 is a cross-sectional view of another example in which a surface layer is further formed on the photoconductor in FIG. 3 is a cross-sectional view of an image pickup tube target in another embodiment of the present invention;
The figure is a cross-sectional view of a photosensitive member suitable for a laser beam printer in still another embodiment, and FIG. 6 is a cross-sectional view of a photosensitive member suitable for positive charging in still another embodiment. 11... Aluminum substrate, 12...
a-Gol, Nx layer, 13...a-3i layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1)光励起によって移動可能なキャリアを発生する電
荷発生層と、上記キャリアが効率よく注入され効果的に
輸送される電荷移動層とが支持体上に積層され、上記電
荷移動層が窒化ゲルマニユームを主成分とすることを特
徴とする光導電体。
(1) A charge generation layer that generates mobile carriers by photoexcitation and a charge transfer layer in which the carriers are efficiently injected and effectively transported are laminated on a support, and the charge transfer layer is made of germanium nitride. A photoconductor characterized by having the main component as a photoconductor.
(2)電荷移動層が、少なくとも水素あるいはハロゲン
原子のいずれかを含有する特許請求の範囲第1項記載の
光導電体。
(2) The photoconductor according to claim 1, wherein the charge transfer layer contains at least either hydrogen or halogen atoms.
(3)電荷発生層が、少なくとも水素あるいはハロゲン
原子のいずれかを含有する非晶質シリコンを主成分とす
る特許請求の範囲第1項記載の光導電体。
(3) The photoconductor according to claim 1, wherein the charge generation layer is mainly composed of amorphous silicon containing at least either hydrogen or halogen atoms.
(4)光導電体と支持体間に電荷注入阻止層を有する特
許請求の範囲第1項記載の光導電体。
(4) The photoconductor according to claim 1, which has a charge injection blocking layer between the photoconductor and the support.
(5)光導電体の自由表面に表面被覆層を有する特許請
求の範囲第1項記載の光導電体。
(5) The photoconductor according to claim 1, which has a surface coating layer on the free surface of the photoconductor.
JP60201109A 1985-09-11 1985-09-11 Photoconductor Pending JPS6261056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60201109A JPS6261056A (en) 1985-09-11 1985-09-11 Photoconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60201109A JPS6261056A (en) 1985-09-11 1985-09-11 Photoconductor

Publications (1)

Publication Number Publication Date
JPS6261056A true JPS6261056A (en) 1987-03-17

Family

ID=16435549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60201109A Pending JPS6261056A (en) 1985-09-11 1985-09-11 Photoconductor

Country Status (1)

Country Link
JP (1) JPS6261056A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969491A1 (en) * 1998-07-02 2000-01-05 Canon Kabushiki Kaisha Electrification moderating film, electron beam system, image forming system, member with the electrification moderating film, and manufacturing method of image forming system
WO2002036846A3 (en) * 2000-10-30 2003-03-06 Honeywell Int Inc Sputtering target assemblies
US6596139B2 (en) 2000-05-31 2003-07-22 Honeywell International Inc. Discontinuous high-modulus fiber metal matrix composite for physical vapor deposition target backing plates and other thermal management applications

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969491A1 (en) * 1998-07-02 2000-01-05 Canon Kabushiki Kaisha Electrification moderating film, electron beam system, image forming system, member with the electrification moderating film, and manufacturing method of image forming system
US6777868B1 (en) 1998-07-02 2004-08-17 Canon Kabushiki Kaisha Electrification moderating film, electron beam system, image forming system, member with the electrification moderating film, and manufacturing method of image forming system
US6596139B2 (en) 2000-05-31 2003-07-22 Honeywell International Inc. Discontinuous high-modulus fiber metal matrix composite for physical vapor deposition target backing plates and other thermal management applications
US6815084B1 (en) 2000-05-31 2004-11-09 Honeywell International Inc. Discontinuous high-modulus fiber metal matrix composite for thermal management applications
WO2002036846A3 (en) * 2000-10-30 2003-03-06 Honeywell Int Inc Sputtering target assemblies
US6596131B1 (en) 2000-10-30 2003-07-22 Honeywell International Inc. Carbon fiber and copper support for physical vapor deposition target assembly and method of forming

Similar Documents

Publication Publication Date Title
US4443529A (en) Photoconductive member having an amorphous silicon photoconductor and a double-layer barrier layer
US4365013A (en) Electrophotographic member
US4557987A (en) Photoconductive member having barrier layer and amorphous silicon charge generation and charge transport layers
US4495262A (en) Photosensitive member for electrophotography comprises inorganic layers
JPS6410069B2 (en)
JPS6348054B2 (en)
JPH0373859B2 (en)
JPS6348057B2 (en)
JPS6261056A (en) Photoconductor
JPS60128456A (en) Photosensitive body for electrophotography
US4677044A (en) Multi-layered electrophotographic photosensitive member having amorphous silicon
JPH0715584B2 (en) Electrophotographic photoreceptor
JPS6410066B2 (en)
JP2720448B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH0315739B2 (en)
JPS6062165A (en) Photoconductive material for electrophotography
JPS6410067B2 (en)
JPH0668628B2 (en) Electrophotographic photoreceptor
JPS628782B2 (en)
JPH11305471A (en) Electrophotographic photoreceptor
JPS6325069B2 (en)
JPS6273275A (en) photoconductor
JPH0216512B2 (en)
JPS6341060B2 (en)
JPH0473147B2 (en)