JPS6269680A - Manufacturing method of thin film transistor - Google Patents
Manufacturing method of thin film transistorInfo
- Publication number
- JPS6269680A JPS6269680A JP60210616A JP21061685A JPS6269680A JP S6269680 A JPS6269680 A JP S6269680A JP 60210616 A JP60210616 A JP 60210616A JP 21061685 A JP21061685 A JP 21061685A JP S6269680 A JPS6269680 A JP S6269680A
- Authority
- JP
- Japan
- Prior art keywords
- film
- thin film
- island
- laminated
- conductive film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、レーザ光等のエネルギービームで再結晶化さ
れた半導体薄膜を用いた薄膜トランジスタ(TPT)の
製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a thin film transistor (TPT) using a semiconductor thin film recrystallized with an energy beam such as a laser beam.
ビームアニールされた再結晶半導体薄膜をチャンネル領
域にもつ逆スタガー型TPTの製造方法で、(1)絶縁
基板上への第1導電膜、ゲート絶縁膜、半導体薄膜の積
層膜の堆積 (2)半導体薄膜のビームアニール (3
) 積層膜のゲート電極形状島状積層膜への形Ji!
2. (4) フィールド絶縁膜の堆積 (5)
フィールド絶縁膜の島状積層膜上面の開孔 (6)
第2導電膜の堆積 (7) 第2導電膜の選択エッ
チ から成り、第1導電膜でゲート電極。A method for manufacturing an inverted staggered TPT having a beam annealed recrystallized semiconductor thin film in the channel region, which includes (1) depositing a laminated film of a first conductive film, a gate insulating film, and a semiconductor thin film on an insulating substrate (2) semiconductor Beam annealing of thin film (3
) Gate electrode shape of laminated film Shape to island-like laminated film Ji!
2. (4) Deposition of field insulation film (5)
Opening on the top surface of the island-like stacked film of the field insulating film (6)
Deposition of a second conductive film (7) Selective etching of the second conductive film, forming a gate electrode with the first conductive film.
第2導電膜でソース、ドレイン電極とする。第2導電膜
の選択エッチには、基板裏面からの露光を利用した自己
整合技術が使える。The second conductive film serves as source and drain electrodes. For selective etching of the second conductive film, a self-alignment technique using exposure from the back surface of the substrate can be used.
非晶質シリコン(a−8+)を用いたTPTは、低=3
−
湛で大面積基板に形成できるので、液晶表示装置等に応
用されている。しかしa 3i膜はキャリア移動度が
低いため動作速度が遅く、応用に限界があった。それを
改善する1つの手段としてa−8i膜をレーザアニール
して再結晶化する方法があるが逆スタガー型TPTに適
用する場合には問題がある。第2図を用いて従来製造工
程例を説明する。TPT using amorphous silicon (a-8+) has low = 3
- Since it can be formed on a large-area substrate by filling it, it is applied to liquid crystal display devices, etc. However, since the a3i film has low carrier mobility, its operating speed is slow and its applications are limited. One way to improve this is to recrystallize the a-8i film by laser annealing, but this method poses a problem when applied to an inverted staggered TPT. An example of a conventional manufacturing process will be explained using FIG.
第2図(e)は、ガラス・石英等の基板1上にゲート電
極12を選択的に形成した後、ゲート絶縁膜3m−8t
膜4を堆積した断面である。第2図(b)は。FIG. 2(e) shows a gate insulating film 3m-8t after selectively forming a gate electrode 12 on a substrate 1 made of glass, quartz, etc.
This is a cross section of a film 4 deposited thereon. Figure 2(b) is.
n−8t膜4をレーザアニールして再結晶St膜14に
した状態、第2図(c)は再結晶S1膜14を選択エッ
チした状態である。第2図(d)は、na−8+膜5゜
金属膜6を堆積後選択エッチして、ソース・ドレイン領
域15.25及びソース・ドレイン電極25゜26をそ
れぞれ設けた完成状態を示す。この工程例においての問
題は、第2図(b)のレーザアニールの、際、ゲート電
極12上の再結晶SI膜24とそれ以外の再結晶S1膜
34が均一にできないことである。FIG. 2C shows a state in which the n-8T film 4 is laser annealed to form a recrystallized St film 14, and FIG. 2(c) shows a state in which the recrystallized S1 film 14 is selectively etched. FIG. 2(d) shows a completed state in which the na-8+ film 5° and the metal film 6 are deposited and selectively etched to provide source/drain regions 15.25 and source/drain electrodes 25.26, respectively. The problem with this process example is that during the laser annealing shown in FIG. 2(b), the recrystallized SI film 24 on the gate electrode 12 and the other recrystallized S1 film 34 cannot be made uniform.
