[go: up one dir, main page]

JPS6276772A - Manufacturing method of field effect transistor - Google Patents

Manufacturing method of field effect transistor

Info

Publication number
JPS6276772A
JPS6276772A JP60216752A JP21675285A JPS6276772A JP S6276772 A JPS6276772 A JP S6276772A JP 60216752 A JP60216752 A JP 60216752A JP 21675285 A JP21675285 A JP 21675285A JP S6276772 A JPS6276772 A JP S6276772A
Authority
JP
Japan
Prior art keywords
region
source
drain
ions
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60216752A
Other languages
Japanese (ja)
Other versions
JPH0691109B2 (en
Inventor
Takashi Noguchi
隆 野口
Yasuhiro Sakamoto
安広 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60216752A priority Critical patent/JPH0691109B2/en
Publication of JPS6276772A publication Critical patent/JPS6276772A/en
Publication of JPH0691109B2 publication Critical patent/JPH0691109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/67Thin-film transistors [TFT]

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To increase the diameter of crystal grain in a solid phase growth and to shorten the growing time by implanting inert ions to a channel region interposed between a source region and a drain region, then solid-phase growing at predetermined temperature, forming a gate electrodes, and then implanting an impurity to the source region and the drain region, and activating at predetermined temperature. CONSTITUTION:The main surface of a low melting point glass substrate 21 is coated with a polycrystalline Si layer (or a-Si:H)22, insularly formed, and removed except a predetermined region, Si<+> ions 26 are selectively implanted through a mask to the region which includes the channel region 23 of the layer 22 to convert the region to an amorphous region. Then, the region which includes the region 23 is solid-phase grown by annealing at 650 deg.C or lower. A polycrystalline Si gate electrode 27 is formed through a gate insulating film 26 on the region 23, n-type impurity ions (P<+>)28 are implanted to the electrode 27, source and drain regions 24, 25 to form an amorphous region to be activated at 650 deg.C or lower. After an interlayer insulating layer 9 is formed, source and drain electrodes 10, 11 are formed to obtain an FET30.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電界効果型トランジスタ特に薄膜1−ランジ
スタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing field effect transistors, in particular thin film 1-transistors.

〔発明の概要〕[Summary of the invention]

本発明は、薄膜トランジスタの製法において、非晶質又
は多結晶半導体層のチャンネル領域に不活性イオンを注
入した後、熱処理して固相成長させ、次いでゲート電極
とセルファラインでソース及びドレイン領域に不純物を
注入し、熱処理して活性化するごとにより、移動度μの
向上を図ると共に、固相成長及び不純物の活性化の時間
を短縮するようにしたものである。
In the method for manufacturing a thin film transistor, the present invention involves implanting inert ions into the channel region of an amorphous or polycrystalline semiconductor layer, followed by heat treatment to achieve solid phase growth, and then implanting impurities into the source and drain regions at the gate electrode and self-alignment line. Each time the impurity is implanted and activated by heat treatment, the mobility μ is improved and the time for solid phase growth and impurity activation is shortened.

(従来の技術〕 一般に薄膜トランジスタは、石英ガラス等の絶縁基体上
にシリコン等の半導体薄膜を被着形成し、この半導体薄
膜にチャンネル領域、ソース領域及びドレイン領域を形
成して電界効果型トランジスタ(FET)を構成するよ
うにしている。このような薄膜トランジスタとして、チ
ャンネル領域の半導体薄膜の膜厚を100人〜800人
と薄くして特性向上を図った超薄膜トランジスタが提案
されている(特開昭60−136262号)。
(Prior Art) In general, thin film transistors are made by depositing a semiconductor thin film such as silicon on an insulating substrate such as quartz glass, and forming a channel region, a source region, and a drain region on this semiconductor thin film to form a field effect transistor (FET). ).As such a thin film transistor, an ultra-thin film transistor has been proposed in which the thickness of the semiconductor thin film in the channel region is reduced by 100 to 800 times to improve characteristics (Japanese Unexamined Patent Publication No. 1989-1999). -136262).

