[go: up one dir, main page]

JPS6290991A - Controlling method for spectral width of semiconductor laser element - Google Patents

Controlling method for spectral width of semiconductor laser element

Info

Publication number
JPS6290991A
JPS6290991A JP23165185A JP23165185A JPS6290991A JP S6290991 A JPS6290991 A JP S6290991A JP 23165185 A JP23165185 A JP 23165185A JP 23165185 A JP23165185 A JP 23165185A JP S6290991 A JPS6290991 A JP S6290991A
Authority
JP
Japan
Prior art keywords
phase control
dfb
current
spectral width
control region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23165185A
Other languages
Japanese (ja)
Inventor
Katsumi Emura
克己 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23165185A priority Critical patent/JPS6290991A/en
Publication of JPS6290991A publication Critical patent/JPS6290991A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/0625Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
    • H01S5/06255Controlling the frequency of the radiation
    • H01S5/06258Controlling the frequency of the radiation with DFB-structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To maintain the spectral width of a laser element at the minimum by obtaining information of the spectral width of the laser from the variation of the output light intensity of the laser element for the variation in the implanted current to a phase control region of the laser element, thereby controlling the current to the phase control region. CONSTITUTION:Part of the output light 6 of a phase control distribution feedback semiconductor laser (DFB-LD) 1 is branched by a half mirror 7, and the light intensity is detected by a monitoring photodetector 8. The amplitude of the implanting current from the second bias circuit 5 to a phase control region 3 is detected by a monitoring circuit 9. When the two detection outputs are matched to the levels and input to a differential amplifier 10, an error signal 11 which becomes a zero output at the minimum of the width is obtained. The signal 11 is fed back to the second bias circuit 5 to control the implanted current to the region 3, thereby always maintaining the width of the phase control DFB-LD1 at the minimum point.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体レーザを常に狭いスペクトル線幅で動
作させる制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a control method for constantly operating a semiconductor laser with a narrow spectral linewidth.

(従来の技術) 近年、単一軸モードで発振する分布帰還型半導体レーザ
(DFB−LD)  や分布ブラッグ反射型半導体レー
ザ(DBR−LD )の開発が進められ、これらの光源
金層すてコヒーレント光伝送方式の検討が行なわれてい
る。
(Prior art) In recent years, the development of distributed feedback semiconductor lasers (DFB-LD) and distributed Bragg reflection semiconductor lasers (DBR-LD), which oscillate in a single-axis mode, has been progressing, and these lasers are capable of producing coherent light using a gold layer as a light source. Transmission methods are being studied.

このコヒーレント光伝送方式を実現するためには、光源
が単一軸モードで発振すると共に、そのスペクトル純度
が高−ことが必要である。ところでDFB−LDにおい
ては、反射端面における回折格子位相の条件によってそ
の発振条件が強く影響され、その位相条件によっては2
軸モ一ド発振し之り、発振軸モードが不安定になったシ
する。そこでDFB−LD=i安定な状態で動作させる
ための一方法として位相制御型DFB−LDの開発が進
められている。例えば、[昭和59年度電子通信学会総
合全国大会講演論文集J 1024に示される北村らの
論文「位相制御機構含有するDFB −D C−PBH
LDJ参照。
In order to realize this coherent optical transmission system, it is necessary that the light source oscillates in a single-axis mode and that its spectral purity is high. By the way, in a DFB-LD, the oscillation condition is strongly influenced by the condition of the diffraction grating phase at the reflection end face, and depending on the phase condition, 2
The axis mode oscillates, and the oscillation axis mode becomes unstable. Therefore, a phase control type DFB-LD is being developed as a method for operating in a stable state where DFB-LD=i. For example, [Kitamura et al.'s paper "DFB-D C-PBH containing a phase control mechanism" shown in Proceedings of the National Conference of the Institute of Electronics and Communication Engineers in 1988 J1024.
See LDJ.

