[go: up one dir, main page]

JPS6291676A - Micropump - Google Patents

Micropump

Info

Publication number
JPS6291676A
JPS6291676A JP23025785A JP23025785A JPS6291676A JP S6291676 A JPS6291676 A JP S6291676A JP 23025785 A JP23025785 A JP 23025785A JP 23025785 A JP23025785 A JP 23025785A JP S6291676 A JPS6291676 A JP S6291676A
Authority
JP
Japan
Prior art keywords
pump
piezoelectric
piezoelectric bimorph
flow
furnished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23025785A
Other languages
Japanese (ja)
Inventor
Satoru Tagami
悟 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23025785A priority Critical patent/JPS6291676A/en
Publication of JPS6291676A publication Critical patent/JPS6291676A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

PURPOSE:To omit a stop valve and realize a compact size extensively, by arranging one or more piezoelectric bimorph elements parallel to the flow in an enclosed container furnished on the way of the flow, and causing a deflecting oscillation to them. CONSTITUTION:On the way of a fluid pipe line 4, is furnished a pump container 3, and at the entrance of the pump is arranged a slit plate 1. At the portion beside the opening of the slit plate 1, a piezoelectric bimorph element 2 is fixed standing square to the plate 1. The element 2 is composed of two sheets of piezoelectric ceramics 5 polarized in the direction of the arrow, to make it possible to generate a deflecting oscillation by applying an A-C electric field. The pumping is carried out by this deflecting oscillation, and a pair of piezoelectic bimorph elements operating in the reverse phases each other are necessary to furnish to get a further higher pumping efficiency.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は医用機器や化学分析機器へ応用される圧′厄バ
イモルフ型マイクロポンプに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a pressure sensitive bimorph micropump applied to medical equipment and chemical analysis equipment.

(従来の技術) 従来知られているマイクロポンプは、メカニカルなもの
では羽根車を回転させるものや、ビニール管々どに外部
から圧力を加えて変形させてしぼり出すような運動全す
るものがあった。あるいは圧電セラiクク全利用したも
のでは流路途中に設けたポンプ機能全果たす長方体容器
の相同う一対の面を、圧電ボイモルフ素子で構成したも
ので周辺を固定した圧電バイモルフ振動板の屈曲撮動連
動により流体を輸送するものであった。
(Prior art) Conventionally known micro pumps include mechanical ones that rotate an impeller, and ones that apply external pressure to vinyl pipes to deform them and squeeze them out. Ta. Alternatively, in a case that fully utilizes the piezoelectric Cera i-Kuku, a pair of identical surfaces of a rectangular rectangular container that performs all pump functions is installed in the middle of the flow path, and a piezoelectric bimorph diaphragm whose periphery is fixed with piezoelectric Boimorph elements is bent. It was designed to transport fluid by interlocking photography.

(発明の解決しようとする問題点) しかし、従来のマイクロポンプの場合以下の様な問題点
が掲げられる。メカニカルなマイクロポンプでは、いず
れの場合も動力部とポンプ部は別々江なっており、小型
化全図るには限度がある。
(Problems to be Solved by the Invention) However, conventional micropumps have the following problems. In all mechanical micropumps, the power section and the pump section are separate, so there is a limit to how far miniaturization can be achieved.

また、流量の制御は羽根車の回転速度をごく遅くするか
、あるいは、ビニール管て加える力全加減するとかいっ
た方法が考えられるが、いずれの場合も流量全精確にコ
ントロールすることは難しい。
In addition, the flow rate can be controlled by slowing down the rotational speed of the impeller or by fully adjusting the force applied by a vinyl pipe, but in either case, it is difficult to control the flow rate completely accurately.

また、圧電バイモルフを利用したものではポンプ部動力
部が一体で小型化は可能であるが、流量のコントロール
に関しては、例えば水を運ぶ場合は、毎分lsom/程
度と制御できる範囲が狭くなってしまう。
In addition, with piezoelectric bimorphs, the pump part and power part are integrated and can be made smaller, but when it comes to controlling the flow rate, for example, when transporting water, the controllable range is limited to lsom/minute. Put it away.