それは、ゲート電極’12の存在のため、a−s+l[
i4を透過したレーザ光の反射や再結晶するときの放熱
がゲート電極12上のSi膜27Iだけ異なるためであ
り、極端な場合にはこの部分24だけが蒸発してしまう
。放熱の状況は、ゲート電極の面積等に依存し、各TP
T間でも均一にするのは困難である。Because of the presence of the gate electrode '12, a-s+l[
This is because the reflection of the laser beam transmitted through i4 and the heat dissipation during recrystallization differ only in the Si film 27I on the gate electrode 12, and in extreme cases, only this portion 24 will evaporate. The heat dissipation situation depends on the area of the gate electrode, etc.
It is difficult to make it uniform even between T.
これは、レーザアニールに限らず電子ヒームアニール、
ランプアニールでも、またa−彊膜に限らず多結晶St
膜でも同様な問題である。This is not limited to laser annealing, but also electron beam annealing,
Even with lamp annealing, polycrystalline St.
A similar problem exists with membranes.
本発明は叙上の逆スタガー型TPTiI!造の際のビー
ムアニールによる再結晶半導体膜の不均一を改善すべく
なされたものである。The present invention is based on the above-mentioned inverted stagger type TPTiI! This was done to improve the non-uniformity of the recrystallized semiconductor film caused by beam annealing during manufacturing.
本発明の製造方法は(1)絶縁基板上に第1導電膜ゲー
ト絶縁膜、半導体薄膜の積層膜を堆積 (2)半導体薄
膜をビームアニール (3)積層膜のゲート電極形状の
選択エッチ (4)フィールド絶縁膜の堆積(5)島状
積層膜上面のフィールド絶縁膜の選択除去(6)第2導
電膜の堆積 (7)第2導電膜の選択エッチによるソー
ス及びドレイン電極の形成から成る。The manufacturing method of the present invention includes (1) depositing a laminated film of a first conductive film, a gate insulating film, and a semiconductor thin film on an insulating substrate; (2) beam annealing the semiconductor thin film; (3) selectively etching the gate electrode shape of the laminated film; ) Deposition of a field insulating film; (5) Selective removal of the field insulating film on the top surface of the island-like laminated film; (6) Deposition of a second conductive film; and (7) Formation of source and drain electrodes by selective etching of the second conductive film.
ソース及びドレイン領域となる低抵抗半導体膜は。The low-resistance semiconductor film that becomes the source and drain regions.
(2)のビームアニール後に堆積されるが、(6)第2
導電膜の少なくとも一部として堆積される。ゲート電極
としては島状積層膜内の第1導電膜が用いられる。(2) is deposited after beam annealing, but (6) second
Deposited as at least a portion of a conductive film. The first conductive film in the island-like laminated film is used as the gate electrode.
本発明では、半導体薄膜のビームアニールは。 In the present invention, beam annealing of a semiconductor thin film is performed.
ゲート電極(第1導電膜)がバターニングされる前に行
われるので1反射放熱共に均一な状態であり、再結晶半
導体膜のアニールは均一に行える。Since the annealing is performed before the gate electrode (first conductive film) is patterned, both reflection heat radiation is uniform, and the recrystallized semiconductor film can be annealed uniformly.
また第1導電膜がヒートシンクとしても働き基板側への
熱の影響が少なくでて、三次元ICや低融点ガラス基板
上のTPTに適用しやすい。特に第1導電膜下に高融点
絶縁膜を挿入すればその効果はより大きい。Furthermore, the first conductive film also acts as a heat sink, reducing the influence of heat on the substrate side, making it easy to apply to three-dimensional ICs and TPTs on low-melting point glass substrates. In particular, if a high melting point insulating film is inserted under the first conductive film, the effect will be even greater.
