JPS6269562A - Field effect transistor device and method for manufacturing the same - Google Patents
Field effect transistor device and method for manufacturing the sameInfo
- Publication number
- JPS6269562A JPS6269562A JP60209504A JP20950485A JPS6269562A JP S6269562 A JPS6269562 A JP S6269562A JP 60209504 A JP60209504 A JP 60209504A JP 20950485 A JP20950485 A JP 20950485A JP S6269562 A JPS6269562 A JP S6269562A
- Authority
- JP
- Japan
- Prior art keywords
- effect transistor
- field effect
- groove
- transistor device
- gate electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
- H10D64/513—Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
- H10D30/608—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs having non-planar bodies, e.g. having recessed gate electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
- H10D64/025—Manufacture or treatment forming recessed gates, e.g. by using local oxidation
- H10D64/027—Manufacture or treatment forming recessed gates, e.g. by using local oxidation by etching at gate locations
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、電界効果トランジスタを用いた半導体装置
の構造とその製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a structure of a semiconductor device using a field effect transistor and a method of manufacturing the same.
第3図は、従来の電界効果トランジスタ装置の断面構造
図である。図において、1はシリコン基板、2は該シリ
コン基板1の表面に形成された薄い絶縁膜、3は該絶縁
膜2上に形成されたゲート電極、4.5は該ゲート電極
3をマスクにして拡散を行ない形成されたソース、ドレ
インである。FIG. 3 is a cross-sectional structural diagram of a conventional field effect transistor device. In the figure, 1 is a silicon substrate, 2 is a thin insulating film formed on the surface of the silicon substrate 1, 3 is a gate electrode formed on the insulating film 2, and 4.5 is using the gate electrode 3 as a mask. The source and drain are formed by diffusion.
次に動作について説明する。Next, the operation will be explained.
ゲート電極3に正の電圧を印加することによって、ゲー
ト電極下の基板表面に反転層が形成され、ソース4、ド
レイン5は導通する。By applying a positive voltage to the gate electrode 3, an inversion layer is formed on the substrate surface under the gate electrode, and the source 4 and drain 5 are electrically connected.
従来の電界効果トランジスタ装置は以−ヒのように構成
されているので、トランジスタの集積度があがり、電界
効果トランジスタが微細化されるにつれて、以下のよう
な問題を生じている。Conventional field effect transistor devices are constructed as described below, and as the degree of integration of transistors increases and field effect transistors become smaller, the following problems arise.
(1) チャネル長の減少に伴ってしきい値電圧が低
下する。また、ソース・ドレイン間の耐圧が低下し、パ
ンチスルーが起り易くなる(短チヤネル効果)。(1) The threshold voltage decreases as the channel length decreases. Furthermore, the withstand voltage between the source and drain decreases, making punch-through more likely to occur (short channel effect).
(2) ドレイン近傍の高電界化に伴い、高エネルギ
ーのチャネル電子の衝突電離によって生じた電子の一部
が、ゲート電極に入り込むという現象を生じる。この電
子がゲート酸化膜にトラップされて、しきい値電圧の変
動等の障害をおこす(ホットエレクトロン効果)。(2) As the electric field near the drain increases, a phenomenon occurs in which some of the electrons generated by collision ionization of high-energy channel electrons enter the gate electrode. These electrons are trapped in the gate oxide film and cause problems such as fluctuations in threshold voltage (hot electron effect).
このホットエレクトロン効果を低減させるには、ドレイ
ン近傍の電界を緩和すればよいが、その一方法として二
重拡散ドレインが提案されている。This hot electron effect can be reduced by relaxing the electric field near the drain, and a double-diffused drain has been proposed as one method.
これは第4図に示すように高濃度のソース・ドレイン拡
散層(N+)のゲート近傍に、低濃度な領域(N−)を
設ける方法である。しかしこの方法では、チャネル長が
減少し、ショートチャネル効果を悪化させるという欠点
がある。As shown in FIG. 4, this is a method in which a lightly doped region (N-) is provided near the gate of a highly doped source/drain diffusion layer (N+). However, this method has the disadvantage of reducing the channel length and worsening the short channel effect.
