[go: up one dir, main page]

JPS627620A - Reaction tube for polycrystalline silicon production - Google Patents

Reaction tube for polycrystalline silicon production

Info

Publication number
JPS627620A
JPS627620A JP14640585A JP14640585A JPS627620A JP S627620 A JPS627620 A JP S627620A JP 14640585 A JP14640585 A JP 14640585A JP 14640585 A JP14640585 A JP 14640585A JP S627620 A JPS627620 A JP S627620A
Authority
JP
Japan
Prior art keywords
silicon
reaction tube
tube
silicon carbide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14640585A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Motomiya
本宮 達彦
Nobuhiro Tsuda
津田 信博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP14640585A priority Critical patent/JPS627620A/en
Publication of JPS627620A publication Critical patent/JPS627620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a reaction tube for producing polycrystalline silicon which is strong in thermal stress and is improved in the productivity by covering a base body made of ceramic with high-purity dense SiC. CONSTITUTION:The titled reaction tube is obtained by covering the surface of a base body made of ceramic with dense SiC which is high purity and zero in the porosity. As a covering method of the above-mentioned SiC film, an organic Si compd. is decomposed in a vapor phase and SiC generated therein may be stuck on the inside wall of a tube consisting of the base body made of ceramic. As the above-mentioned organic Si compd., the following organosilane or organopolysilane is exampled which is shown in a formula [at least one piece of R is H and the other is CH3, C2H5, C3H7, phenyl and vinyl, (n) is 1-4] and has H joined to at least one piece of Si in a molecule and does not contain SiX group (X is halogen atom and O). The heating of these organic Si compds. in the reactor is preferably performed at 700-1,400 deg.C to decompose them in the vapor phase.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多結晶シリコン製造用反応管、特には顆粒状多
結晶シリコンを流動床反応器を用いて製造するときに使
用されるセラミック製の反応管に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a reaction tube for producing polycrystalline silicon, particularly a reaction tube made of ceramic used when producing granular polycrystalline silicon using a fluidized bed reactor. This relates to reaction tubes.

(従来の技術) 半導体用の高純度多結晶シリコンの製造はペルジャー内
に設置した高純度多結晶シリコンの細棒を通電加熱し、
これにクロロシランと水素の混合ガスを供給して反応さ
せ、このシリコン細棒の表面にシリコンを析出させると
いう、いわゆるシーメンス法で作られており、このペル
ジャーとしては石英製のものが使用されている。
(Prior technology) High purity polycrystalline silicon for semiconductors is manufactured by heating a thin rod of high purity polycrystalline silicon placed in a Pel jar with electricity.
It is made using the so-called Siemens method, in which a mixed gas of chlorosilane and hydrogen is supplied and reacted, and silicon is deposited on the surface of this thin silicon rod.The Pel jar is made of quartz. .

他方、この多結晶シリコンの製造については、クロロシ
ランと水素との混合ガスを流動床反応器中に供給し、こ
の反応で発生したシリコンを反応器中に流動状に保持さ
れているシリコン粒子(種粒子)の表面に析出させる方
法も提案されており(特公昭35−18555号公報参
照)、この方法は特には太陽電池などの光電変換素子と
してのシリコンの製造に適するものとされているが、こ
こに使用される流動床反応管も石英製のものとされてい
る。
On the other hand, for the production of polycrystalline silicon, a mixed gas of chlorosilane and hydrogen is supplied into a fluidized bed reactor, and the silicon generated in this reaction is converted into silicon particles (seeds) held in a fluidized state in the reactor. A method has also been proposed in which silicon is deposited on the surface of particles (see Japanese Patent Publication No. 35-18555), and this method is said to be particularly suitable for producing silicon as photoelectric conversion elements such as solar cells. The fluidized bed reaction tube used here is also made of quartz.