また、薄)模トランジスタの基板としては、高融点の石
英ガラスが一般に用いられているが、商価格となるため
、安価な低融点ガラス(例えば無アルカリガラス)を基
板に用いることが望まれている。このような比較的低融
点のガラス(軟化点650℃以下)を基板に用いる場合
には薄膜トランジスタの製造工程中の温度を650℃以
下とするような低温プロセスが必要となる。
In addition, although quartz glass with a high melting point is generally used as a substrate for thin (thin) simulated transistors, it is desirable to use inexpensive low-melting glass (e.g., alkali-free glass) for the substrate due to its commercial price. There is. When such relatively low melting point glass (softening point of 650° C. or lower) is used for the substrate, a low-temperature process is required in which the temperature during the manufacturing process of the thin film transistor is kept at 650° C. or lower.

第1図は従来の薄膜トランジスタの製法の一例を示す。FIG. 1 shows an example of a conventional thin film transistor manufacturing method.

。 先ず、第2図Aに丞ずように低融点ガラス基板(1)の
−面上に例えば多結晶シリコンの″S+模シリコン層(
2)を被着形成して後、薄膜シリコン層(2)を島領域
化しく所定領域を残して他をエツチング除去する)、次
いでこの薄膜シリコン層(2)にシリコンイオンSt”
 (31をイオン注入して(ドーズ量は例えば1.5X
 1015/1ffl)非晶質化する。なお、島領域化
とSt+のイオン注入はどちらが先でもよい。
. First, as shown in FIG. 2A, for example, an ``S+ simulated silicon layer'' of polycrystalline silicon (
2), the thin film silicon layer (2) is formed into island regions by etching away the rest while leaving a predetermined region), and then silicon ions St" are applied to the thin film silicon layer (2).
(Ion implantation of 31 (dose amount is, for example, 1.5X)
1015/1ffl) becomes amorphous. Note that either the island region formation or the St+ ion implantation may be performed first.

次に、600℃、15時間の熱処理を行っ゛C固相成長
させる(第2図B参照)。
Next, heat treatment is performed at 600° C. for 15 hours to cause solid phase growth (see FIG. 2B).

次に、第2図Cにボずように薄膜シリコン層(2)上に
例えば5i02等よりなるゲート絶縁膜(4)及び多結
晶シリコンのゲート電極(5)を被着形成する。
Next, as shown in FIG. 2C, a gate insulating film (4) made of, for example, 5i02 or the like and a gate electrode (5) of polycrystalline silicon are deposited on the thin silicon layer (2).

次いでゲート電極(5)をマスクにソース領域(6)及
びドレイン領域(7)に、nチャンネルFETであれば
n形不純物例えばリンイオン(P”)(81をイオン注
入する。このとき多結晶シリコンのゲート電極(5)に
もリンイオンが注入され低抵抗となる。
Next, using the gate electrode (5) as a mask, an n-type impurity such as phosphorus ions (P'') (81) is implanted into the source region (6) and drain region (7) in the case of an n-channel FET. Phosphorus ions are also implanted into the gate electrode (5), resulting in low resistance.

次に、600℃、7〜8時間の熱処理を行ってソース領
域(6)及びドレイン領域(7)の活性化を行う(第2
図り参照)。
Next, heat treatment is performed at 600°C for 7 to 8 hours to activate the source region (6) and drain region (7) (second
(see diagram).

しかる後、CVD (化学気相成長)法による5i02
の眉間絶縁N(9)を被着形成して後、コンタクト窓孔
を形成し、Aβによるソース電極(1o)及びドレイン
電極(11)を形成して′f#BYトランジスタ(12
)を得る。
After that, 5i02 by CVD (chemical vapor deposition) method.
After forming the glabellar insulation N (9), a contact window hole is formed, a source electrode (1o) and a drain electrode (11) made of Aβ are formed, and the 'f#BY transistor (12) is formed.
).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の製法においては、第2図への工程でシリ
コンイオン(St”)のドーズ量が多い程、その後の熱
処理での結晶粒成長が大きくなり、移動度μが上がる。
In the conventional manufacturing method described above, the larger the dose of silicon ions (St'') in the step shown in FIG. 2, the larger the crystal grain growth in the subsequent heat treatment, and the higher the mobility μ.