以下に本発明を図面を用いて詳述する。 The present invention will be explained in detail below using the drawings.
a、実施例] TFT断面(第1図)第1図には本発
明による製造工程に沿った断面図を示す。第1図(&)
は、絶縁基板l上に第1導電膜2.ゲート絶縁膜3.S
i薄膜4がら成る積層膜10を堆積後、 Si薄膜4
をビームアニールして再結晶Si膜14を形成した状態
である。基板1はガラス・石英等の非晶質絶縁的、絶縁
膜コートされた81基板等が用いられる。第1導電膜2
には。a. Example] TFT cross section (FIG. 1) FIG. 1 shows a cross-sectional view along the manufacturing process according to the present invention. Figure 1 (&)
A first conductive film 2. is formed on an insulating substrate l. Gate insulating film 3. S
After depositing the laminated film 10 consisting of the i thin film 4, the Si thin film 4 is deposited.
This is a state in which a recrystallized Si film 14 is formed by beam annealing. As the substrate 1, an amorphous insulating 81 substrate coated with an insulating film, such as glass or quartz, is used. First conductive film 2
for.
Cr、 Mo、 W、 T a、 T i等の高融点金
属やそのシリサイドまたは低抵抗SI薄膜が、ゲート絶
縁膜3にはS+02、5r3N、 、 kl、、03等
が用いられる。Si薄膜4はa −S +や多結晶S1
である。ビームアニールには。High melting point metals such as Cr, Mo, W, Ta, and Ti, their silicides, or low resistance SI thin films are used for the gate insulating film 3, and S+02, 5r3N, , kl, , 03, etc. are used. The Si thin film 4 is a −S + or polycrystalline S1
It is. For beam annealing.
Arレーザやエキシマ−レーザ等のレーザ・ビームやt
子ビームによるアニールの他に、ランプ、ヒーターによ
るアニールが適用される。再結晶S+l’J。Laser beams such as Ar lasers and excimer lasers,
In addition to annealing using a child beam, annealing using a lamp and a heater is applied. Recrystallization S+l'J.
14には、アニールの前または後に例えばP型不純物が
少量添加されることがある。第1図(b)は、再結晶S
t脱膜14ゲート絶縁膜3/第1導電膜2がら成る積層
膜10をゲート電極形状に選択エッチして、島状積層膜
2oを形成した状態を示す。For example, a small amount of P-type impurity may be added to 14 before or after annealing. Figure 1(b) shows the recrystallized S
t Film Removal 14 The laminated film 10 consisting of the gate insulating film 3/first conductive film 2 is selectively etched in the shape of a gate electrode to form an island-shaped laminated film 2o.
この選択エッチは各膜毎または一括したエッチで行われ
、プラズマエッチ、反応性イオンエッチ(RIE)、イ
オンエッチ等が用いられる。島状積層膜20の側面形状
は1次工程のフィールド絶縁膜の堆積方法に依存し2例
えばCVDであればなだらかな形状に、コートであれば
逆テーパー状になってもかなわない。This selective etching is performed for each film or all at once, and plasma etching, reactive ion etching (RIE), ion etching, etc. are used. The side shape of the island-like laminated film 20 depends on the method of depositing the field insulating film in the first step.2For example, it may be a gentle shape if CVD is used, or a reverse tapered shape if it is coated.
第1図(c)は、フィールド絶縁膜7を堆積し、島状積
層膜20の上面を開孔した状態を示す。フィールド絶縁
膜7には5i02 HsrN膜の他にPIQ等の塗布絶
縁膜が利用できる。FIG. 1(c) shows a state in which a field insulating film 7 is deposited and a hole is opened on the upper surface of the island-like laminated film 20. As shown in FIG. For the field insulating film 7, a coated insulating film such as PIQ can be used in addition to the 5i02 HsrN film.