しかし、シーメンス法で使用される石英製のべルジャー
は熱応力に弱いものであり、この内壁に熱膨張係数の異
なるシリコンの析出があると冷却時に破損したり、クラ
ックが発生するために、これには外部から冷却してシリ
コンの析出を防止するという方法が採られている。した
がってこれには反応の熱効率がわるくなり、得られるシ
リコンが高価格のものになるという不利がある。また、
流動床反応法における石英反応器も上記したシーメンス
法におけるペルジャーと同じように熱応力に弱く、管内
壁へのシリコンの析出に起因する冷却時の破損、クラッ
クの発生という問題点があり、またこの方法には外熱式
であるために反応管を外部から冷却することができず、
管壁に析出したシリコンを除去するためには管内を薬液
でクリーニングする必要があり、生産性が低下するとい
う欠点もある。
However, the quartz bell jar used in the Siemens method is susceptible to thermal stress, and if silicon with a different coefficient of thermal expansion is deposited on its inner wall, it may break or crack during cooling. A method is used to prevent silicon precipitation by cooling from the outside. This therefore has the disadvantage that the thermal efficiency of the reaction is poor and the resulting silicon is expensive. Also,
Like the Pelger used in the Siemens process mentioned above, the quartz reactor used in the fluidized bed reaction method is also susceptible to thermal stress, and has the problem of breakage and cracking during cooling due to the precipitation of silicon on the inner wall of the tube. Since the method uses external heating, the reaction tube cannot be cooled from the outside.
In order to remove silicon deposited on the tube wall, it is necessary to clean the inside of the tube with a chemical solution, which also has the disadvantage of reducing productivity.

(発明の構成) 本発明はこのような不利を解決した多結晶シリコン製造
用反応管に関するものであり、これはセラミック製の基
体の表面を高純度で気孔率が実質的に零である炭化けい
素で被覆してなることを特徴とするものである。
(Structure of the Invention) The present invention relates to a reaction tube for producing polycrystalline silicon that solves the above-mentioned disadvantages.The present invention relates to a reaction tube for producing polycrystalline silicon that solves the above-mentioned disadvantages. It is characterized by being coated with a plain material.

すなわち5本発明者らは主として旋動床法によるシリコ
ン顆粒の製造に使用される反応管について種々検討した
結果、セラミック基体の表面を炭化けい素で被覆すると
炭化けい素が石英にくらべて熱応力に強く、その熱膨張
係数がシリコンに近いものであるため、理由は不明であ
るがこの被覆面でのシリコンの析出が無くなるかまたは
極〈僅かなものとなり、薬液によるクリーニングを行な
う必要がなくなるということを見出すと共に、この高純
度で緻密度の炭化けい素の被覆には分子中にけい素原子
に結合した水素原子を含有する有機けい素化合物の気相
熱分解反応により行なうことがよいということを確認し
て本発明を完成させた。
In other words, the present inventors conducted various studies on reaction tubes mainly used for producing silicon granules by the rotating bed method, and found that when the surface of a ceramic substrate is coated with silicon carbide, silicon carbide has less thermal stress than quartz. For reasons unknown, silicon precipitation on the coated surface disappears or becomes extremely small, eliminating the need for chemical cleaning. In addition to discovering that this highly pure and dense silicon carbide coating is best carried out by a gas phase pyrolysis reaction of an organosilicon compound containing a hydrogen atom bonded to a silicon atom in its molecule. After confirming this, the present invention was completed.

