JPS6291672A - Variable delivery compressor - Google Patents
Variable delivery compressorInfo
- Publication number
- JPS6291672A JPS6291672A JP60230660A JP23066085A JPS6291672A JP S6291672 A JPS6291672 A JP S6291672A JP 60230660 A JP60230660 A JP 60230660A JP 23066085 A JP23066085 A JP 23066085A JP S6291672 A JPS6291672 A JP S6291672A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- chamber
- piston
- signal
- high pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006835 compression Effects 0.000 claims abstract description 7
- 238000007906 compression Methods 0.000 claims abstract description 7
- 239000012530 fluid Substances 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 abstract description 6
- 239000002826 coolant Substances 0.000 abstract 6
- 239000003507 refrigerant Substances 0.000 description 31
- 238000004891 communication Methods 0.000 description 20
- 230000007423 decrease Effects 0.000 description 5
- 238000005057 refrigeration Methods 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Landscapes
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、可変容量圧縮機に関し特に自動車用空調装置
の冷媒圧縮機として用いて有効である。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a variable capacity compressor, and is particularly effective for use as a refrigerant compressor for an automobile air conditioner.
従来この種のいわゆるワッブルプレートタイプ圧縮機に
おいて、可変容量手段を備えたものは知られていた。(
例えば、米国特許第4,428,718号)これは、ピ
ストンの背面に信号圧力室を形成しこの信号圧力室内の
圧力を調整することにより、ピストンの往復行程を可変
するものである。信号圧力室内の圧力調整手段としては
圧縮機吸入室の圧力及び圧縮機吐出室の圧力を調合する
ことが用いられていた。Conventionally, this type of so-called wobble plate type compressor has been known to be equipped with variable capacity means. (
(For example, US Pat. No. 4,428,718) In this method, a signal pressure chamber is formed on the back surface of the piston, and the reciprocating stroke of the piston is varied by adjusting the pressure within the signal pressure chamber. As a means for adjusting the pressure in the signal pressure chamber, adjusting the pressure in the compressor suction chamber and the pressure in the compressor discharge chamber has been used.
上記圧力調整手段はもっばら吸入室内の圧力を感知する
ことにより、圧縮機に要求される吐出容量を判断してい
た。しかしながら、この従来の手段では圧縮機が用いら
れる冷凍サイクルに異常が生じた時に圧縮機を良好に小
容量とすることはできなかった。The pressure regulating means determines the discharge capacity required of the compressor by sensing the pressure within the suction chamber. However, with this conventional means, it has not been possible to satisfactorily reduce the capacity of the compressor when an abnormality occurs in the refrigeration cycle in which the compressor is used.
本発明は、上記点に鑑みて案出されたもので、従来の圧
力調整手段を基本的にはそのまま用い、かつ圧縮機が異
常状態で運転される際には、良好に小容量とすることが
できるようにすることを目的とする。The present invention was devised in view of the above points, and it is possible to basically use the conventional pressure regulating means as is, and to reduce the capacity appropriately when the compressor is operated under abnormal conditions. The purpose is to make it possible.
〔問題点を解決するための手段および作用〕上記目的達
成のため、本発明では圧力調整手段のうち圧力室内の流
体温度を感知できる部位に、所定温度以上になると形状
が変化する形状変化手段を設けるという構成を採用する
。すなわち、冷凍サイクルが過少な冷媒循環量で運転さ
れた時など吐出された冷媒温度が異常に高くなることが
知られている。そのため、このような異常時には形状変
化手段がその温度を感知して圧力調整手段を強制的に切
り換えるようにする。それにより、圧力調整手段は圧力
室内の高圧を信号圧力室内に導入し、′ピストンの行程
を強制的に小さくさせる。[Means and operations for solving the problem] In order to achieve the above object, the present invention includes a shape changing means that changes its shape when the temperature exceeds a predetermined temperature in a portion of the pressure regulating means that can sense the temperature of the fluid in the pressure chamber. We will adopt a configuration in which That is, it is known that when the refrigeration cycle is operated with an insufficient amount of refrigerant circulation, the temperature of the discharged refrigerant becomes abnormally high. Therefore, when such an abnormality occurs, the shape changing means senses the temperature and forcibly switches the pressure adjusting means. Thereby, the pressure regulating means introduces the high pressure within the pressure chamber into the signal pressure chamber, and forcibly reduces the stroke of the piston.