島状積層膜20」二面の開孔には2通常のマスク工程の
他に基板裏面からの露光やエッチバック等の技術が適用
される。第1図(d)は、第2導電膜50であるn+S
I膜5と金属膜6を堆積後2選択エッチによりソース電
極・領域16,1.5及びドレイン電極・領域26.2
5をそれぞれ金属膜6.n+SI膜5で設けたものであ
る。n+si膜5には、n+a−8t膜や多結晶n+8
1膜が用いられ2例えば微結晶a−3+膜やビームアニ
ールされた多結晶Si膜が低抵抗の点で望ましい。ソー
ス・ドレイン領域15.25ハ金属膜6の選択エッチ後
のn+SI膜5の選択エッチで形成されるが、下地にチ
ャンネル領域となる再結晶St゛膜14があるので充分
な選択比をもったエッチ例えばd系ガスも用いたプラズ
マエッチやRIE。In addition to the usual mask process, techniques such as exposure from the back side of the substrate and etchback are applied to the openings on the two sides of the island-shaped laminated film 20. FIG. 1(d) shows n+S which is the second conductive film 50.
After depositing the I film 5 and the metal film 6, selective etching is performed to form source electrode/regions 16, 1.5 and drain electrode/region 26.2.
5 and metal film 6. It is provided with an n+SI film 5. The n+Si film 5 includes an n+a-8t film and a polycrystalline n+8
For example, a microcrystalline A-3+ film or a beam-annealed polycrystalline Si film is desirable from the viewpoint of low resistance. The source/drain region 15.25 is formed by selective etching of the n+SI film 5 after the selective etching of the metal film 6, but has sufficient selectivity because there is a recrystallized St film 14 underlying the channel region. Etching For example, plasma etching or RIE using d-based gas.
光エッチが最適である。Optical etching is optimal.
b、実施例2 (第3図)
第3図には2本発明による他の製造工程例を示す。第3
図(e)は第1図(e)と同様な工程の後1例えば低抵
抗Si膜としてn+a−8i膜5を堆積し 、+a−S
i膜5/再結晶S+膜14/ゲート絶縁膜3/第1導電
膜2から成る積層膜10を形成した状態である。第3図
(b)は、積層膜10を選択エッチしゲート電極形状の
島状積層膜20を設けた断面である。この例では、第1
導電膜2をオーバーエッチしてゲート電極12に対しゲ
ート絶縁膜3をオーバーハング状にしている。第3図(
c)は、フィールド絶縁膜7として感光性PIQを用い
、基板1の裏面からの露光で島状積層膜20の上面を開
孔したものである。この工程は、フィールド絶縁膜7と
して塗布酸化膜(例えばスピン−オングラス)等を用い
、コート後ネガレジストを塗布、裏面露光で同様な開孔
を設けることができる。裏面露光の条件により、ゲート
電極12または再結晶Si膜I4をマスクに用いること
ができる。第3図(c)は。b. Example 2 (FIG. 3) FIG. 3 shows two other manufacturing process examples according to the present invention. Third
Figure (e) shows that after the same process as in Figure 1(e), for example, an n+a-8i film 5 is deposited as a low-resistance Si film, and +a-S
This is a state in which a laminated film 10 consisting of i film 5/recrystallized S+ film 14/gate insulating film 3/first conductive film 2 is formed. FIG. 3(b) is a cross section of the laminated film 10 that has been selectively etched to provide an island-shaped laminated film 20 in the shape of a gate electrode. In this example, the first
The conductive film 2 is over-etched so that the gate insulating film 3 overhangs the gate electrode 12. Figure 3 (
In c), photosensitive PIQ is used as the field insulating film 7, and holes are opened in the upper surface of the island-shaped laminated film 20 by exposure from the back surface of the substrate 1. In this step, a coated oxide film (for example, spin-on glass) or the like is used as the field insulating film 7, a negative resist is applied after coating, and similar openings can be formed by exposing the back side. Depending on the backside exposure conditions, the gate electrode 12 or the recrystallized Si film I4 can be used as a mask. Figure 3(c) is.