第2図は位相制御型DFB−LDの素子構造を示した図
である。この位相制御型DFB−LDxは、DFB@域
2と位相制御領域3とを備え、位相制御領域3への注入
電流を制御することによυ、等測的にDFB−LDの反
射端面における回折格子の位相条件全制御し、LDを狭
スペクトル幅な単一軸モードで安定に発振させようとす
るものである。
FIG. 2 is a diagram showing the element structure of a phase control type DFB-LD. This phase control type DFB-LDx is equipped with a DFB @ region 2 and a phase control region 3, and by controlling the current injected into the phase control region 3, υ isometrically The aim is to fully control the phase conditions of the grating and to stably oscillate the LD in a single-axis mode with a narrow spectrum width.

(発明が解決しようとする問題点) この位相制御型DFB−LDでは、位相制御領域への注
入電流の大きさによって、LDが安定に単一軸モード発
振する場合もあるが、2軸モードで不安定な発振をする
場合もある。従って、LDを安定に動作させるためには
、位相制御領域への注入電流の大きさを常にLDが安定
な単一軸モード発振を保つ値に制御しなければならない
(Problems to be Solved by the Invention) In this phase control type DFB-LD, depending on the magnitude of the current injected into the phase control region, the LD may stably oscillate in a single axis mode, but it may oscillate stably in a biaxial mode. In some cases, stable oscillation occurs. Therefore, in order to operate the LD stably, the magnitude of the current injected into the phase control region must always be controlled to a value that maintains stable single-axis mode oscillation of the LD.

本発明の目的は、位相制御型DFB−LDにおい流の制
御方法全提供することにある。
An object of the present invention is to provide a complete method for controlling phase-controlled DFB-LD odor flow.

(問題点を解決するための手段) 本発明の十尋体レーザ素子のスペクトル幅制御方法の構
成は、活性層に沿って回折格子金膜けたレーザ領域と前
記活性層に光学的に結合する光ガイド層金もつ位相制御
領域とからなる集積型半導体レーザ素子を光源として用
い、このレーザ素子の位相制御領域への注入電流の変化
に対するこのレーザ素子の出力光強度の変化からこのレ
ーザ素子のスペクトル幅についての情報を得、位相制御
領域への注入電流を制御してこのレーザ素子のスペクト
ル幅を極小値に保つことを特徴とする。
(Means for Solving the Problems) The method for controlling the spectral width of a ten-dimensional laser device according to the present invention has a configuration in which a laser region having a gold film on a diffraction grating along an active layer and light optically coupled to the active layer. An integrated semiconductor laser device consisting of a phase control region with a gold guide layer is used as a light source, and the spectral width of this laser device is determined from the change in the output light intensity of this laser device with respect to the change in the current injected into the phase control region of this laser device. The spectral width of this laser element is kept at a minimum value by controlling the current injected into the phase control region.

(発明の原理) 第3図は本発明に用いられる位相制御領域30反射端面
に金の高反射コート膜21 t、DFB領域2の端面に
無反射コート膜20全形成した位相制御型DFB −L
Dの素子構造の斜視図である。この端面高反射型の位相
制御型DFB−LDを例にとって本発明の詳細な説明す
る。
(Principle of the Invention) Fig. 3 shows a phase control type DFB-L in which a high reflection gold coating film 21t is formed on the reflective end face of the phase control region 30 used in the present invention, and a non-reflection coating film 20 is entirely formed on the end face of the DFB region 2.
It is a perspective view of the element structure of D. The present invention will be explained in detail by taking this end face high reflection type phase control type DFB-LD as an example.

第4図はこの位相制御DFB−LDの反射端面の位相条
件によるしきい値利得の変化を示し比特性図である。位
相制御領域3の注入電流を変化させると、等測的に反射
端面の位相が変化し、第4図の特性線に沿ってしきい値
利得が変化し、また図中の破線部分ではモードの飛びを
生じる。このしきい値利得が最小になる点、すなわち等
測的な反利得比が最大となり発振スペクトル幅も最小と
なる。
FIG. 4 is a ratio characteristic diagram showing changes in threshold gain depending on the phase conditions of the reflective end face of this phase-controlled DFB-LD. When the current injected into the phase control region 3 is changed, the phase of the reflective end face changes isometrically, the threshold gain changes along the characteristic line in Figure 4, and the mode changes in the broken line area in the figure. Causes jump. The point where this threshold gain is minimum, that is, the isometric antigain ratio is maximum and the oscillation spectrum width is also minimum.