この発明は、上記のような問題点を解消するためになさ
れたもので、ショートチャネル効果とホットエレクトロ
ン効果の両方を低減した、微小な電界効果トランジスタ
装置およびその製造方法を提供することを目的とする。The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a miniature field effect transistor device and a method for manufacturing the same, which reduce both the short channel effect and the hot electron effect. do.
この発明に係る電界効果トランジスタ装置及びその製造
方法は、半導体基板に微細な溝を形成し、該溝の内面に
ゲート絶縁膜を形成し、該溝内にゲート絶縁膜を介して
ゲート電極を形成し、該ゲート電極をマスクとして基板
内部へ向ってゆるやかな濃度勾配を有する拡散層を形成
したものである。A field effect transistor device and a method for manufacturing the same according to the present invention include forming a fine groove in a semiconductor substrate, forming a gate insulating film on the inner surface of the groove, and forming a gate electrode in the groove via the gate insulating film. Then, using the gate electrode as a mask, a diffusion layer having a gentle concentration gradient toward the inside of the substrate is formed.
この発明においては、半導体基板の溝にゲート電極を形
成し、該電極両側の半導体基板に、濃度勾配を有するソ
ース、ドレイン拡散層を設けたから、以下の作用が得ら
れる。In this invention, a gate electrode is formed in a groove of a semiconductor substrate, and source and drain diffusion layers having a concentration gradient are provided in the semiconductor substrate on both sides of the electrode, so that the following effects can be obtained.
+1) 上記微細な溝の側壁および底部に面した基板
表面がチャネルとして利用され、これによってゲート電
極幅が短くなってもチャネル長を長くとることができ、
ショートチャネル効果を抑制できる。+1) The substrate surface facing the sidewalls and bottom of the fine groove is used as a channel, so that even if the gate electrode width is shortened, the channel length can be made long;
Short channel effects can be suppressed.
(2) ドレイン近傍のチャネル電子の流れる方向は
、基板表面に垂直となり、従って基板内部へ向かってゆ
るやかな濃度勾配を有する拡散層によってドレイン近傍
の電界が緩和され、ホットエレクトロン効果の低減が図
れる。この時前述のようにチャネル長が長いため、ショ
ートチャネル効果を悪化させることはない。(2) The direction in which channel electrons flow near the drain is perpendicular to the substrate surface, so the electric field near the drain is relaxed by the diffusion layer having a gentle concentration gradient toward the inside of the substrate, and the hot electron effect can be reduced. At this time, since the channel length is long as described above, the short channel effect will not be worsened.
(3) ゲート電極を半導体基板の溝内に形成するこ
とによって平坦性に優れた電界効果トランジスタ装置を
実現できる。(3) By forming the gate electrode in the groove of the semiconductor substrate, a field effect transistor device with excellent flatness can be realized.
以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.
第1図はこの発明の一実施例による電界効果トランジス
タ装置の断面を示す図である。図において、1は微細な
溝(トレンチ)6が形成された半導体基板、2は該溝6
の内壁及び半導体基板1表面に形成されたゲート絶縁膜
、3は該溝6内にゲート絶縁膜2を介して形成されたゲ
ート電極、4゜5は満6の外側の基板部分に濃度勾配を
有するよう形成されたソース、ドレイン拡散層である。FIG. 1 is a cross-sectional view of a field effect transistor device according to an embodiment of the present invention. In the figure, 1 is a semiconductor substrate in which a fine groove (trench) 6 is formed, and 2 is a semiconductor substrate in which a fine groove (trench) 6 is formed.
A gate insulating film is formed on the inner wall of the groove 6 and the surface of the semiconductor substrate 1, 3 is a gate electrode formed in the groove 6 via the gate insulating film 2, and 4.5 is a concentration gradient on the outer substrate portion of the groove 6. The source and drain diffusion layers are formed to have a source and drain diffusion layer.