透明導電膜(例えばITO膜)6を第2導電膜50とし
て堆積後、ネガレジスト8をコートし、基板裏面からの
オーバー露光選択エッチで島状積層膜20の最上層(n
”a−8i膜5)に接し、チャンネル領域となる部分を
除いたITO膜6を形成したものである。第3図(d)
は、レジスト8を除去後、マスク工程で不要なITO膜
を除いてソース・ドレイン電極16.26を形成し、さ
らに露出した一a−8i膜5を選択エッチしソース及び
ドレイン領域15.25を設けた完成断面図である。こ
の例では、ソース及びドレイン領域15.25及び電極
16゜26がセル7アライン的に形成できるので、電極
間容量の小さいTPTを製造できる。n+a−8i膜5
の他にn+多多結晶S腹膜利用できるが、第3図(e)
の工程の後n+a−8t膜5をビームアニールすること
も低抵抗化に有効である。After depositing a transparent conductive film (for example, an ITO film) 6 as the second conductive film 50, a negative resist 8 is coated, and the uppermost layer (n
An ITO film 6 is formed in contact with the "a-8i film 5), excluding the portion that will become the channel region." Figure 3(d)
After removing the resist 8, unnecessary ITO films are removed in a mask process to form source/drain electrodes 16.26, and the exposed 1A-8I film 5 is selectively etched to form source/drain regions 15.25. It is a completed sectional view provided. In this example, since the source and drain regions 15.25 and the electrodes 16.26 can be formed in alignment with the cell 7, a TPT with small interelectrode capacitance can be manufactured. n+a-8i film 5
In addition, n+ polycrystalline S peritoneum can be used, but Fig. 3(e)
It is also effective to beam-anneal the n+a-8t film 5 after the step 1 to lower the resistance.
C9実施例3 (第4図)
第4図には、第2導電膜50として低抵抗半導体膜(例
えばn+a−8+IIQ ) 5を用いた例について示
す。第4図(e)は、第1図(c)と同様な工程後の断
面で島状積層膜20は再結晶S1膜】4/ゲート絶縁膜
3/第1導電膜(ゲート電$i81.2 )から成って
いる。フィールド絶縁膜7には1例えばRFバイアスス
パッタで堆積した平担な5102膜を用い。C9 Embodiment 3 (FIG. 4) FIG. 4 shows an example in which a low resistance semiconductor film (for example, n+a-8+IIQ) 5 is used as the second conductive film 50. FIG. 4(e) is a cross section after the same process as FIG. 1(c), and the island-like laminated film 20 is a recrystallized S1 film]4/gate insulating film 3/first conductive film (gate voltage $i81. 2). For the field insulating film 7, for example, a flat 5102 film deposited by RF bias sputtering is used.
エッチバックで島状積層膜20の」二面に開化を設けて
いる。第4図(b)は、第2導電膜50としてn+a−
8i膜5を堆積し、基板裏面からのオーバー露光を利用
して島状積層膜20の中央部のn+a Si膜を除去し
た状態を示す。この場合のna−8i膜5は薄いことが
望ましく、100〜5ooXである。Openings are provided on two sides of the island-like laminated film 20 by etching back. FIG. 4(b) shows n+a− as the second conductive film 50.
8i film 5 is deposited, and the n+a Si film at the center of the island-like laminated film 20 is removed using overexposure from the back surface of the substrate. In this case, the na-8i film 5 is desirably thin and has a thickness of 100 to 5 ooX.
第4図(c)はレジスト除去後、ビームアニール時ヨっ
てn+a−8t膜5を結晶化するとともに、再結晶SI
膜膜種4内n型不純物を拡散させた状態である。FIG. 4(c) shows that after the resist is removed, the n+a-8t film 5 is crystallized during beam annealing, and the recrystallized SI
This is a state in which the n-type impurity in the film type 4 is diffused.
この工程のビームアニールは、na−8i膜5やS+膜
膜種4溶融しないことが望ましい。第4図(d)は。It is desirable that the beam annealing in this step does not melt the na-8i film 5 or the S+ film type 4. Figure 4(d) is.
マスク工程により不要部のn4“a−8i膜5を除去し
。Unnecessary portions of the n4"a-8i film 5 are removed by a mask process.
ソース及びドレイン領域15.25を設けた断面である
。この工程後に第4図(c)のビームアニールをし体膜
(例えばH’−a−8i膜)5を用いた例について示す
。第4図(e)は、第1図(c)と同様な工程後の断(
図示なし)等を設けたものである。This is a cross section with source and drain regions 15.25. An example in which a body film (for example, H'-a-8i film) 5 is subjected to beam annealing as shown in FIG. 4(c) after this step is shown. FIG. 4(e) shows a cross section after the same process as FIG. 1(c).