本発明の反応管基体は耐熱性のあるものであればどのよ
うな材料で作られたものであってもよく、これには炭素
、炭化けい素、窒化けい素などのセラミックあるいはこ
れらの複合体も使用できるが、好ましくは強度的にすぐ
れたセラミックとすることが望ましい、これらの材料を
単独で流動床反応管として使用する場合に必要とされる
要件は気孔率が零で高純度であり、かつシリコンとの熱
膨張係数が近似していることであり、炭素単独では気孔
率、熱膨張係数および純度が他のセラミック基体にくら
べて問題となるが、しかしこれはその表面に高純度の炭
化けい素膜を被覆することによって解決されるし、これ
によれば器壁にシリコンも析出しなくなるということが
発見された0本発明の炭化けい素膜の被覆方法は前記し
たセラミック製基体よりなる管の内壁に有機けい素化合
物を気相熱分解させ、ここに発生する炭化けい素をここ
に付着させればよく、この有機けい素化合物としては一
般式 R5f 2n+2     n (ここにRはその少なくとも1個が水素原子であり、他
はメチル基、エチル基、プロピル基、フェニル基、ビニ
ル基から選ばれる1価炭化水素基、nは1〜4の正数)
で示される分子中に少なくとも1個のけい素原子に結合
した水素原子を有するが、SiX基(Xはハロゲン原子
または酸素原子)を含まないオルガノシランまたはオル
ガノポリシラン類または一般式 (ここにRは同記に同じ ulはメチレン基、エチレン
基またはフェニレン基、腸は1〜2の正数)で示される
シルアルキレン化合物またはシルフェニレン化合物、あ
るいは同一分子中にこの両者の主骨格をもつ化合物があ
げられ、これらはその1種または2種あるいは2種以上
の混合物として使用すればよい、なお、これらは式 (Xは正数)で示されるジメチルポリシランを350℃
以上の温度で熱分解させて得られるジメチルポリシラン
を主体とするメチルハイドロジエンシラン類が好ましい
ものとされる。なお、これらの有機けい素化合物は従来
公知の方法で製造することがききるが、これらは蒸留工
程で容易に高純度化することができるので、気相熱分解
によって得られる炭化けい素被覆も極めて純度の高いも
のになるという有利性が与えられる。
The reaction tube substrate of the present invention may be made of any heat-resistant material, including ceramics such as carbon, silicon carbide, and silicon nitride, or composites thereof. Although ceramics with excellent strength are preferably used, these materials must have zero porosity and high purity when used alone as a fluidized bed reaction tube. Moreover, the coefficient of thermal expansion is similar to that of silicon, and carbon alone poses problems in terms of porosity, coefficient of thermal expansion, and purity compared to other ceramic substrates. This problem can be solved by coating with a silicon film, and it has been discovered that this prevents silicon from depositing on the vessel wall. The organosilicon compound may be vapor-phase pyrolyzed on the inner wall of the tube, and the generated silicon carbide may be attached thereto. One is a hydrogen atom, the others are monovalent hydrocarbon groups selected from methyl, ethyl, propyl, phenyl, and vinyl groups, n is a positive number from 1 to 4)
Organosilanes or organopolysilanes having at least one hydrogen atom bonded to a silicon atom in the molecule represented by, but not containing an SiX group (X is a halogen atom or an oxygen atom) or the general formula (where R is Same as above. ul is a methylene group, ethylene group, or phenylene group, and the integer is a positive number from 1 to 2). These may be used alone, or as a mixture of two or more of them. Furthermore, these are dimethylpolysilanes represented by the formula (X is a positive number) heated at 350°C.
Methylhydrodiene silanes mainly consisting of dimethylpolysilane obtained by thermal decomposition at the above temperature are preferred. These organosilicon compounds can be produced by conventionally known methods, but since they can be easily purified to a high degree through a distillation process, silicon carbide coatings obtained by vapor phase pyrolysis are also extremely difficult to obtain. This gives the advantage of high purity.

この有機けい素化合物による炭化けい素被覆は上記した
有機けい素化合物を前記した炭化けい素膜の反応器中に
水素ガスまたは窒素、ヘリウム。
The coating of silicon carbide with this organosilicon compound is performed by applying the above-mentioned organosilicon compound to the silicon carbide film reactor using hydrogen gas, nitrogen, or helium.

アルゴンなどの不活性ガスあるいはこれらの混合ガスを
キャリヤーガスとして、これに搬送させて装入し、この
反応器中で熱分解させればよい、この反応器中の温度は
700℃以下ではこの有機けい素化合物の熱分解速度が
遅いので、目的とする炭化けい素を収率よく取得するた
めには700℃以上とすることが必要とされる。しかし
、1,400℃以上とすると炭化けい素結晶の成長速度
は向上するが結晶の成長が不均一なものとなり1反応器
壁への密着性がわるくなるので、700〜1.400℃
、好ましくは900−1,200℃の範囲とすることが
よい、また、この有機けい素化合物はハロゲン原子を含
まないので、メチルトリクロロシランなどのような塩素
含有有機けい素化合物を使用したときのような塩素水素
ガスなどの発生がないので排ガス処理設備も不要とされ
る。
An inert gas such as argon or a mixture thereof may be used as a carrier gas, and the organic gas may be charged into the reactor and thermally decomposed in the reactor. Since the rate of thermal decomposition of silicon compounds is slow, a temperature of 700° C. or higher is required to obtain the desired silicon carbide in good yield. However, if the temperature is 1,400℃ or higher, the growth rate of silicon carbide crystals will improve, but the crystal growth will become uneven and the adhesion to the reactor wall will deteriorate.
, preferably in the range of 900-1,200°C.Also, since this organosilicon compound does not contain a halogen atom, Since there is no generation of chlorine-hydrogen gas, there is no need for exhaust gas treatment equipment.