第1図の電界効果トランジスタ装置には、この発明の特
徴としてチャネル部分に微細なトレンチ6が形成されて
おり、該トレンチ6の側壁と底部に面する基板表面をチ
ャネルとして利用することにより、ゲート電極幅に対し
チャネル長を大きくとることができる。As a feature of the present invention, the field effect transistor device shown in FIG. The channel length can be made larger than the electrode width.
また、基板内部へ向かってゆるやかな濃度勾配を有する
拡散層を備えているため、ドレイン5近傍での電界を緩
和しホットエレクトロン効果を低減させる。Furthermore, since the diffusion layer has a gentle concentration gradient toward the inside of the substrate, the electric field near the drain 5 is relaxed and the hot electron effect is reduced.
前記ゆるやかな濃度勾配を有した拡散層の製造方法とし
て、本実施例ではエネルギー可変型イオン注入技術を用
いており、この技術は、イオン注入時のイオンの加速電
圧を変化させることによって、ドーパントの注入深さを
変化させ、各深さでの打ち込み量を制御することによっ
て任意の濃度勾配を有した拡散層を形成するものである
。In this example, variable energy ion implantation technology is used as a manufacturing method for the diffusion layer having the gentle concentration gradient. By changing the implantation depth and controlling the implantation amount at each depth, a diffusion layer having an arbitrary concentration gradient can be formed.
次に本実施例の電界効果トランジスタ装置の製造工程に
ついて説明する。Next, the manufacturing process of the field effect transistor device of this example will be explained.
半導体基板1にトレンチ6を形成しく第2図(a))、
該トレンチ6の内壁及び半導体基板1表面にゲート絶縁
膜2を形成する(第2図(b))。次に前記トレンチ6
の内部にゲート電極3を形成しく第2図tel)、前記
ゲート電極3をマスクとして上記エネルギー可変型イオ
ン注入技術により基板内部へ向かってゆるやかな濃度勾
配を有するよう拡散層を形成しく第2図(dl)、電界
効果トランジスタ装置を製造する。A trench 6 is formed in the semiconductor substrate 1 (FIG. 2(a)),
A gate insulating film 2 is formed on the inner wall of the trench 6 and the surface of the semiconductor substrate 1 (FIG. 2(b)). Next, the trench 6
A gate electrode 3 is formed inside the substrate (Fig. 2 tel), and a diffusion layer is formed so as to have a gentle concentration gradient toward the inside of the substrate by the variable energy ion implantation technique using the gate electrode 3 as a mask. (dl), manufacturing a field effect transistor device;
本実施例装置は以上のような構成をとっているので、ゲ
ート電極3に正の電圧を印加することによってゲート電
極3の側壁および底部に面した基板表面上に反転層が形
成され、ソース・ドレインを導通することができる。そ
の時のチャネル長はゲート電極幅に対して長くなってい
るので、ショートチャネル効果を低減できる。また、拡
散層が濃度勾配を有するので、ドレイン近傍の電昇を緩
和させホットエレクトロン効果を低減できる。Since the device of this embodiment has the above-described configuration, by applying a positive voltage to the gate electrode 3, an inversion layer is formed on the substrate surface facing the sidewalls and bottom of the gate electrode 3, and the source The drain can be made conductive. Since the channel length at this time is longer than the gate electrode width, the short channel effect can be reduced. Furthermore, since the diffusion layer has a concentration gradient, it is possible to alleviate the electric rise near the drain and reduce the hot electron effect.
なお、上記実施例ではエネルギー可変型イオン注入技術
を用いてゆるやかな濃度勾配を有するように拡散層を形
成したが、これは第5図に示すような二重拡散層を形成
してもよく、同様の効果を期待できる。In the above embodiment, the energy variable ion implantation technique was used to form the diffusion layer with a gentle concentration gradient, but a double diffusion layer as shown in FIG. 5 may also be formed. Similar effects can be expected.