(not shown), etc.
以」二の実施例においてゲート電極I2の外部取り出し
または配線形成については説明しなかったが、ゲート絶
縁膜3.半導体薄膜4の堆積時にこの部分をマスクし・
ておく方法や、ビームアニールによる再結晶Si膜14
形成以後の工程でこの部分に開化を設ける付加マスク工
程などによって行える。また、主にnチャンネルTPT
を例に述べたが、各領域の導電型を逆にすることにより
pチャンネルも同様に可能である。Although the external extraction of the gate electrode I2 and the wiring formation were not explained in the second embodiment, the gate insulating film 3. Mask this part when depositing the semiconductor thin film 4.
Recrystallized Si film 14 by beam annealing
This can be done by an additional mask process or the like to provide openings in this part in a process subsequent to formation. Also, mainly n-channel TPT
has been described as an example, but a p-channel is also possible by reversing the conductivity type of each region.
以」二のように本発明によれば、ビームアニールされた
半導体薄膜をチャンネル領域をもつ逆スタガー型TPT
が容易に製造できる。そのため、ビームアニールされな
いチャンネル領域をもつ逆スタガー型TPT例えばa−
8i ’l” p Tとの混載化が容易で、同一基板上
に例えばa−8+TPTによるアクティブマトリクス表
示装置とビームアニールされたTPTによる周辺駆動回
路を搭載できる利点をもつ。また1本発明はソース及び
ドレイン電極16.26やソース及びドレイン領域15
.25をセル7アライン的に設けることができるので、
より高速化が達成できる。さらに、ビームアニール時に
は第1導電膜がヒートシンクの役割を果たすので、下地
にトランジスタをもつ別基板や、低融点ガラス基板等に
も本発明は効果的である。As described below, according to the present invention, a beam-annealed semiconductor thin film is formed into an inverted staggered TPT having a channel region.
can be easily manufactured. Therefore, an inverted staggered TPT with a channel region that is not beam annealed, e.g.
It has the advantage that it can be easily mixed with 8i'l''pT, and an active matrix display device made of, for example, a-8+TPT and a peripheral drive circuit made of beam-annealed TPT can be mounted on the same substrate. and drain electrode 16.26 and source and drain region 15
.. 25 can be provided in a cell 7 aligned manner,
Higher speeds can be achieved. Furthermore, since the first conductive film plays the role of a heat sink during beam annealing, the present invention is also effective for other substrates having transistors underneath, low melting point glass substrates, and the like.
第1図(e)〜(aiは本発明によるTPTの製造工程
断面図、第2図(e)〜(d)は従来の製造工程例に沿
った断面図、第3図(e)〜(e)、第4図(a)〜(
e)は本発明の他の実施例の製造工程に沿った断面図で
ある。
1・・・基板 2・・・第1導電膜 3・・・ゲート絶
縁膜4・・・半導体薄膜 14・・・再結晶半導体膜
5・・・低抵抗半導体薄膜 6・・・導電膜 7・・・
フィールド絶縁膜8・・・レジスト 10・・・積層膜
20・・・島状積層膜50・・・第2導電膜 12・
・・ゲート電極 15・・・ソース領域 16・・・ド
レイン領域 25・・・ソース電極26・・・ドレイン
電極
以 上
出願人 セイコー電子工業株式会社
代理人 弁理士 最 上 務
#91明によるTFTr#、造工程順前面図従来のTF
T製造工程頃眸面図
第2図FIGS. 1(e) to (ai are sectional views of the TPT manufacturing process according to the present invention, FIGS. 2(e) to (d) are sectional views along the conventional manufacturing process example, and FIGS. 3(e) to (ai) e), Figure 4(a)-(
e) is a sectional view along the manufacturing process of another embodiment of the present invention. 1... Substrate 2... First conductive film 3... Gate insulating film 4... Semiconductor thin film 14... Recrystallized semiconductor film
5...Low resistance semiconductor thin film 6...Conductive film 7...