しかし、ドーズ量を多くした場合には結晶粒成長時間が
長くかかるという問題点があった。例えばSi+のドー
ズ量が2 X IQ” cm −’であると、成長時間
は30時間以上かかる。
However, when the dose is increased, there is a problem that it takes a long time to grow the crystal grains. For example, if the Si+ dose is 2 x IQ'' cm -', the growth time will be 30 hours or more.

本発明は、かかる点に鑑み、固相成長における結晶粒径
を大きくすると同時に、成長時間を短縮できるようにし
た電界効果型トランジスタの製造方法を提供するもので
ある。
In view of these points, the present invention provides a method for manufacturing a field effect transistor that can increase the crystal grain size in solid phase growth and shorten the growth time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、表面が絶縁体である基板(21)上に形成し
た非晶質又は多結晶半導体1m(22)に電界効果型ト
ランジスタを製造する方法において、その半導体Ji(
22)のソース領域(24)及びドレイン領域(25)
に1央まれたチャンネル領域(23)に選択的に不活性
イオン(26)を注入して後、650℃以上で熱処理し
て固相成長させる。
The present invention relates to a method for manufacturing a field effect transistor in an amorphous or polycrystalline semiconductor 1m (22) formed on a substrate (21) whose surface is an insulator, the semiconductor Ji (
22) source region (24) and drain region (25)
After selectively injecting inert ions (26) into the channel region (23) centered at 1, heat treatment is performed at 650° C. or higher to achieve solid phase growth.

次に、チャンネル領域(23)上にゲート絶縁膜(26
)を介してゲート電極(27)を形成した後、ソース領
域(24)及びドレイン領域(25)に第1導電形の不
純物(28)を注入し、650℃以上で熱処理して活性
化する。これ以後は、通常のように眉間絶縁r@(9)
を形成し、j−間絶縁層(9)にコンタクト用窓孔を形
成して後、例えばAβによるソース電極(lO)及びド
レイン電極(工1)を形成して、目的の電界効果型トラ
ンジスタ即ら薄膜トランジスタ(30)を得る。
Next, the gate insulating film (26) is placed on the channel region (23).
) After forming a gate electrode (27) through a gate electrode (27), impurities (28) of the first conductivity type are implanted into the source region (24) and drain region (25), and activated by heat treatment at 650° C. or higher. After this, as usual, insulate between the eyebrows r@(9)
After forming a contact window hole in the j-j insulating layer (9), a source electrode (lO) and a drain electrode (step 1) made of Aβ, for example, are formed, and the desired field effect transistor is immediately connected. A thin film transistor (30) is obtained.

基板(21)としては、低温プロセスで使用aJ能な低
融点ガラス(例えば無アルカリガラス)、或いは石英ガ
ラス、半導体基板上に5i02等の絶縁膜を被着した基
板、等を用いることができる。不活性イオン(26)と
しては、半導体Jm(22)がシリコンの場合には、例
えばシリコンイオンSi+を用いることができる。
As the substrate (21), a low melting point glass that can be used in a low temperature process (for example, alkali-free glass), quartz glass, a substrate with an insulating film such as 5i02 coated on a semiconductor substrate, etc. can be used. As the inert ion (26), for example, silicon ion Si+ can be used when the semiconductor Jm (22) is silicon.