(問題点全解決するtめの手段) 本発明は1個あるいは2個以上の圧電バイモルフ素子が
流路途中に設けた密閉容器中に、流れと平行に々るよう
に配置さね、ており、さらに該圧電バイモルフ素子の一
端が固定されていることft特徴とするマイクロポンプ
である。
(Tth Means for Solving All Problems) The present invention has one or more piezoelectric bimorph elements arranged in a closed container provided in the middle of a flow path so as to run parallel to the flow. The micropump is further characterized in that one end of the piezoelectric bimorph element is fixed.

(作用) 管路よりポンプ部への流入口断面に、スリット板を設け
、この目かぐし部分に流れに平行に圧電バイモルフ素子
を固定する。このバイモルフ素子に交流電圧全印加する
とたわみ振動運動が誘起される。このたわみ振動で周り
の流体は押し流されポンプとしての機能が実現する。
(Function) A slit plate is provided on the cross section of the inlet from the pipe to the pump section, and a piezoelectric bimorph element is fixed to this blind portion parallel to the flow. When a full AC voltage is applied to this bimorph element, flexural vibration motion is induced. This flexural vibration pushes away the surrounding fluid and realizes the function of a pump.

このように本発明によるマイクロポンプでは、動力部と
ポンプ部が一体となった簡単な構造になっている。また
、従来の圧電バイモルフ型のポンプに見られるような逆
流防止用の弁が不要になっている。従って従来に比べ大
幅々小型化が図られる。
As described above, the micropump according to the present invention has a simple structure in which the power section and the pump section are integrated. In addition, there is no need for a backflow prevention valve as found in conventional piezoelectric bimorph pumps. Therefore, the size can be significantly reduced compared to the conventional one.

ま之流量のコントロールも、圧電バイモルフ素子の駆動
車のピーク値と、周波数を適当に選ぶことにより広範な
流量を簡単に選べ、ぢ。但し実用に供するぼけ周波数ン
ま50〜60 Hzに定められるためi、H正ピーク値
だけのコントロールとなる。さて、この際、流量と密接
′に、関わる圧電バイモルフ振動板の先端での変位δは
次式で与えられる。
The flow rate can also be easily controlled by selecting the peak value of the drive wheel of the piezoelectric bimorph element and the frequency to easily select a wide range of flow rates. However, since the blur frequency for practical use is set at 50 to 60 Hz, only the i and H positive peak values are controlled. Now, in this case, the displacement δ at the tip of the piezoelectric bimorph diaphragm, which is closely related to the flow rate, is given by the following equation.

この式で、K:比例定数+ d31:圧電定数、l:バ
イモルフ素子長、t:バイモルフ素子厚み V a印加
電圧 従って変位と電圧はりニア彦関係((あり流量ニーi、
、簡単にコントロールできる。
In this equation, K: proportionality constant + d31: piezoelectric constant, l: bimorph element length, t: bimorph element thickness V a Applied voltage Therefore, the displacement and voltage relationship ((with flow rate knee i,
, can be easily controlled.

(実施例1) 第1図は本発明の構戊例全示す断面図である。(Example 1) FIG. 1 is a sectional view showing a complete example of the structure of the present invention.

流体管路4の途中にポンプ容゛器3が形成されており、
ポンプ部の入口にはスリット板1を配置しこの目〈ら部
分知、圧電バイモルフ素子2を垂直に立て固定する。該
素子2は第2図に示すように矢印の方向に分極された圧
電セラミクス5全2枚はり合わせ、片方は分極方向に、
他方は分極と逆方向に電界が作用する様に結線してなる
。この際使用する圧電セラミックスは、従来知られてい
るPZT系セラミックスである。該圧電セラミックス5
に交流電界を印加すると、素子はたわみ振動運動を始め
、ポンプとして働いた。原理的には、一つの圧電バイモ
ルフ素子2でポンプ機能を実現することは可能であるが
、さらにポンプの効率全土げるためには、もう一つの圧
電バイモルフ素子を上記とは逆相に運動するように、設
置する。さらにベアの圧電バイモルフ素子を準備すれば
より大きな流量のコントロールも可能である。
A pump container 3 is formed in the middle of the fluid pipe line 4,
A slit plate 1 is arranged at the inlet of the pump section, and a piezoelectric bimorph element 2 is vertically fixed therein. As shown in FIG. 2, the element 2 consists of two piezoelectric ceramics 5 that are polarized in the direction of the arrow.
The other wire is connected so that an electric field acts in the opposite direction to the polarization. The piezoelectric ceramic used in this case is a conventionally known PZT ceramic. The piezoelectric ceramics 5
When an alternating electric field was applied to the element, the element began to undergo flexural oscillatory motion, acting as a pump. In principle, it is possible to realize the pump function with one piezoelectric bimorph element 2, but in order to further increase the efficiency of the pump, it is necessary to move another piezoelectric bimorph element in the opposite phase to the above. So, set it up. Furthermore, if a bare piezoelectric bimorph element is prepared, a larger flow rate can be controlled.