Field insulating film 8...Resist 10...Laminated film 20...Island-like stacked film 50...Second conductive film 12.
... Gate electrode 15 ... Source region 16 ... Drain region 25 ... Source electrode 26 ... Drain electrode and above Applicant Seiko Electronics Co., Ltd. Agent Patent attorney TFTr by Akira Mogami #91 , Manufacturing process order Front view Conventional TF
Diagram 2 of the T manufacturing process
Claims (4)
半導体薄膜から成る積層膜を堆積する第1工程(b)前
記半導体薄膜をビームアニールし、再結晶半導体膜とす
る第2工程 (c)前記積層膜をゲート電極形状に島状積層膜として
残すべく選択エッチする第3工程 (d)フィールド絶縁膜を堆積する第4工程(e)前記
島状積層膜上面のフィールド絶縁膜を選択除去する第5
工程 (f)第2導電膜を堆積する第6工程 (g)前記第2導電膜を選択エッチし、前記島状積層膜
上面に接するソース電極及びドレイン電極を形成する第
7工程 から少なく共成り、前記島状積層膜中の第1導電膜をゲ
ート電極、再結晶半導体膜をチャンネル領域とする薄膜
トランジスタの製造方法。(1) (a) A first conductive film, a gate insulating film on an insulating substrate,
A first step of depositing a laminated film consisting of a semiconductor thin film (b) A second step of beam annealing the semiconductor thin film to form a recrystallized semiconductor film (c) To leave the laminated film as an island-like laminated film in the shape of a gate electrode A third step of selectively etching (d) a fourth step of depositing a field insulating film; and (e) a fifth step of selectively removing the field insulating film on the upper surface of the island-like laminated film.
Step (f) A sixth step of depositing a second conductive film; and (g) a seventh step of selectively etching the second conductive film to form a source electrode and a drain electrode in contact with the upper surface of the island-shaped laminated film. . A method for manufacturing a thin film transistor in which the first conductive film in the island-like laminated film is used as a gate electrode and the recrystallized semiconductor film is used as a channel region.
半導体薄膜を含み、前記第7工程で再結晶半導体膜に接
する前記低抵抗半導体薄膜によるソース領域及びドレイ
ン領域を設ける特許請求の範囲第1項記載の薄膜トラン
ジスタ装置の製造方法。(2) A patent claim in which at least a common portion of the second conductive film includes a low resistance semiconductor thin film of one conductivity type, and in the seventh step, a source region and a drain region are provided by the low resistance semiconductor thin film in contact with the recrystallized semiconductor film. A method for manufacturing a thin film transistor device according to item 1.
積し、前記第3工程で該低抵抗薄膜を同時に島状積層膜
とし、前記第7工程で第2導電膜の選択エッチと同時に
該低抵抗薄膜を選択除去してソース領域及びドレイン領
域を形成する特許請求の範囲第1項記載の薄膜トランジ
スタ装置の製造方法。(3) After the second step, a low-resistance semiconductor thin film of one conductivity type is deposited, and in the third step, the low-resistance thin film is simultaneously formed into an island-like laminated film, and in the seventh step, the second conductive film is selectively etched simultaneously. 2. The method of manufacturing a thin film transistor device according to claim 1, wherein the low resistance thin film is selectively removed to form a source region and a drain region.