上記のようにして得られた本発明の多結晶シリコン製造
用反応管は熱膨張係数がシリコンに近い炭化けい素膜で
その表面が被覆されているが、これによって器壁へのシ
リコン析出を防止するものであるためにこの炭化けい素
の膜厚は強度面から50〜500g、mの範囲とするこ
とが必要とされる。なお、この炭化けい素膜を被覆して
なるセラミック基体は各種の高温用反応室としても使用
可能である。
The surface of the reaction tube for producing polycrystalline silicon of the present invention obtained as described above is coated with a silicon carbide film whose thermal expansion coefficient is close to that of silicon, which prevents silicon from depositing on the vessel wall. Therefore, the thickness of this silicon carbide film must be in the range of 50 to 500 g.m from the viewpoint of strength. Note that the ceramic substrate coated with this silicon carbide film can also be used as various high-temperature reaction chambers.

つぎに本発明の実施例をあげるが1例中の部は重量部を
示したものである。
Next, examples of the present invention will be given, and parts in each example indicate parts by weight.

実施例1 粒径が5〜10JLmであるα型炭化けい素35部1粒
径3〜loomの天然黒鉛17部、シリコーン樹脂10
部およびトルエン60部をボールミル中で混合してから
トルエンを揮発除去させ、得られた粉体をラバープレス
を使用し圧力1.0t/cm’で成形して70mmφX
5mmX500mmの管状成形体を作り、ついでこのも
のを1,000℃で30分間加熱してこのバインダーを
分解させて仮焼体としてからi、soo℃の溶融シリコ
ンと原料中の炭素とを反応させて成形体とした。
Example 1 35 parts of α-type silicon carbide with a particle size of 5 to 10 JLm, 17 parts of natural graphite with a particle size of 3 to loom, 10 parts of silicone resin
and 60 parts of toluene were mixed in a ball mill, the toluene was removed by volatilization, and the resulting powder was molded using a rubber press at a pressure of 1.0 t/cm' to form a 70 mmφX
A tubular molded body of 5 mm x 500 mm was made, then heated at 1,000°C for 30 minutes to decompose the binder and form a calcined body, and then the molten silicon at 1,000°C was reacted with the carbon in the raw material. It was made into a molded body.

つぎに、上記で得た直径70mm、長さ500mm、肉
厚5mmの炭化けい素管(密度3.10)の内面を充分
に清浄化してから、これを石英管中にamして、1,0
50℃に加熱後に減圧し、ここに5容量%のテトラメチ
ルジシランを含む水素ガスとアルゴンガスとの等量混合
ガスを200 c、c−7分の速度で4時間導入してテ
トラメチルジシランを熱分解させ、冷却後にこの炭化け
い素管を取り出したところ、これにはその内面に厚さ約
30ルmのβ型炭化けい素被覆が均一に施されていた。
Next, after thoroughly cleaning the inner surface of the silicon carbide tube (density 3.10) with a diameter of 70 mm, a length of 500 mm, and a wall thickness of 5 mm obtained above, it was poured into a quartz tube. 0
After heating to 50°C, the pressure was reduced, and a mixed gas of equal amounts of hydrogen gas and argon gas containing 5% by volume of tetramethyldisilane was introduced at a rate of 200 c, c-7 min for 4 hours to produce tetramethyldisilane. When the silicon carbide tube was taken out after pyrolysis and cooling, it was found that the inner surface of the tube was uniformly coated with β-type silicon carbide to a thickness of about 30 μm.

このものはついで空気中で1,300℃にくり返し、加
熱したがこの被覆は変化せず、これは強固で均一なピン
ホールのないものであることが確認された。
This was then repeatedly heated in air to 1,300° C., but the coating did not change, confirming that it was strong, uniform, and free of pinholes.