第5図はこの位相制御DFB−LDの位相制御電流対光
出力特性図である。この例の場合、位相制御領域3にも
活性層が残っており、このため位相制御電流の増加にと
もなって光出力が増加している。また、第4図に示され
るモード飛びに対応して光出力にキンクが見られる。第
5図の黒丸で示した点が発振スペクトル幅が極小となる
点であり、モード飛びの前後では、発振スペクトル幅が
非常に大きな値をとる。従って、モード飛びとモード飛
びとの中間点、すなわちこの黒丸点付近に位相制御電流
を制御すれば、発振スペクトル幅を常に小さい値に保つ
ことができる。
FIG. 5 is a diagram showing the phase control current versus light output characteristic of this phase control DFB-LD. In this example, the active layer remains in the phase control region 3, and therefore the optical output increases as the phase control current increases. Furthermore, a kink is seen in the optical output corresponding to the mode jump shown in FIG. The point indicated by a black circle in FIG. 5 is the point where the oscillation spectrum width is minimum, and the oscillation spectrum width takes a very large value before and after the mode jump. Therefore, by controlling the phase control current to a midpoint between mode jumps, that is, near this black circle point, the oscillation spectrum width can always be kept at a small value.

この方法の一例として、次のような方法が考えられる。As an example of this method, the following method can be considered.

光出力は、第5図に示されるように、モード飛びに対応
したキンクが見られるが、位相制御電流はリニアに変化
している。そこで光出力のモニタおよび注入電流のモニ
タのレベルに合わせて差をとることを考える。第6図は
両者の差出力を示し比特性図である。光出力のモニタお
よび注入電流のモニタのレベルを適当に合わせることに
より、両者の差出力はスペクトル幅極小の点で出力が零
となる誤差信号にすることができる。ここで得られる誤
差信号を位相制御領域への注入電流に帰還することによ
り、位相制御型DFB−LDの発振スペクトル@を常に
極小に保つことができる。
As shown in FIG. 5, the optical output shows a kink corresponding to mode skipping, but the phase control current changes linearly. Therefore, consider taking the difference depending on the level of the optical output monitor and the injection current monitor. FIG. 6 is a ratio characteristic diagram showing the difference output between the two. By appropriately adjusting the levels of the optical output monitor and the injection current monitor, the difference output between the two can be made into an error signal whose output becomes zero at the minimum spectral width. By feeding back the error signal obtained here to the current injected into the phase control region, the oscillation spectrum @ of the phase control type DFB-LD can always be kept at a minimum.

(実施例) 第1図は本発明の第1の実施例を説明するブロック図で
ある。位相制御頭載端面に金コーティング21全施した
端面高反射型位相制御DFB−LD1のDFB碩域29
位相制御領域3にはそれぞれ第1、第2のバイアス回路
4,5によりバイアス1E流が加えられる。この位相制
御DFB−LDIの出力光6の一部は、ハーフミラ−7
で分岐され、モニタ用の光検出器8でその光強度が検出
される。”また、第2のバイアス回路5から位相制御領
域3への注入電流の大きさもモニタ回路9により検出さ
れる。
(Embodiment) FIG. 1 is a block diagram illustrating a first embodiment of the present invention. DFB area 29 of high reflection type phase control DFB-LD1 with gold coating 21 fully applied to the phase control head mounting end face
A bias 1E current is applied to the phase control region 3 by first and second bias circuits 4 and 5, respectively. A part of the output light 6 of this phase control DFB-LDI is transmitted to a half mirror 7.
The light intensity is detected by a monitoring photodetector 8. ``Furthermore, the magnitude of the current injected from the second bias circuit 5 into the phase control region 3 is also detected by the monitor circuit 9.

これら2つの検出出力を、それぞれのレベルを合わせた
のち差動増幅回路10に入力すると、スペクトル幅の極
小点で零出力となる誤差信号11が得られる。この誤差
信号11を第2のバイアス回路5に帰還することにより
、位相制御領域3への注入電流全制御し、位相制御DF
B−LDIのスペクトル幅が常に極小点に保たれるよう
にしている。
When these two detection outputs are inputted into the differential amplifier circuit 10 after matching their respective levels, an error signal 11 is obtained which has a zero output at the minimum point of the spectrum width. By feeding back this error signal 11 to the second bias circuit 5, the injection current to the phase control region 3 is fully controlled, and the phase control DF
The spectral width of B-LDI is always kept at the minimum point.