〔作用〕[Effect]

半導体層(22)のチャンネル領域(23)に不活性イ
オン(26)を注入することにより、チャンネル領域(
23)が選択的に非晶質化される。次いで650℃以上
の低温熱処理で、チャンネル領域(23)が固相成長さ
れるが、この固相成長はチャンネル領域でランダム核生
成が起きるより先に、イオン注入されないソース領域(
24)及びドレイン領域(25)の結晶粒を種としてソ
ース及びドレイン両領域側から成長されるため、固相成
長時間が短縮される。
By implanting inert ions (26) into the channel region (23) of the semiconductor layer (22), the channel region (
23) is selectively amorphized. Next, a channel region (23) is grown in a solid phase by low-temperature heat treatment at 650° C. or higher, but this solid phase growth occurs in a source region (23) where ions are not implanted before random nucleation occurs in the channel region.
Since the crystal grains in the source and drain regions (24) and (25) are used as seeds to grow from both the source and drain regions, the solid phase growth time is shortened.

従って、不活性イオン(26)のドーズ量を多(して結
晶粒径を大きくする場合でも、その固相成長時間は短く
なる。
Therefore, even if the crystal grain size is increased by increasing the dose of inert ions (26), the solid phase growth time will be shortened.

又、不純物イオンを注入した後のソース領域(24)及
びドレイン領域(25)の活性化も低温(650℃以−
ト)プロセスで行われる。この場合、固相成長と不純物
の活性化はほとんど同じ条件(温度、時間)で行われる
Furthermore, the activation of the source region (24) and drain region (25) after implanting impurity ions is also performed at a low temperature (650°C or higher).
process). In this case, solid phase growth and impurity activation are performed under almost the same conditions (temperature, time).

〔実施例〕〔Example〕

以F、第1図を参照して本発明の′電界効果型トランジ
スタの製造方法の一例を説明する。
Hereinafter, an example of the method for manufacturing a field effect transistor of the present invention will be explained with reference to FIG.

先ず、!@1図Aに不すように、例えば無アルカリガラ
スの如き低融点ガラス基板(21)の−主面に膜厚80
0人以−トの超薄膜のCVD多結晶シリコン層、(又は
水素化非晶質シリコンa−Si:H)(22)を被着形
成する。そして、この多結晶シリコン層(22)を島領
域化し、即ち所定領域を残して、他をエツチング除去す
る。次いで、多結晶シリコン層(22)のチャンネル領
域(23)を含む領域に対してマスクを介して選択的に
シリコンイオン(Si”)  (26)をイオン注入し
てチャンネル領域(13)を含む領域を非晶質化する。
First of all! @1 As shown in Figure A, a film thickness of 80 mm is applied to the main surface of a low melting point glass substrate (21) such as alkali-free glass.
Deposit a thin ultra-thin CVD polycrystalline silicon layer (or hydrogenated amorphous silicon a-Si:H) (22). Then, this polycrystalline silicon layer (22) is made into an island region, that is, a predetermined region is left and the rest is etched away. Next, silicon ions (Si'') (26) are selectively implanted into the region including the channel region (23) of the polycrystalline silicon layer (22) through a mask to form the region including the channel region (13). to amorphous.

従って、このときソース領域(24)及びドレイン領域
(25)はイオン注入されない。−シリコンイオン(2
6)のドーズ量は例えば2 X 1015c+a−2程
度である。
Therefore, at this time, ions are not implanted into the source region (24) and drain region (25). -Silicon ion (2
The dose amount of 6) is, for example, about 2×1015c+a-2.

次に、′N41図Bに示すように600℃のアニール処
理を施して、非晶質化されたチャンネル領域(23)を
含む領域を固相成長させる。このとき、ランダム核生成
が起きるより先に、ソース領域(24)及びドレイン領
域(25)の結晶粒を棟としてソース及びドレイン領域
の両側から固相成長が起きる。従って、このときの固相
成長時間は短く、10時間程度である。
Next, as shown in Figure B of 'N41, annealing treatment is performed at 600° C. to grow a region including the amorphous channel region (23) in a solid phase. At this time, before random nucleation occurs, solid phase growth occurs from both sides of the source and drain regions using the crystal grains of the source region (24) and drain region (25) as ridges. Therefore, the solid phase growth time at this time is short, about 10 hours.