以下、本発明の一実施例を図に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.
第1図中、100は内部に信号圧力室101を有するフ
ロントハウジング、102は内部に5個所のシリンダ1
03を有するリアハウジングで、この両ハウジング10
0,102は0リングを介して機密的に連結されている
。104はハウジング100.102に軸受105,1
06を介して回転自在に保持されたシャフトで、このシ
ャフト104の先端には電磁クラッチ107が固定され
ており、この電磁クラッチを介しシャフト104は図示
しない自動車走行用エンジンの駆動力を受は回転する。In FIG. 1, 100 is a front housing that has a signal pressure chamber 101 inside, and 102 is a cylinder 1 that has five cylinders inside.
03, both housings 10
0,102 are securely connected via the 0 ring. 104 is a housing 100.102 bearing 105,1
An electromagnetic clutch 107 is fixed to the tip of the shaft 104. Through this electromagnetic clutch, the shaft 104 receives the driving force of an automobile engine (not shown) and rotates. do.
108はシャフト104に揺動可能に連結されたワッブ
ルプレートで、コネクタ109を介してピストン110
と連結している。すなわち、ピストンはワッブルプレー
トの揺動をコネクタ109を介して受け、シリンダ10
3内で往復移動する。111はワッブルプレート108
の揺動を補助する補助棒で、ワッブルプレート108と
は球状の接続部112を介して接続している。A wobble plate 108 is swingably connected to the shaft 104, and is connected to the piston 110 via a connector 109.
It is connected with. That is, the piston receives the rocking motion of the wobble plate via the connector 109, and
Move back and forth within 3. 111 is wobble plate 108
The wobble plate 108 is connected to the wobble plate 108 via a spherical connecting portion 112.
200は信号圧力室101内の機密を保つ軸封装置でシ
ャフト104とハウジング100との間に配設されてい
る。なお、ハウジング100,102は取付はブラケッ
ト201,202を介して自動車走行用エンジンに取付
けられている。Reference numeral 200 denotes a shaft sealing device for keeping the interior of the signal pressure chamber 101 confidential, and is disposed between the shaft 104 and the housing 100. Incidentally, the housings 100 and 102 are attached to an automobile engine through brackets 201 and 202.
300はリヤハウジング102後方に側板301を介し
て配設されたカバーハウジングで内部に吸入室302及
び吐出室303を有する。吸入室は図示しない吸入側冷
媒通路を介して冷凍サイクルの蒸発器からの低圧冷媒を
導入する。その低圧冷媒は吸入孔304を介してピスト
ン110とシリンダ103により形成される圧力室30
5へ導入される。なお図示しないが、吸入孔304と圧
力室305との間には吸入弁が配設されている。A cover housing 300 is disposed behind the rear housing 102 via a side plate 301, and has a suction chamber 302 and a discharge chamber 303 inside. The suction chamber introduces low-pressure refrigerant from the evaporator of the refrigeration cycle through a suction-side refrigerant passage (not shown). The low-pressure refrigerant enters the pressure chamber 30 formed by the piston 110 and the cylinder 103 through the suction hole 304.
5 will be introduced. Although not shown, a suction valve is provided between the suction hole 304 and the pressure chamber 305.