本実施例では、位相制御領域3への注入電流の安定点は
常にスペクトル幅極小点であり、波長チーーニング等の
ために位相制御領域3への注入電流を変化させた場合で
も、常に発振スペクトル幅は極小点に保たれた。
In this embodiment, the stable point of the current injected into the phase control region 3 is always the minimum point of the spectral width, and even when the current injected into the phase control region 3 is changed for wavelength tuning etc. was kept at a minimum point.

第7図は本発明の第2の実施例のブロック図、第8図は
本実施例で用いた端面高反射型位相制御DFB−LDの
素子構造金示した図である。本実施例の位相制御I)F
B−LD 1の位相制御領域3には、活性層が形成され
ておらず、導波層のみからできている。このため、位相
制御領域3への注入電流は等価的な端面位相を変化させ
るだけで、注入電流の増加による光出力の増加を生じず
、光出力の変化は、端面位相の状態に対応し几変化のみ
である。
FIG. 7 is a block diagram of a second embodiment of the present invention, and FIG. 8 is a diagram showing the element structure of a phase-controlled DFB-LD with high reflection on the end face used in this embodiment. Phase control of this embodiment I)F
An active layer is not formed in the phase control region 3 of the B-LD 1, and it is made only of a waveguide layer. Therefore, the current injected into the phase control region 3 only changes the equivalent end facet phase, and the optical output does not increase due to an increase in the injected current, and the change in the optical output corresponds to the state of the end facet phase. There is only change.

第9図は本実施例の位相制御DFB−LD1の位相制御
領域3への注入電流対光出力特性図である。
FIG. 9 is a characteristic diagram of the current injected into the phase control region 3 of the phase control DFB-LD1 of this embodiment versus the light output.

図中、光出力が極太となる点はしきい値利得が極小とな
る点に対応しており、この点で発振スペクトル幅がほぼ
極小となる。
In the figure, the point where the optical output becomes extremely thick corresponds to the point where the threshold gain becomes minimum, and the oscillation spectrum width becomes almost minimum at this point.

本実施例では、次のような方法でスペクトル幅全極小の
状態に保っている。位相制御領域3への注入電流には、
第2のバイアス回路5からのバイアス電流の他に発振器
12からの変調信号が含まれ、位相制御DFB−LDI
の光出力は微小に変調されているわけである。たとえば
、第9図中、A点に注入電流がバイアスされている場合
には、発振器12からの変調信号と同相で出力光6も変
調されている。
In this embodiment, the entire spectral width is kept at a minimum state by the following method. The current injected into the phase control region 3 is:
In addition to the bias current from the second bias circuit 5, a modulation signal from the oscillator 12 is included, and the phase control DFB-LDI
This means that the optical output is minutely modulated. For example, when the injection current is biased at point A in FIG. 9, the output light 6 is also modulated in phase with the modulation signal from the oscillator 12.

一方、第9図中C点に注入電流がバイアスされている場
合には、出力光6は発振器12からの変調信号と逆相で
変調される。また、第9図中B点に注入電流がバイアス
されている場合には、出力光6は変調信号の倍の周波数
取分で変動する。この出力光6の変動を光検出器8で検
出し、その検出信号と発振器12からの変調信号ヲロノ
クインアンプ13で同期検波することにより制御信号1
4が得られる。この制御信号14で第2のバイアス回路
5からのバイアス電流を制御することにより。
On the other hand, when the injected current is biased at point C in FIG. 9, the output light 6 is modulated in phase opposite to the modulation signal from the oscillator 12. Furthermore, when the injected current is biased at point B in FIG. 9, the output light 6 fluctuates at a frequency that is twice that of the modulation signal. The fluctuation of this output light 6 is detected by a photodetector 8, and the detection signal and the modulation signal from the oscillator 12 are synchronously detected by the Wonokuin amplifier 13 to generate the control signal 1.
4 is obtained. By controlling the bias current from the second bias circuit 5 using this control signal 14.