次に、第1図ICにボずようにチャンネル領域(23)
上に例えばSiO2等によるゲート絶縁膜(26)を介
して多結晶シリコンによるゲート電極(17)を形成し
、このゲート電極(27)とセルファラインでソース領
域(24)及びドレイン領域(25)に、例えばnチャ
ンネルドETであればn形不純物イオン(例えばリンイ
オンP”>(2B)をイオン注入する。このとき、同時
にゲート電極(27)の多結晶シリコンにもn形不純物
が注入され、低抵抗のシリコンゲート電極(27)が形
成される。そして、このn形不純物のイオン注入により
、ソース領域(24)及びドレイン領域(25)は非晶
質化される。
Next, as shown in the IC in Figure 1, the channel area (23)
A gate electrode (17) made of polycrystalline silicon is formed on the top through a gate insulating film (26) made of SiO2 or the like, and this gate electrode (27) and self-alignment line are used to form a source region (24) and a drain region (25). For example, in the case of an n-channel ET, n-type impurity ions (for example, phosphorus ions P">(2B) are ion-implanted. At this time, n-type impurities are also implanted into the polycrystalline silicon of the gate electrode (27), resulting in low A resistive silicon gate electrode (27) is formed.The source region (24) and drain region (25) are made amorphous by this ion implantation of n-type impurities.

次に、第1図りにホずように、600℃、7〜8時間の
アニール処理を施し、ソース領域(24)&びドレイン
領域(25)を固相成長し、活性化する。
Next, as shown in the first diagram, an annealing treatment is performed at 600° C. for 7 to 8 hours to grow and activate the source region (24) and drain region (25) in solid phase.

この場合、グートドのチャンネル領域(23)は既に結
晶化しているので、これを種にソース領域(24)及び
ドレイン領域(25)が結晶化される。
In this case, since the good channel region (23) has already been crystallized, the source region (24) and drain region (25) are crystallized using this as a seed.

然る後、第1図Eにボずように、全面に例えばPSG 
(リンシリケートガラス)又はCVD5i(h等による
層間絶縁層(9)を被着形成して後、ソース及びドレイ
ンのコンタクト用窓孔を形成し、次いで例えばAlのソ
ース電極(lO)及びドレイン電極(11)を形成して
目的の電界効果型トランジスタ即ちJ[lQ)ランジス
タ(30)を得る。
After that, as shown in Fig. 1E, for example, PSG is applied to the entire surface.
After depositing an interlayer insulating layer (9) made of (phosphosilicate glass) or CVD5i (h, etc.), window holes for source and drain contacts are formed, and then source electrodes (lO) and drain electrodes (of Al, for example) are formed. 11) to obtain the desired field effect transistor, that is, a J[lQ) transistor (30).

かかる製法によれば、第1図Bのアニール処理でチャン
ネル領域の固相成長に要する時間が、Si+のドーズ量
2 X IQ” am−’でもIO時間程度となり、従
来法の30時間に比べて大幅に短縮される。しかもSi
+のドーズ量を多くすることができるのでチャンネル領
域の結晶粒成区が大きくなり、移動度μが向上する。
According to this manufacturing method, the time required for solid-phase growth of the channel region in the annealing process shown in FIG. Significantly shortened.Moreover, Si
Since the dose of + can be increased, the crystal grain formation area in the channel region becomes larger, and the mobility μ improves.

チャンネル領域(23)の固相成長において(第1図B
の工程)、ソース領域(24)及びト”レイン領域(2
5)の両側から結晶粒成長が起きて例えばゲート下に結
晶粒界(29)が生じる場合には移動度μが多少下がる
が、この結晶粒界(29)がチャンふル長方向と直交す
る方向であるので、リーク電流はほとんど問題とならな
い。
In the solid phase growth of the channel region (23) (Fig. 1B
step), source region (24) and train region (24)
If crystal grain growth occurs from both sides of 5) and, for example, a grain boundary (29) is created under the gate, the mobility μ decreases somewhat, but this grain boundary (29) is perpendicular to the chamfer length direction. leakage current is hardly a problem.