くは材料を選び、前記第7工程の選択エッチが前記基板
裏面からの光照射による前記島状積層膜をマスクにした
露光を利用した特許請求の範囲第1項から第3項いずれ
か記載の薄膜トランジスタの製造方法。(4) Thicknesses or materials that allow light to pass through the substrate and the second conductive film were selected, and the selective etching in the seventh step utilized exposure using the island-like laminated film as a mask by light irradiation from the back side of the substrate. A method for manufacturing a thin film transistor according to any one of claims 1 to 3.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60210616A JPS6269680A (en) | 1985-09-24 | 1985-09-24 | Manufacturing method of thin film transistor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60210616A JPS6269680A (en) | 1985-09-24 | 1985-09-24 | Manufacturing method of thin film transistor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS6269680A true JPS6269680A (en) | 1987-03-30 |
Family
ID=16592273
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP60210616A Pending JPS6269680A (en) | 1985-09-24 | 1985-09-24 | Manufacturing method of thin film transistor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6269680A (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6484669A (en) * | 1987-09-26 | 1989-03-29 | Casio Computer Co Ltd | Thin film transistor |
| EP0646950B1 (en) * | 1993-08-31 | 1999-11-03 | Matsushita Electric Industrial Co., Ltd. | Method for processing a thin film |
| JP2009049428A (en) * | 1996-05-31 | 2009-03-05 | Xerox Corp | Buffered substrate foe semiconductor element |
| JP2009231828A (en) * | 2008-02-26 | 2009-10-08 | Semiconductor Energy Lab Co Ltd | Method for manufacturing display device |
| JP2010251733A (en) * | 2009-03-26 | 2010-11-04 | Semiconductor Energy Lab Co Ltd | Thin film transistor and display device manufacturing method |
| JP2014160849A (en) * | 2008-02-27 | 2014-09-04 | Semiconductor Energy Lab Co Ltd | Thin film transistor |
-
1985
- 1985-09-24 JP JP60210616A patent/JPS6269680A/en active Pending
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS6484669A (en) * | 1987-09-26 | 1989-03-29 | Casio Computer Co Ltd | Thin film transistor |
| EP0646950B1 (en) * | 1993-08-31 | 1999-11-03 | Matsushita Electric Industrial Co., Ltd. | Method for processing a thin film |
| JP2009049428A (en) * | 1996-05-31 | 2009-03-05 | Xerox Corp | Buffered substrate foe semiconductor element |
| JP2012142594A (en) * | 1996-05-31 | 2012-07-26 | Thomson Licensing | Buffered substrate for semiconductor |
| JP2014199945A (en) * | 1996-05-31 | 2014-10-23 | トムソン ライセンシングThomson Licensing | Buffered substrate for semiconductor |
| JP2009231828A (en) * | 2008-02-26 | 2009-10-08 | Semiconductor Energy Lab Co Ltd | Method for manufacturing display device |
| US8901561B2 (en) | 2008-02-26 | 2014-12-02 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing display device |
| JP2014160849A (en) * | 2008-02-27 | 2014-09-04 | Semiconductor Energy Lab Co Ltd | Thin film transistor |
| JP2010251733A (en) * | 2009-03-26 | 2010-11-04 | Semiconductor Energy Lab Co Ltd | Thin film transistor and display device manufacturing method |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100260063B1 (en) | Manufacturing method of an insulated gate thin film transistor | |
| JPH07118443B2 (en) | Manufacturing method of semiconductor device | |
| JPH0519830B2 (en) | ||
| KR960042179A (en) | Thin film transistor liquid crystal display device and manufacturing method thereof | |
| JPH01241862A (en) | Manufacture of display device | |
| JPH0454375B2 (en) | ||
| JPH03244136A (en) | Manufacturing method of thin film transistor | |
| JPH1050607A (en) | Method for manufacturing semiconductor device | |
| JPH0542831B2 (en) | ||
| JPS6269680A (en) | Manufacturing method of thin film transistor | |
| JPH0362971A (en) | Thin-film transistor | |
| JP3031789B2 (en) | Thin film semiconductor device and method for manufacturing the same | |
| JP2779492B2 (en) | Thin film transistor device and method of manufacturing the same | |
| JP3284899B2 (en) | Semiconductor device and manufacturing method thereof | |
| JPH0650779B2 (en) | Thin film transistor device and manufacturing method thereof | |
| JPH01283879A (en) | Thin film semiconductor device and manufacture thereof | |
| JPS62172761A (en) | Amorphous silicon thin film transistor and its manufacturing method | |
| JP2709376B2 (en) | Method for manufacturing non-single-crystal semiconductor | |
| JP2877363B2 (en) | Method for manufacturing thin film transistor | |
| JPS62254467A (en) | Manufacture of thin film transistor | |
| JP3386713B2 (en) | Method for manufacturing active matrix display device | |
| JPH02222154A (en) | Manufacture of thin film transistor | |
| JPH02208942A (en) | Manufacture of thin film transistor | |
| JP3181901B2 (en) | Thin film transistor | |
| JPH0785480B2 (en) | Thin film transistor and manufacturing method thereof |