位相制御DFB−LDIの光出力6は常に極大点に保た
れ、同時にスペクトル幅は常に狭い状態に保たれる。そ
の他の構成は第1の実施例と同様である。
The optical output 6 of the phase control DFB-LDI is always kept at the maximum point, and at the same time the spectral width is always kept narrow. The other configurations are similar to the first embodiment.

本実施例においても、位相制御DFB−LDIの動作条
件が変ってもその発振スペクトル幅は常に狭い値に保つ
ことができた。
In this example as well, even if the operating conditions of the phase-controlled DFB-LDI changed, the oscillation spectrum width could always be kept at a narrow value.

以上説明した実施例の他にも、本発明の様々な変形例が
考えられる。たとえば、位相制御形DFB−LD とし
ては、この他にも両端面ヘキ開の位相制御形DFB−L
D等の使用も可能で、それぞれの光出力特性、スペクト
ル幅特性に合わせて制御方法を決定すればよい。
In addition to the embodiments described above, various modifications of the present invention are possible. For example, as a phase control type DFB-LD, there is also a phase control type DFB-L with both ends open.
It is also possible to use D, etc., and the control method may be determined according to the optical output characteristics and spectral width characteristics of each.

また、第2の実施例においては、制御信号14’1DF
B領域2の注入電流に帰還し、DPB−LDの発振波長
を変えて等価的に端面位相を制御するようにしてもよい
Furthermore, in the second embodiment, the control signal 14'1DF
The end face phase may be equivalently controlled by feeding back the current injected into the B region 2 and changing the oscillation wavelength of the DPB-LD.

(発明の効果) 以上説明したように、本発明によれば、DFB−LDの
出力金常に安定な単一軸モード発振の状態に保つことが
でき、しかもそのときのスペクトル幅も狭い値に保つこ
とができる。
(Effects of the Invention) As explained above, according to the present invention, the output of the DFB-LD can always be kept in a stable state of single-axis mode oscillation, and the spectral width at that time can also be kept at a narrow value. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例全説明するブロック図、
第2図は一般の位相制御型DFB−LDの素子構造を示
す斜視図、第3図は位相制御領域の反射端面に金の高反
射コート膜を設けた位相?!il制御型DFB−LDの
斜視図、第4図は反射端面の位相条件による端面高反射
型位相制御DI”B−LDのしきい値利得の変化を示し
た特性図、第5図は端面高反射型位相制御DFB−LD
の位相制御電流対光出力特性図、第6図は光出力と注入
電流レベルの差出力を示した特性図、第7図は本発明の
第2の実施例のブロック図、第8図は第2の実施例の端
面高反射型位相制御DFB−LDの斜視図、第9図は第
2の実施例で用いた端面高反射型位相制御DFB−LD
の注入電流対光出力特性図である。 1・・・・・・端面高反射型位相制御DFB−LD、2
.・・・・DFB領域、3・・・・・位相制御領域、4
,5・・・・・・バイアス回路、7・・・・・ハーフミ
ラ−18・・・・・・光検出器、9・・・・・モニタ回
路、10・・・・・・差動増幅回路、12・・・・・・
発振器、13・・・・・・ロックインアンプ。 代理人 弁理士  内 原   晋 ハ′イアズ盲シか
FIG. 1 is a block diagram completely explaining the first embodiment of the present invention;
Fig. 2 is a perspective view showing the element structure of a general phase control type DFB-LD, and Fig. 3 is a phase control type DFB-LD in which a gold high-reflection coating film is provided on the reflective end face of the phase control region. ! A perspective view of the il control type DFB-LD, Figure 4 is a characteristic diagram showing the change in threshold gain of the end face high reflection type phase control DI"B-LD depending on the phase condition of the reflective end face, and Figure 5 is a characteristic diagram showing the change in the threshold gain of the end face high reflection type phase control DI"B-LD depending on the phase condition of the reflective end face. Reflective phase control DFB-LD
FIG. 6 is a characteristic diagram showing the difference output between the optical output and the injection current level, FIG. 7 is a block diagram of the second embodiment of the present invention, and FIG. FIG. 9 is a perspective view of the end face high reflection type phase control DFB-LD of the second embodiment, and FIG. 9 is the end face high reflection type phase control DFB-LD used in the second embodiment.
FIG. 3 is an injection current vs. optical output characteristic diagram. 1... End face high reflection type phase control DFB-LD, 2
.. ...DFB area, 3... Phase control area, 4
, 5...Bias circuit, 7...Half mirror 18...Photodetector, 9...Monitor circuit, 10...Differential amplifier circuit , 12...
Oscillator, 13...Lock-in amplifier. Agent Patent Attorney Susumu Uchihara Is he blind?