尚、上潮ではnチャンネルFETについて述べたが、P
チャンネルFIE’「の製法にも本発明は通用できる。
In addition, although I talked about n-channel FET in Kamishio, P
The present invention can also be applied to the manufacturing method of channel FIE'.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、非晶質又は多結晶半導体層のチャンネ
ル領域を不活性イオンの注入で選択的に非晶質化して低
温熱処理し、ソース及びドレイン領域からの結晶化を利
用して、チャンネル領域を固相成長させたことにより、
不活性イオンのドーズ量を多(してもチャンネル領域の
固相成長時間を矩くすることができる。従ってドーズ量
を多くし結晶粒径を大きくして移動度μを上げることが
できると同時に、その固相成長時間を大幅に石綿でき、
この棟の薄膜トランジスタの製造を容易ならしめ得る。
According to the present invention, a channel region of an amorphous or polycrystalline semiconductor layer is selectively made amorphous by implantation of inert ions and then subjected to low-temperature heat treatment. By solid-phase growth of the region,
Even if the dose of inert ions is increased, the solid phase growth time of the channel region can be shortened. Therefore, by increasing the dose, the crystal grain size can be increased, and the mobility μ can be increased. , its solid phase growth time can significantly reduce asbestos;
Manufacturing of thin film transistors using this structure can be facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A−Eは本発明の電界効果型トランジスタの製造
工程図、第2図A−Eは従来の電界グJ果型トランジス
タの製造工程図である。 (21)は基数、(22)は非晶質又は多結晶半導体層
、(23)はチャンネル領域、(24)はソース領域、
(25)はドレイン領域、(26)はゲート絶縁膜、(
27)はゲート電極である。
1A to 1E are process diagrams for manufacturing a field effect transistor of the present invention, and FIGS. 2A to 2E are process diagrams for manufacturing a conventional field effect transistor. (21) is a base, (22) is an amorphous or polycrystalline semiconductor layer, (23) is a channel region, (24) is a source region,
(25) is the drain region, (26) is the gate insulating film, (
27) is a gate electrode.

Claims (1)

【特許請求の範囲】 表面が絶縁体である基板上に形成した非晶質又は多結晶
半導体層に電界効果トランジスタを製造する方法におい
て、 ソース領域とドレイン領域に挟まれたチャンネル領域に
不活性イオンを注入した後、650℃以下で熱処理を行
って固相成長させ、 さらにゲート電極を形成した後ソース領域及びドレイン
領域に不純物を注入し、650℃以下で熱処理を行って
活性化することを特徴とする電界効果型トランジスタの
製造方法。
[Claims] In a method for manufacturing a field effect transistor in an amorphous or polycrystalline semiconductor layer formed on a substrate whose surface is an insulator, inert ions are added to a channel region sandwiched between a source region and a drain region. After implanting impurities, heat treatment is performed at 650 degrees Celsius or less to cause solid phase growth, and after forming the gate electrode, impurities are implanted into the source and drain regions, and heat treatment is performed at 650 degrees Celsius or less to activate. A method for manufacturing a field effect transistor.
JP60216752A 1985-09-30 1985-09-30 Method for manufacturing field effect transistor Expired - Lifetime JPH0691109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60216752A JPH0691109B2 (en) 1985-09-30 1985-09-30 Method for manufacturing field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60216752A JPH0691109B2 (en) 1985-09-30 1985-09-30 Method for manufacturing field effect transistor

Publications (2)

Publication Number Publication Date
JPS6276772A true JPS6276772A (en) 1987-04-08
JPH0691109B2 JPH0691109B2 (en) 1994-11-14

Family

ID=16693365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60216752A Expired - Lifetime JPH0691109B2 (en) 1985-09-30 1985-09-30 Method for manufacturing field effect transistor

Country Status (1)