また、上記実施例ではゲート電極をトレンチ中に完全に
埋め込んでいるが、これは第6図に示すようにゲート電
極の一部をトレンチ外へ出した構造でもよく、同様な効
果を期待できる。Further, in the above embodiment, the gate electrode is completely buried in the trench, but a structure in which a part of the gate electrode is exposed outside the trench as shown in FIG. 6 may be used, and the same effect can be expected.
以上のようにこの発明にかかる電界効果トランジスタ装
置及びその製造方法によれば、半導体基板に設けられた
微細な溝にゲート絶縁膜を介してゲート電極を形成する
ようにしたので、ゲート電極幅を微細化してもチャネル
長を長くとることができ、また拡散層に基板内部へ向っ
てゆるやかな濃度勾配を持たせるようにしたのでドレイ
ン近傍の電界を緩和でき、もってショートチャネル効果
を悪化させずにホットエレクトロン効果を低減すること
ができる効果がある。As described above, according to the field effect transistor device and the manufacturing method thereof according to the present invention, the gate electrode is formed in the fine groove provided in the semiconductor substrate through the gate insulating film, so that the width of the gate electrode can be reduced. Even with miniaturization, the channel length can be made long, and the diffusion layer has a gentle concentration gradient toward the inside of the substrate, so the electric field near the drain can be relaxed, without worsening the short channel effect. This has the effect of reducing the hot electron effect.
第1図はこの発明の一実施例による電界効果トランジス
タ装置を示す断面図、第2図(a)ないしldlは本実
施例による電界効果トランジスタ装置の製造方法をその
工程順に示す断面図、第3図は従来の電界効果トランジ
スタ装置を示す断面図、第4図はポットエレクトロン効
果の低減のために従来から提案されている二重拡散層を
備えた電界効果トランジスタ装置の断面図、第5図、第
6図はこの発明の他の実施例による電界効果トランジス
タ装置の断面図を示す。
図において、1は半導体基板、2はゲート絶縁膜、3は
ゲート電極、4はソース、5はドレイン、6はトレンチ
である。
なお、図中同一符号は同−又は相当部分を示す。FIG. 1 is a sectional view showing a field effect transistor device according to an embodiment of the present invention, FIGS. The figure is a cross-sectional view showing a conventional field effect transistor device, FIG. 4 is a cross-sectional view of a field effect transistor device equipped with a double diffusion layer conventionally proposed for reducing the pot electron effect, and FIG. FIG. 6 shows a cross-sectional view of a field effect transistor device according to another embodiment of the invention. In the figure, 1 is a semiconductor substrate, 2 is a gate insulating film, 3 is a gate electrode, 4 is a source, 5 is a drain, and 6 is a trench. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (4)
部にゲート絶縁膜を介して形成されたゲート電極と、 上記溝の両側の半導体基板に形成され下方に向って濃度
勾配を有するソース、ドレイン拡散層とを備えたことを
特徴とする電界効果トランジスタ装置。(1) A semiconductor substrate having a groove on its main surface, a gate electrode formed inside the groove via a gate insulating film, and a gate electrode formed on the semiconductor substrate on both sides of the groove and having a concentration gradient downward. A field effect transistor device comprising a source and a drain diffusion layer.
板に下方に向ってゆるやかな濃度勾配を有するように拡
散を行ないソース、ドレイン拡散層を形成する第4の工
程とを備えたことを特徴とする電界効果トランジスタ装
置の製造方法。(2) a first step of forming a groove on the main surface of the semiconductor substrate; a second step of forming a gate insulating film on the inner surface of the groove; and a third step of forming a gate electrode inside the groove; A fourth step of performing diffusion into the semiconductor substrate on both sides of the groove so as to have a gentle concentration gradient downward using the gate electrode as a mask to form source and drain diffusion layers. A method of manufacturing a field effect transistor device.
圧とイオン電流の制御によって行なうことを特徴とする
特許請求の範囲第2項記載の電界効果トランジスタ装置
の製造方法。(3) The method for manufacturing a field effect transistor device according to claim 2, wherein the diffusion in the fourth step is performed by controlling an acceleration voltage and an ion current during ion implantation.