吐出室303には圧縮室305内で圧縮された高゛圧冷
媒が、吐出孔306及び図示しない吐出弁を介して吐出
される。吐出された高圧冷媒は吐出室303より図示し
ない吐出側冷媒通路を介して冷凍サイクル゛のコンデン
サへ吐出される。The high-pressure refrigerant compressed in the compression chamber 305 is discharged into the discharge chamber 303 through a discharge hole 306 and a discharge valve (not shown). The discharged high-pressure refrigerant is discharged from the discharge chamber 303 to the condenser of the refrigeration cycle via a discharge-side refrigerant passage (not shown).
400はカバーハウジング300内に設けられた圧力調
整手段でこの手段400は以下の構成よりなる。吐出室
303から高圧冷媒を導入する高圧室401、吸入室3
02側より低圧冷媒を導入する低圧室402及び高圧室
401の高圧冷媒と低圧室402の低圧冷媒とを混合す
る混合室403゜高圧室401と混合室403とは高圧
側連通路404にて連通されており、この連通路は高圧
側制御弁405によりその開口面積が制御される。Reference numeral 400 denotes pressure regulating means provided within the cover housing 300, and this means 400 has the following configuration. High pressure chamber 401 into which high pressure refrigerant is introduced from discharge chamber 303, suction chamber 3
A low-pressure chamber 402 introduces low-pressure refrigerant from the 02 side, and a mixing chamber 403 mixes the high-pressure refrigerant in the high-pressure chamber 401 and the low-pressure refrigerant in the low-pressure chamber 402.The high-pressure chamber 401 and the mixing chamber 403 communicate through a high-pressure side communication passage 404. The opening area of this communication path is controlled by the high pressure side control valve 405.
混合室403と低圧室402とは低圧側連通路406に
より連通されており、この連通路には低圧側制御弁40
7が配置されこれにより、連通路406の開口面積が制
御される。なお、高圧側及び低圧側制御弁405,40
7は接続棒408により連結されており、再制御弁40
5.407は連結棒409を介してベローズ410・の
伸縮が伝えられる。The mixing chamber 403 and the low pressure chamber 402 are communicated through a low pressure side communication passage 406, and a low pressure side control valve 40 is connected to this communication passage.
7 is arranged, thereby controlling the opening area of the communication path 406. In addition, the high pressure side and low pressure side control valves 405, 40
7 are connected by a connecting rod 408, and the recontrol valve 40
5.407, the expansion and contraction of the bellows 410 is transmitted via the connecting rod 409.
ベローズ410は低圧室402内に配置され、その内部
は所定圧力となっているため、低圧室402の圧力に応
じて伸縮する。すなわち、低圧室402内の圧力が低い
時は、ベローズ410は伸び、逆に低圧室内の圧力が高
くなればベローズ4】0は縮む。The bellows 410 is disposed within the low pressure chamber 402 and has a predetermined pressure inside thereof, so that it expands and contracts in accordance with the pressure of the low pressure chamber 402. That is, when the pressure in the low pressure chamber 402 is low, the bellows 410 expands, and conversely, when the pressure in the low pressure chamber increases, the bellows 410 contracts.
411及び412はスプリングで、上記ベローズ410
及び制御弁405,407の移動を補助するものである
。スプリング412は高圧側連通路404内に配設され
、高圧側制御弁405を通路開方向に付勢するものであ
る。スプリング411はベローズ410内に配設され、
ベローズ415その伸び方向に付勢するものである。411 and 412 are springs, and the bellows 410
and assists the movement of the control valves 405, 407. The spring 412 is disposed within the high pressure side communication passage 404 and biases the high pressure side control valve 405 in the passage opening direction. Spring 411 is disposed within bellows 410,
The bellows 415 is biased in the direction of its extension.
スプリング412は形状記憶合金にて形成されており、
所定温度例えば150℃以上になると急激に伸びるよう
設定されている。すなわち、高圧室401内の温度が所
定温度以上になったときにはこのスプリング412の付
勢力が急激に増大し高圧側制御弁405を大きな力で通
路開方向に押すこととなる。The spring 412 is made of shape memory alloy.