Claims (1)

【特許請求の範囲】[Claims] 活性層に沿って回折格子を設けたレーザ領域と前記活性
層に光学的に結合する光ガイド層をもつ位相制御領域と
からなる集積型半導体レーザ素子を光源として用い、こ
のレーザ素子の前記位相制御領域への注入電流の変化に
対するこのレーザ素子の出力光強度の変化からこのレー
ザ素子のスペクトル幅についての情報を得、前記位相制
御領域への注入電流を制御してこのレーザ素子のスペク
トル幅を極小値に保つことを特徴とする半導体レーザ素
子のスペクトル幅制御方法。
An integrated semiconductor laser device consisting of a laser region provided with a diffraction grating along an active layer and a phase control region having a light guide layer optically coupled to the active layer is used as a light source, and the phase control of this laser device is performed. Information about the spectral width of this laser element is obtained from changes in the output light intensity of this laser element with respect to changes in the current injected into the phase control region, and the spectral width of this laser element is minimized by controlling the current injected into the phase control region. A method for controlling the spectral width of a semiconductor laser device, characterized by maintaining the spectral width at a certain value.
JP23165185A 1985-10-16 1985-10-16 Controlling method for spectral width of semiconductor laser element Pending JPS6290991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23165185A JPS6290991A (en) 1985-10-16 1985-10-16 Controlling method for spectral width of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23165185A JPS6290991A (en) 1985-10-16 1985-10-16 Controlling method for spectral width of semiconductor laser element

Publications (1)

Publication Number Publication Date
JPS6290991A true JPS6290991A (en) 1987-04-25

Family

ID=16926834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23165185A Pending JPS6290991A (en) 1985-10-16 1985-10-16 Controlling method for spectral width of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS6290991A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146952A (en) * 2007-12-11 2009-07-02 Opnext Japan Inc Laser apparatus and control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146952A (en) * 2007-12-11 2009-07-02 Opnext Japan Inc Laser apparatus and control method thereof

Similar Documents

Publication Publication Date Title
US7505490B2 (en) Phase-control in an external-cavity tuneable laser
US7257142B2 (en) Semi-integrated designs for external cavity tunable lasers
US4608697A (en) Spectral control arrangement for coupled cavity laser
US5870417A (en) Thermal compensators for waveguide DBR laser sources
EP0314490B1 (en) Semiconductor laser
US20020015433A1 (en) Tunable frequency stabilized fiber grating laser
JPH0449793B2 (en)
JP2000332348A (en) Mode-locked semiconductor laser
JPH08330680A (en) Tunable coherent light source and control method thereof
JPS6290991A (en) Controlling method for spectral width of semiconductor laser element
EP0060033A1 (en) Improvements in or relating to laser light sources
JP3433044B2 (en) Frequency stabilized light source
JPS6289378A (en) Frequency stabilized semiconductor laser device
JPS62244185A (en) Semiconductor laser
KR100429531B1 (en) Distributed feedback semiconductor laser
JP3237499B2 (en) Frequency stabilized light source
JP3072123B2 (en) Optically integrated tunable semiconductor laser device
JPS6362388A (en) Semiconductor laser device
JPS6294995A (en) Method for control of spectrum width of semiconductor laser element
JP3072124B2 (en) Optically integrated semiconductor laser device
JPH0437182A (en) Variable wavelength multiple quantum well semiconductor laser source device
JPH05160519A (en) Very short light pulse generating device
JPS6178190A (en) Integrated type semiconductor laser device
JP2547270B2 (en) Wavelength stabilized laser device
JPH02262387A (en) Tunable wavelength laser, its wavelength control method, and photodetector