うことを特徴とする特許請求の範囲第2項記載の電界効
果トランジスタ装置の製造方法。(4) The method for manufacturing a field effect transistor device according to claim 2, wherein the diffusion in the fourth step is performed by double diffusion.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60209504A JPS6269562A (en) | 1985-09-20 | 1985-09-20 | Field effect transistor device and method for manufacturing the same |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60209504A JPS6269562A (en) | 1985-09-20 | 1985-09-20 | Field effect transistor device and method for manufacturing the same |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS6269562A true JPS6269562A (en) | 1987-03-30 |
Family
ID=16573893
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP60209504A Pending JPS6269562A (en) | 1985-09-20 | 1985-09-20 | Field effect transistor device and method for manufacturing the same |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6269562A (en) |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001039275A1 (en) * | 1999-11-29 | 2001-05-31 | Infineon Technologies Ag | Mos transistor and method for producing the same |
| US6696726B1 (en) * | 2000-08-16 | 2004-02-24 | Fairchild Semiconductor Corporation | Vertical MOSFET with ultra-low resistance and low gate charge |
| US6916745B2 (en) | 2003-05-20 | 2005-07-12 | Fairchild Semiconductor Corporation | Structure and method for forming a trench MOSFET having self-aligned features |
| US6991977B2 (en) | 2001-10-17 | 2006-01-31 | Fairchild Semiconductor Corporation | Method for forming a semiconductor structure with improved smaller forward voltage loss and higher blocking capability |
| US7061066B2 (en) | 2001-10-17 | 2006-06-13 | Fairchild Semiconductor Corporation | Schottky diode using charge balance structure |
| US7265415B2 (en) | 2004-10-08 | 2007-09-04 | Fairchild Semiconductor Corporation | MOS-gated transistor with reduced miller capacitance |
| US7265416B2 (en) | 2002-02-23 | 2007-09-04 | Fairchild Korea Semiconductor Ltd. | High breakdown voltage low on-resistance lateral DMOS transistor |
| US7291894B2 (en) | 2002-07-18 | 2007-11-06 | Fairchild Semiconductor Corporation | Vertical charge control semiconductor device with low output capacitance |
| US7345342B2 (en) | 2001-01-30 | 2008-03-18 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
| US7368777B2 (en) | 2003-12-30 | 2008-05-06 | Fairchild Semiconductor Corporation | Accumulation device with charge balance structure and method of forming the same |
| US7385248B2 (en) | 2005-08-09 | 2008-06-10 | Fairchild Semiconductor Corporation | Shielded gate field effect transistor with improved inter-poly dielectric |
| US9224853B2 (en) | 2007-12-26 | 2015-12-29 | Fairchild Semiconductor Corporation | Shielded gate trench FET with multiple channels |
| US9431481B2 (en) | 2008-09-19 | 2016-08-30 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
| US9595596B2 (en) | 2007-09-21 | 2017-03-14 | Fairchild Semiconductor Corporation | Superjunction structures for power devices |
-
1985
- 1985-09-20 JP JP60209504A patent/JPS6269562A/en active Pending
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2001039275A1 (en) * | 1999-11-29 | 2001-05-31 | Infineon Technologies Ag | Mos transistor and method for producing the same |
| US6696726B1 (en) * | 2000-08-16 | 2004-02-24 | Fairchild Semiconductor Corporation | Vertical MOSFET with ultra-low resistance and low gate charge |
| US7345342B2 (en) | 2001-01-30 | 2008-03-18 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
| US7061066B2 (en) | 2001-10-17 | 2006-06-13 | Fairchild Semiconductor Corporation | Schottky diode using charge balance structure |
| US6991977B2 (en) | 2001-10-17 | 2006-01-31 | Fairchild Semiconductor Corporation | Method for forming a semiconductor structure with improved smaller forward voltage loss and higher blocking capability |