It is set to expand rapidly when the temperature reaches a predetermined temperature, for example, 150° C. or higher. That is, when the temperature in the high pressure chamber 401 reaches a predetermined temperature or higher, the biasing force of the spring 412 increases rapidly, pushing the high pressure side control valve 405 in the direction of opening the passage with a large force.
次に、上記構成圧縮機の作動を述べる。電磁クラッチ1
07を介してシャフト104が回転し、このシャフト1
04の回転はワッブルプレート168の揺動を引き起こ
す。ワッブルプレート108の揺動はコネクタ109を
介しピストン110に伝えられ、それによりピストン1
10はシリンダ103内を往復運動する。この往復運動
に伴い圧縮室305の容積が変動し、容積膨張時には吸
入室302より冷媒を吸入する。容積減少時には圧縮室
305内部で冷媒を圧縮し、高圧となった冷媒を吐出3
03へ吐出する。Next, the operation of the compressor configured as described above will be described. Electromagnetic clutch 1
07, the shaft 104 rotates, and this shaft 1
The rotation of 04 causes the wobble plate 168 to swing. The swinging motion of the wobble plate 108 is transmitted to the piston 110 via the connector 109, thereby causing the piston 1
10 reciprocates within the cylinder 103. The volume of the compression chamber 305 changes with this reciprocating motion, and refrigerant is sucked from the suction chamber 302 when the volume expands. When the volume decreases, the refrigerant is compressed inside the compression chamber 305 and the high-pressure refrigerant is discharged 3
Discharge to 03.
吐出303内の高圧冷媒および吸入室302内の低圧冷
媒はそれぞれ高圧室401及び低圧室402に導入され
る。この両冷媒はそれぞれ高圧側連通路404及び低圧
側連通路406を介して混合室403に流入し、そこで
所定の圧力信号が調合される。この圧力信号は通路50
0を介して信号圧力室に伝達され、これにより信号圧力
室内の圧力が制御される。The high-pressure refrigerant in the discharge 303 and the low-pressure refrigerant in the suction chamber 302 are introduced into the high-pressure chamber 401 and the low-pressure chamber 402, respectively. Both refrigerants flow into the mixing chamber 403 via the high-pressure side communication passage 404 and the low-pressure side communication passage 406, respectively, where a predetermined pressure signal is mixed. This pressure signal is transmitted through the passage 50
0 to the signal pressure chamber, thereby controlling the pressure within the signal pressure chamber.
信号圧力室内の圧力が高いときにはピストン110前後
の差圧が相対的に小さなものとなる。そのため、ピスト
ン110の往復運動幅は小さくなる。その結果、圧縮機
全体の吐出容量は減少する。When the pressure in the signal pressure chamber is high, the differential pressure across the piston 110 becomes relatively small. Therefore, the width of the reciprocating movement of the piston 110 becomes smaller. As a result, the overall discharge capacity of the compressor decreases.
信号圧力室内の圧力が低い時には、ピストン110前後
の差圧が逆に相対的に大きなものとなる。When the pressure in the signal pressure chamber is low, the differential pressure across the piston 110 becomes relatively large.
そのため、ピストン110の往復運動幅は大きくなり、
圧縮機全体の吐出容量も増大する。Therefore, the width of the reciprocating movement of the piston 110 increases,
The overall discharge capacity of the compressor also increases.
低圧室410内の圧力が低いときにはベローズ110が
伸び、それにより低圧側制御弁407が低圧側連通路4
06の開口面積を減少させるとともに、高圧側制御弁4
05は高圧側連通路404の開口面積を増大させる。そ
の結果、混合室403内に導入される冷媒は吐出室30
3からの高圧冷媒が増え、従って信号圧力は高いものと
なる。When the pressure in the low pressure chamber 410 is low, the bellows 110 expands, thereby causing the low pressure side control valve 407 to close to the low pressure side communication path 4.
06 and the high pressure side control valve 4.