Country Link
JP (1) JPH0691109B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450461A (en) * 1987-08-20 1989-02-27 Canon Kk Photodetector
JPS6450460A (en) * 1987-08-20 1989-02-27 Canon Kk Photodetector
JPH07153956A (en) * 1993-08-09 1995-06-16 Gold Star Electron Co Ltd Thin film transistor and manufacturing method thereof
US5904513A (en) * 1994-10-24 1999-05-18 Micron Technology, Inc. Method of forming thin film transistors
US6072193A (en) * 1997-05-30 2000-06-06 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
US6194255B1 (en) * 1994-06-14 2001-02-27 Semiconductor Energy Laboratry Co. Ltd Method for manufacturing thin-film transistors
US6541793B2 (en) 1997-05-30 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
JP2004087606A (en) * 2002-08-23 2004-03-18 Sharp Corp SOI substrate, display device using the same, and method of manufacturing SOI substrate
JP2012199274A (en) * 2011-03-18 2012-10-18 Toshiba Corp Semiconductor device and manufacturing method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450460A (en) * 1987-08-20 1989-02-27 Canon Kk Photodetector
JPS6450461A (en) * 1987-08-20 1989-02-27 Canon Kk Photodetector
JPH07153956A (en) * 1993-08-09 1995-06-16 Gold Star Electron Co Ltd Thin film transistor and manufacturing method thereof
US6194255B1 (en) * 1994-06-14 2001-02-27 Semiconductor Energy Laboratry Co. Ltd Method for manufacturing thin-film transistors
US6743667B2 (en) 1994-06-14 2004-06-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing an active matrix type device
US6420219B2 (en) 1994-10-24 2002-07-16 Micron Technology, Inc. Thin film transistors and method of forming thin film transistors
US6017782A (en) * 1994-10-24 2000-01-25 Micron Technology, Inc. Thin film transistor and method of forming thin film transistors
US6214652B1 (en) 1994-10-24 2001-04-10 Micron Technology, Inc. Thin film transistors and method of forming thin film transistors
US5936262A (en) * 1994-10-24 1999-08-10 Micron Technology, Inc. Thin film transistors
US5904513A (en) * 1994-10-24 1999-05-18 Micron Technology, Inc. Method of forming thin film transistors
US6072193A (en) * 1997-05-30 2000-06-06 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
US6541793B2 (en) 1997-05-30 2003-04-01 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and semiconductor device using thin-film transistors
JP2004087606A (en) * 2002-08-23 2004-03-18 Sharp Corp SOI substrate, display device using the same, and method of manufacturing SOI substrate
JP2012199274A (en) * 2011-03-18 2012-10-18 Toshiba Corp Semiconductor device and manufacturing method thereof
US8999801B2 (en) 2011-03-18 2015-04-07 Kabushiki Kaisha Toshiba Nanowire channel field effect device and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0691109B2 (en) 1994-11-14

Similar Documents

Publication Publication Date Title
US6346486B2 (en) Transistor device and method of forming the same
JP2978736B2 (en) Method for manufacturing semiconductor device
US6261875B1 (en) Transistor and process for fabricating the same
JPS6276772A (en) Manufacturing method of field effect transistor
JP3500157B2 (en) Method of manufacturing MIS type field effect transistor
JPS61119079A (en) Manufacture of thin film transistor
JPH0770481B2 (en) Method for forming silicon semiconductor layer
JPH0738118A (en) Method of manufacturing thin film transistor
JPS62122172A (en) Manufacturing method of semiconductor device
JP3057253B2 (en) Method for forming boron-containing semiconductor layer
JPS6288365A (en) Method for manufacturing thin film transistors
JPH04370937A (en) Manufacturing method of semiconductor device
JPS63283068A (en) Manufacture of thin-film transistor
JP2554055B2 (en) Method for forming low resistance polycrystalline silicon thin film
JP3557565B2 (en) Method for manufacturing thin film transistor
JP2556850B2 (en) Method for manufacturing thin film transistor
JP2565192B2 (en) Method for manufacturing semiconductor device
JP2837473B2 (en) Silicon thin film transistor
JPH03200319A (en) Formation of poly-crystalline silicon
KR0167667B1 (en) Semiconductor manufacturing method
JPH0551176B2 (en)
JPH0442833B2 (en)
KR100265560B1 (en) Gate electrode of semiconductor device and method for forming the same
JPS6241429B2 (en)
JPH08181317A (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term