| US7605040B2 (en) | 2002-02-23 | 2009-10-20 | Fairchild Korea Semiconductor Ltd. | Method of forming high breakdown voltage low on-resistance lateral DMOS transistor |
| US7265416B2 (en) | 2002-02-23 | 2007-09-04 | Fairchild Korea Semiconductor Ltd. | High breakdown voltage low on-resistance lateral DMOS transistor |
| US7291894B2 (en) | 2002-07-18 | 2007-11-06 | Fairchild Semiconductor Corporation | Vertical charge control semiconductor device with low output capacitance |
| US7595524B2 (en) | 2003-05-20 | 2009-09-29 | Fairchild Semiconductor Corporation | Power device with trenches having wider upper portion than lower portion |
| US6916745B2 (en) | 2003-05-20 | 2005-07-12 | Fairchild Semiconductor Corporation | Structure and method for forming a trench MOSFET having self-aligned features |
| US7344943B2 (en) | 2003-05-20 | 2008-03-18 | Fairchild Semiconductor Corporation | Method for forming a trench MOSFET having self-aligned features |
| US7368777B2 (en) | 2003-12-30 | 2008-05-06 | Fairchild Semiconductor Corporation | Accumulation device with charge balance structure and method of forming the same |
| US7265415B2 (en) | 2004-10-08 | 2007-09-04 | Fairchild Semiconductor Corporation | MOS-gated transistor with reduced miller capacitance |
| US7385248B2 (en) | 2005-08-09 | 2008-06-10 | Fairchild Semiconductor Corporation | Shielded gate field effect transistor with improved inter-poly dielectric |
| US7598144B2 (en) | 2005-08-09 | 2009-10-06 | Fairchild Semiconductor Corporation | Method for forming inter-poly dielectric in shielded gate field effect transistor |
| US9595596B2 (en) | 2007-09-21 | 2017-03-14 | Fairchild Semiconductor Corporation | Superjunction structures for power devices |
| US9224853B2 (en) | 2007-12-26 | 2015-12-29 | Fairchild Semiconductor Corporation | Shielded gate trench FET with multiple channels |
| US9431481B2 (en) | 2008-09-19 | 2016-08-30 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103872132B (en) | Metal-oxide-semiconductor (MOS) transistor and method of making the same | |
| JPH0216020B2 (en) | ||
| RU2197769C2 (en) | High-speed and high-capacity mos transistor and its manufacturing process | |
| JPS6269562A (en) | Field effect transistor device and method for manufacturing the same | |
| JPS62113474A (en) | Manufacture of semiconductor integrated circuit | |
| JPS62217666A (en) | MIS transistor | |
| JPS6331945B2 (en) | ||
| KR100272528B1 (en) | Semiconductor device and method for fabricating the same | |
| US5502322A (en) | Transistor having a nonuniform doping channel | |
| JPS59144175A (en) | Method for manufacturing field effect transistors | |
| JPH0234936A (en) | Semiconductor device and its manufacturing method | |
| JPH0493083A (en) | Semiconductor device and its manufacturing method | |
| JPS6038879A (en) | Manufacturing method of semiconductor device | |
| JPH02159070A (en) | Semiconductor device and its manufacturing method | |
| JPH06302825A (en) | Semiconductor device | |
| CN110660852A (en) | Metal oxide semiconductor element and manufacturing method thereof | |
| TWI668802B (en) | Metal oxide semiconductor (mos) device and manufacturing method thereof | |
| KR100260366B1 (en) | Method for fabricating semiconductor device | |
| JPS58157169A (en) | Semiconductor device | |
| JPH01108774A (en) | Semiconductor device | |
| JP4992179B2 (en) | Semiconductor device and manufacturing method thereof | |
| JPH03211883A (en) | Semiconductor device and manufacture thereof | |
| JPH02219237A (en) | Mis type semiconductor device | |
| TW437088B (en) | Manufacturing method of metal oxide semiconductor transistor | |
| JPS61256670A (en) | Insulated gate field effect transistor |