05 increases the opening area of the high pressure side communication path 404. As a result, the refrigerant introduced into the mixing chamber 403 is
The high-pressure refrigerant from No. 3 increases, so the signal pressure becomes high.
この高い信号圧力により信号圧力室内の圧力は高まり、
その結果圧縮機の容量は小さくなる。即ち、冷房負荷が
小さくなっている状B(低圧側冷媒圧力が低い状態)で
は圧縮機の吐出容量は自動的に小さくなる。This high signal pressure increases the pressure inside the signal pressure chamber,
As a result, the capacity of the compressor becomes smaller. That is, in state B where the cooling load is small (state where the low-pressure side refrigerant pressure is low), the discharge capacity of the compressor automatically becomes small.
逆に、冷房負荷が高い状態(低圧側冷媒圧力が高い状態
)ではベローズ410は縮む。そのため、低圧側制御弁
407は低圧側連通路406の開口面積を増し、高圧側
制御弁405は高圧側連通路404の開口面積を減少さ
せる。その結果、混合室内の圧力は低くなり、同じく信
号圧力室101内の圧力も低くなる。それにより、圧縮
機の吐出容量は増す。Conversely, when the cooling load is high (low-pressure side refrigerant pressure is high), the bellows 410 contracts. Therefore, the low pressure side control valve 407 increases the opening area of the low pressure side communication passage 406, and the high pressure side control valve 405 decreases the opening area of the high pressure side communication passage 404. As a result, the pressure within the mixing chamber becomes low, and the pressure within the signal pressure chamber 101 also becomes low. Thereby, the discharge capacity of the compressor increases.
冷凍サイクル全体の冷媒量が減少したときなどには吐出
側冷媒温度が異常に高くなる。この場合には、その高温
が高圧室401に面しているスプリング412に伝えら
れ、スプリング412の設定荷重が急激に増大する。従
って、この状態では高圧側制御弁405が強制的に図中
上方に押しあげられ、高圧側連通路404の開口面積を
増す。When the amount of refrigerant in the entire refrigeration cycle decreases, the temperature of the refrigerant on the discharge side becomes abnormally high. In this case, the high temperature is transmitted to the spring 412 facing the high pressure chamber 401, and the set load of the spring 412 increases rapidly. Therefore, in this state, the high pressure side control valve 405 is forcibly pushed upward in the figure, increasing the opening area of the high pressure side communication passage 404.
同時に、低圧側制御弁407は低圧側連通路406の開
口面積を減少させる。その結果、吸入側冷媒圧力の大小
にかかわらず、混合室403内には高圧冷媒が導入され
る。それにより、信号圧力室101内の圧力が高まり圧
縮機の吐出容量は減少する。At the same time, the low pressure side control valve 407 reduces the opening area of the low pressure side communication passage 406. As a result, high-pressure refrigerant is introduced into the mixing chamber 403 regardless of the magnitude of the suction-side refrigerant pressure. As a result, the pressure within the signal pressure chamber 101 increases and the discharge capacity of the compressor decreases.
なお、上述の例では形状変化手段としてスプリング41
2を用いたが、スプリング412以外の部材においても
、もちろん本発明の作用は達成される。In addition, in the above example, the spring 41 is used as the shape changing means.
Although spring 412 is used, the effect of the present invention can of course be achieved with members other than spring 412.
第2図は、形状変化手段として接続棒408を用いた例
である。接続棒408の途中に所定温度(例えば150
℃)で急激に長さが膨張する形状記憶合金製のジヨイン
ト600を配設したものである。高圧側冷媒温度が所定
値温度以上になったときにはその温度が接続棒408の
ジヨイントに伝えられる。それにより、ジヨイント60
0は伸び高圧側制御弁405を強制的に高圧側連通路4
04より引き離す。その結果、高圧冷媒が混合室403
に導入され、高い圧力が信号圧力として信号圧力室に伝
達される。FIG. 2 shows an example in which a connecting rod 408 is used as the shape changing means. A predetermined temperature (for example, 150
A joint 600 made of a shape memory alloy whose length expands rapidly at temperatures (°C) is provided. When the high-pressure side refrigerant temperature reaches a predetermined temperature or higher, the temperature is transmitted to the joint of the connecting rod 408. As a result, joint 60
0 expands and forces the high pressure side control valve 405 to open the high pressure side communication path 4.