ついで、このようにして得た炭化けい素管を反応管とし
て、上部に反応ガス排出口とシリコン微粒子投入口、下
部にガス送入口とシリコン顆粒取出口を設けた流動床反
応器を組み立て、この反応器中に粒径350〜500p
mのシリコン微粒子500gを装入し、底部のガス送入
口からトリクロロシランガスを5 Kg/時、水素ガス
を2.4 M m”7時で送入すると共に外部からの加
熱で反応器内を1,200℃に保持して流動反応を行な
わせ、この反応中シリコン微粒子を10g7時で追加装
入しながら48時間連続運転したところ、粒径0.5〜
2.3 mmの高純度シリコン顆粒11,326gが得
られ、反応終了後に反応管内壁をしらべたところ、これ
にはシリコンの付着はみられず、炭化けい素被覆層には
何の変化も認められなかった。
Next, using the silicon carbide tube thus obtained as a reaction tube, a fluidized bed reactor was assembled, with a reaction gas outlet and a silicon particle inlet in the upper part, and a gas inlet and a silicon granule outlet in the lower part. Particle size 350-500p in reactor
500 g of silicon fine particles of 500 m were charged, and trichlorosilane gas was fed into the reactor at 5 kg/hour and hydrogen gas at 2.4 kg/hour from the gas inlet at the bottom, and the inside of the reactor was heated to 1. , 200°C was maintained to carry out a fluidized reaction, and during this reaction, 10g of silicon fine particles were added at 7 hours, and the operation was continued for 48 hours.
11,326 g of high-purity silicon granules of 2.3 mm in diameter were obtained, and when the inner wall of the reaction tube was examined after the reaction was completed, no silicon was observed to adhere to them, and no change was observed in the silicon carbide coating layer. I couldn't.

しかし、比較のために直径70 m m 、長さl。However, for comparison, the diameter is 70 mm and the length is l.

500mm、厚さ5mmの石英管および炭化けい素を被
覆していない反応焼結炭化けい素管を用いて流動床反応
器を組み立て、上記と同じ条件で流動反応を行なわせた
ところ、この場合にはいずれの管壁にも厚さ1mm程度
のシリコンの析出がみられたのでこの除去のためには環
化水素と水素ガスとの混合ガスを7時間流すことが必要
であったし、この析出シリコンを除去せずに反応器を冷
却したところ、この反応管は破壊された。
A fluidized bed reactor was assembled using a 500 mm, 5 mm thick quartz tube and a reactive sintered silicon carbide tube that was not coated with silicon carbide, and a fluidized reaction was carried out under the same conditions as above. In order to remove this, it was necessary to flow a mixed gas of cyclized hydrogen and hydrogen gas for 7 hours. When the reactor was cooled without removing the silicon, the reaction tube was destroyed.

なお、前記した炭化けい素管への炭化けい素被覆の形成
反応を1,400℃としたほかは同一条件でテトラメチ
ルジシランの熱分解反応を行なわせたところ、この場合
には温度が高すぎたため炭化けい素管内に形成された炭
化けい素被覆はβ型炭化けい素が結晶の大きい不均一な
ものとなり。
In addition, when the thermal decomposition reaction of tetramethyldisilane was carried out under the same conditions except that the reaction for forming the silicon carbide coating on the silicon carbide tube was set at 1,400°C, in this case, the temperature was too high. Therefore, the silicon carbide coating formed inside the silicon carbide pipe is non-uniform with large β-type silicon carbide crystals.

その表面に凹凸が認められた。Irregularities were observed on its surface.

実施例2 粒径0.3〜lILmの窒化けい素82.5部、窒化ア
ルミニウム11.Oia!、酸化イツトリウム8.5部
、パラフィン15部およびトルエン200部をボールミ
ル中で混合してからトルエンを蒸発して乾固させ、得ら
れた粉末を82mmΦX60mmX600mmの形状に
ラバープレス(圧力2.Ot/crrr’)で成形し、
これを窒化けい素粉束で覆って1,750℃で30分間
焼結した。
Example 2 82.5 parts of silicon nitride with a particle size of 0.3 to lILm, 11 parts of aluminum nitride. Oia! , 8.5 parts of yttrium oxide, 15 parts of paraffin, and 200 parts of toluene were mixed in a ball mill, and the toluene was evaporated to dryness. ') and
This was covered with a silicon nitride powder bundle and sintered at 1,750°C for 30 minutes.