Pull it away from 04. As a result, the high pressure refrigerant flows into the mixing chamber 403.
high pressure is transmitted to the signal pressure chamber as a signal pressure.
第3図は、形状変化手段を高圧側制御弁405に用いた
例である。高圧側制御弁405は所定温度(例えば15
0℃)以下の場合には第4図に示すように密着した渦巻
状をしているが、所定温度を超えると第5図図示の如く
粗な渦巻状となる。FIG. 3 is an example in which the shape changing means is used in the high pressure side control valve 405. The high pressure side control valve 405 is operated at a predetermined temperature (for example, 15
When the temperature is below 0° C., it forms a tight spiral as shown in FIG. 4, but when it exceeds a predetermined temperature, it becomes a rough spiral as shown in FIG.
従って所定温度以上では高圧側制御弁は高圧側連通路4
04を閉じることができず高圧冷媒は自動的に混合室4
03に導入される。その結果、信号圧力室101内の圧
力が高くなる。Therefore, when the temperature is higher than a predetermined temperature, the high pressure side control valve
04 cannot be closed, the high-pressure refrigerant automatically enters mixing chamber 4.
Introduced in 2003. As a result, the pressure within the signal pressure chamber 101 increases.
第6図は、形状変化手段により高圧側連通路404の位
置を変化させるようにしたものである。FIG. 6 shows a configuration in which the position of the high-pressure side communication passage 404 is changed by a shape changing means.
すなわち、高圧側連通路404 (特に高圧側制御弁4
05との対向部)はカバーハウジング300内に摺動可
能に配設されており、その上下端はスプリング700.
.701により保持されている。That is, the high pressure side communication passage 404 (especially the high pressure side control valve 4
05) is slidably disposed within the cover housing 300, and its upper and lower ends are connected to springs 700.
.. 701.
一方のスプリング700は所定温度(例えば150℃)
以上になると形状が急激に変化する形状記憶合金により
構成されており、所定温度を境にその設定力が急激に上
昇する。One spring 700 is at a predetermined temperature (for example, 150°C)
If the temperature is higher than that, the shape memory alloy is made of a shape memory alloy whose shape changes rapidly, and the setting force increases rapidly after reaching a predetermined temperature.
所定温度以下の場合は高圧側連通路404は第1図図示
と同じ位置に配設されている。ところが、所定温度以上
ではスプリング700の設定力が急激に高まり、高圧側
連通路404は図中下方に強制的に押し下げられる。そ
の結果、高圧側連通路404の開口面積は広げられ混合
室403内には高圧冷媒が導入される。それにより、信
号圧力室101内の圧力も高くなる。なお、スプリング
700を通常のバイアススプリングとし、スプリング7
01を形状記憶合金製のスプリングとしても同様の作用
は達成される。When the temperature is below a predetermined temperature, the high pressure side communication passage 404 is arranged at the same position as shown in FIG. However, when the temperature exceeds a predetermined temperature, the setting force of the spring 700 increases rapidly, and the high-pressure side communication passage 404 is forcibly pushed downward in the figure. As a result, the opening area of the high-pressure side communication passage 404 is expanded, and high-pressure refrigerant is introduced into the mixing chamber 403. As a result, the pressure within the signal pressure chamber 101 also increases. Note that the spring 700 is a normal bias spring, and the spring 700 is a normal bias spring.
The same effect can be achieved even if 01 is a shape memory alloy spring.
上述したように、本発明圧縮機では吸入側の圧力に応じ
て自身の吐出容量が可変できるとともに、高圧側の温度
が異常上昇したときには、強制的に小容量とすることが
できる。As described above, the compressor of the present invention can vary its own discharge capacity according to the pressure on the suction side, and can forcibly reduce the capacity when the temperature on the high pressure side rises abnormally.
第1図は本発明圧縮機の一実施例を示す断面図、第2図
、第3図及び第6図はそれぞれ本発明圧縮機の他の実施
例の要部を示す断面図、第4図及び第5図は第3図図示
高圧側制御弁の作動を示す正面図である。
100、 102. 300−・・ハウジング、1o1
・・・信号圧力室、104・・・シャフト、108・・
・ワッブルプレート、109・・・コネクタ、110・
・・ピストン、400・・・圧力調整手段、405,4
08゜412.700・・・それぞれ形状変化手段をな
す高圧側制御弁、接続棒、スプリング、50o・・・通
路。
代理人弁理士 岡 部 隆
第2図 第3図FIG. 1 is a sectional view showing one embodiment of the compressor of the present invention, FIGS. 2, 3, and 6 are sectional views showing main parts of other embodiments of the compressor of the present invention, and FIG. 4 and FIG. 5 is a front view showing the operation of the high pressure side control valve shown in FIG. 3. 100, 102. 300--Housing, 1o1
...Signal pressure chamber, 104...Shaft, 108...
・Wobble plate, 109...Connector, 110・
...Piston, 400...Pressure adjustment means, 405,4
08゜412.700...High pressure side control valve, connecting rod, spring, 50o...passage, each forming a shape changing means. Representative Patent Attorney Takashi Okabe Figure 2 Figure 3
Claims (1)
するハウジングと、前記ハウジング内に回転自在に配設
されたシャフトと、前記信号圧力室内に配設され前記シ
ャフトに揺動可能に取付けられたワッブルプレートと、
前記シリンダ内に摺動自在に配設されたピストンと、前
記信号圧力室内に配設され前記ワッブルプレートと前記
ピストンとを連結するコネクタと、前記シリンダと前記
ピストンにより形成される圧縮室に流体を導く吸入室と
、前記圧縮室より流体が吐出される吐出室と、前記吸入
室及び圧力室からの流体圧力を信号圧力として導入し、
出力信号圧力を調整する圧力調整手段と前記圧力調整手
段により出力される圧力を前記ハウジングの信号圧力室
に導く通路とを備え、前記圧力調整手段の前記吐出室側
流体温度を検知する部位に所定温度以上になると、形状
が変化する形状変化手段を配設し、前記流体が所定温度
以上になったとき前記圧縮室側の流体を強制的に前記圧
力調整手段に導くよう構成した可変容量圧縮機。A housing having a plurality of cylinders and a signal pressure chamber on the back surface of the cylinders, a shaft rotatably disposed within the housing, and a wobble plate disposed within the signal pressure chamber and swingably attached to the shaft. and,
A piston slidably disposed within the cylinder, a connector disposed within the signal pressure chamber for connecting the wobble plate and the piston, and a compression chamber formed by the cylinder and the piston. a suction chamber for introducing the fluid, a discharge chamber for discharging fluid from the compression chamber, and introducing fluid pressure from the suction chamber and the pressure chamber as a signal pressure,
A pressure adjusting means for adjusting an output signal pressure and a passage for guiding the pressure outputted by the pressure adjusting means to the signal pressure chamber of the housing, and a predetermined portion of the pressure adjusting means for detecting the fluid temperature on the discharge chamber side. A variable capacity compressor configured to include a shape changing means that changes shape when the temperature exceeds a predetermined temperature, and forcibly guide the fluid in the compression chamber side to the pressure adjusting means when the temperature of the fluid reaches a predetermined temperature or higher. .