ついでこの焼結体(密度3.18g /c、c、)を研
削機を用いて70mmφX 5 mmX 500 mm
に加工し、この反応管内面に実施例1と同じ条件で炭化
けい素膜を被覆し、この反応管を用いて実施例1と同様
に流動反応を行なったところ1反応管内面にシリコンの
析出は認められず、冷却後もクラックは発生せず、比較
のために炭化けい素膜の被覆をしないものを使用した場
合には得られた製品の純度がわるく、管内面には若干量
のシリコンの析出が認められた。
Next, this sintered body (density 3.18 g/c, c,) was cut into a size of 70 mm φ x 5 mm x 500 mm using a grinder.
The inner surface of this reaction tube was coated with a silicon carbide film under the same conditions as in Example 1, and a flow reaction was carried out using this reaction tube in the same manner as in Example 1. 1 Silicon was deposited on the inner surface of the reaction tube. No cracks were observed, and no cracks occurred even after cooling.For comparison, when a tube without silicon carbide coating was used, the purity of the product obtained was poor, and there was a small amount of silicon on the inner surface of the tube. Precipitation was observed.

Claims (1)

【特許請求の範囲】 1、セラミック製の基体の表面を、高純度で気孔率が実
質的に零である緻密質炭化けい素で被覆してなることを
特徴とする多結晶シリコン製造用反応管。 2、緻密質炭化けい素被覆が分子中に少なくとも1個の
けい素原子に結合した水素原子を有するがSiX結合(
Xはハロゲン原子または酸素原子)を含有しない有機け
い素化合物を700〜1,400℃で気相熱分解させて
作られたものである特許請求の範囲第1項記載の多結晶
シリコン製造用反応管。
[Claims] 1. A reaction tube for producing polycrystalline silicon, characterized in that the surface of a ceramic substrate is coated with dense silicon carbide having high purity and substantially zero porosity. . 2. Dense silicon carbide coating has at least one hydrogen atom bonded to silicon atom in the molecule, but SiX bond (
The reaction for producing polycrystalline silicon according to claim 1, wherein tube.
JP14640585A 1985-07-03 1985-07-03 Reaction tube for polycrystalline silicon production Pending JPS627620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14640585A JPS627620A (en) 1985-07-03 1985-07-03 Reaction tube for polycrystalline silicon production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14640585A JPS627620A (en) 1985-07-03 1985-07-03 Reaction tube for polycrystalline silicon production

Publications (1)

Publication Number Publication Date
JPS627620A true JPS627620A (en) 1987-01-14

Family

ID=15406954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14640585A Pending JPS627620A (en) 1985-07-03 1985-07-03 Reaction tube for polycrystalline silicon production

Country Status (1)

Country Link
JP (1) JPS627620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511622A (en) * 2009-11-18 2013-04-04 アールイーシー シリコン インコーポレイテッド Fluidized bed reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511622A (en) * 2009-11-18 2013-04-04 アールイーシー シリコン インコーポレイテッド Fluidized bed reactor

Similar Documents

Publication Publication Date Title
KR101413653B1 (en) A method for manufacturing SiC powders with high purity
JPS6047202B2 (en) Super hard high purity oriented polycrystalline silicon nitride
KR101593922B1 (en) Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof
JP6609300B2 (en) Equipment for growing silicon carbide of specific shape
EP0723600B1 (en) Process for the preparation of silicon carbide films using single organosilicon compounds
KR100427118B1 (en) Heat treatment jig and its manufacturing method
US4664944A (en) Deposition method for producing silicon carbide high-temperature semiconductors
CA3006924C (en) Method for depositing an in situ coating onto thermally and chemically loaded components of a fluidized bed reactor for producing high-purity polysilicon
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
JPS627620A (en) Reaction tube for polycrystalline silicon production
JP2684106B2 (en) Graphite base material for ceramic coating and internal parts for CVD furnace
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JPS63166789A (en) Graphite crucible used in pulling up device for silicon single crystal and production thereof
RU2286617C2 (en) Method for producing part incorporating silicon substrate whose surface is covered with silicon carbide film
JP2003034867A (en) Tubular SiC molded body and method for producing the same
JP3857446B2 (en) SiC molded body
JPS6117910B2 (en)
KR20210082020A (en) Manufacturing method of High-purity SiC particulate material
JP3925884B2 (en) Method for coating SiC film
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPH1135391A (en) Silicon carbide-coated susceptor
JPH0583517B2 (en)
JPS62182162A (en) Reaction pipe for manufacturing polycrystal silicon
JPH06127915A (en) Fluidized bed reactor for producing polycrystalline silicon
JPS61291484A (en) Graphite crucible