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60230660A JPS6291672A (en) | 1985-10-16 | 1985-10-16 | Variable delivery compressor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP60230660A JPS6291672A (en) | 1985-10-16 | 1985-10-16 | Variable delivery compressor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS6291672A true JPS6291672A (en) | 1987-04-27 |
Family
ID=16911290
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP60230660A Pending JPS6291672A (en) | 1985-10-16 | 1985-10-16 | Variable delivery compressor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6291672A (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1052406A3 (en) * | 1999-05-10 | 2001-05-02 | Kabushiki Kaisha Saginomiya Seisakusho | Control valve for variable displacement compressor |
| EP1936191A2 (en) | 2006-12-13 | 2008-06-25 | Kabushiki Kaisha Toyota Jidoshokki | Variable displacement compressor |
| JP2008144701A (en) * | 2006-12-12 | 2008-06-26 | Sanden Corp | Variable displacement reciprocating compressor |
-
1985
- 1985-10-16 JP JP60230660A patent/JPS6291672A/en active Pending
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1052406A3 (en) * | 1999-05-10 | 2001-05-02 | Kabushiki Kaisha Saginomiya Seisakusho | Control valve for variable displacement compressor |
| US6332757B1 (en) | 1999-05-10 | 2001-12-25 | Kabushiki Kaisha Saginomiya Seisakusho | Control valve for variable displacement compressor |
| JP2008144701A (en) * | 2006-12-12 | 2008-06-26 | Sanden Corp | Variable displacement reciprocating compressor |
| EP1936191A2 (en) | 2006-12-13 | 2008-06-25 | Kabushiki Kaisha Toyota Jidoshokki | Variable displacement compressor |
| EP1936191A3 (en) * | 2006-12-13 | 2010-03-31 | Kabushiki Kaisha Toyota Jidoshokki | Variable displacement compressor |
| US8172552B2 (en) | 2006-12-13 | 2012-05-08 | Kabushiki Kaisha Toyota Jidoshokki | Variable displacement compressor |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP0309242B1 (en) | Refrigerating system having a compressor with an internally and externally controlled variable displacement mechanism | |
| US4905477A (en) | Refrigerant circuit with passageway control mechanism | |
| EP0256793B1 (en) | Slant plate type compressor with variable displacement mechanism | |
| CA1235402A (en) | Refrigerant compressor with a capacity adjusting mechanism | |
| KR960009853B1 (en) | Swash plate compressor with variable volume mechanism | |
| US5823000A (en) | Refrigerant circuit with fluid flow control mechanism | |
| EP0257784B1 (en) | Slant plate type compressor with variable displacement mechanism | |
| JP2001132650A (en) | Compression capacity control device for refrigerating cycle | |
| US5189886A (en) | Refrigerating system having a compressor with an internally and externally controlled variable displacement mechanism | |
| US4729718A (en) | Wobble plate type compressor | |
| JPS62276279A (en) | refrigeration system | |
| JPH02115577A (en) | Variable capacity type swingable compressor | |
| JPH06117366A (en) | Reciprocating compressor | |
| US5027612A (en) | Refrigerating system having a compressor with an internally and externally controlled variable displacement mechanism | |
| KR970001753B1 (en) | Oscillating plate type compressor with variable capacity mechanism | |
| JPH1182296A (en) | Variable delivery compressor | |
| JPH01182580A (en) | Variable displacement oscillating compressor | |
| JPH1182300A (en) | Variable delivery compressor | |
| JPH11324930A (en) | Variable capacity type compressor | |
| EP0318976A1 (en) | Slant plate type compressor with variable displacement mechanism | |
| JPS6291672A (en) | Variable delivery compressor | |
| US5168716A (en) | Refrigeration system having a compressor with an internally and externally controlled variable displacement mechanism | |
| JPH10205443A (en) | Variable displacement compressor | |
| EP0797000B1 (en) | Starting load reducing device for refrigerant compressor | |
| JP2000310188A (en) | Capacity control device of variable displacement compressor |