上記述べた通り、構造が非常に単純であるため従来のマ
イクロポンプより大幅に小型化されポンプ部の寸法は5
 X 5 X 3tα程度のものが実現される。
As mentioned above, the structure is very simple, so it is much smaller than conventional micro pumps, and the size of the pump part is 5.
Something of the order of X 5 X 3tα is realized.

(実施例2) 構造その他は、実施例1と同様であるが使用する圧電バ
イモルフ素子金、従来知られるPZT系の圧電セラミッ
クスと恒弾性金属等を使った振動板をはり合わせた形の
ものにする。この構成でも実施例1と同様の効果を得た
(Example 2) The structure and other features were the same as in Example 1, but the piezoelectric bimorph element used was made of gold, conventionally known PZT-based piezoelectric ceramics, and a diaphragm made of constant elastic metal, etc. do. Even with this configuration, the same effects as in Example 1 were obtained.

(発明の効果) このように、ポンプ部と動力部が一体となったために構
造が簡単に彦り、逆流防止弁も不要のため、従来より大
幅な小型化が可能である。、−また広範な流量も印加す
る電圧値により簡単にコントロールできる。
(Effects of the Invention) As described above, since the pump part and the power part are integrated, the structure is simple and no check valve is required, so it is possible to significantly downsize the pump compared to the conventional one. , - Also, a wide range of flow rates can be easily controlled by the applied voltage value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による圧電バイモルフ型マイクロポンプ
の全体の構成例を示す断面図、第2図は圧電バイモルフ
素子の例を示す断面図。 図中1はスリット板、2は圧′亀バイモルフ素子、3は
ポンプ容器、4は流体管路、5は圧電セラミックスをそ
れぞれ示す。 代理人−11へ辻内原  晋    ゛亭   1  
 図 享Z図 5、圧嘴詐こラミックス 昭和   年   月    日 1、事件の表示  昭和60年 特許願 第23025
7号2 発明の名、称 マイクロポンプ 3 補正をする者 事件との関係      出 願 人 東京都港区芝五丁目33番1号 (423)日本電気株式会社 代表者  関 本 忠 弘 4  代  理  人 5 補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書第3頁第16行目〜18行目に[また、従
来の〜ている。Jとあるのを削除する。
FIG. 1 is a sectional view showing an example of the overall configuration of a piezoelectric bimorph micropump according to the present invention, and FIG. 2 is a sectional view showing an example of a piezoelectric bimorph element. In the figure, 1 is a slit plate, 2 is a piezoelectric bimorph element, 3 is a pump container, 4 is a fluid conduit, and 5 is a piezoelectric ceramic. To Agent-11 Susumu Tsujiuchihara Etei 1
Illustration Z Diagram 5, Pressure Beak Spoof Lamix Showa Year, Month, Day 1, Incident Indication 1985 Patent Application No. 23025
No. 7 No. 2 Name of the invention, name Micropump 3 Relationship with the case of the person making the amendment Applicant 5-33-1 Shiba, Minato-ku, Tokyo (423) NEC Corporation Representative Tadahiro Sekimoto 4th Director 5 Column 6 of Detailed Description of the Invention in the Specification Subject to Amendment, Contents of Amendment (1) Page 3 of the Specification, Lines 16 to 18 [Also, the conventional...] Delete the J.

Claims (1)

【特許請求の範囲】[Claims] 1個あるいは2個以上の圧電バイモルフ素子が流路途中
に設けた密閉容器中に、流れと平行になるように配置さ
れており、さらに該圧電バイモルフ素子の一端が固定さ
れていることを特徴とするマイクロポンプ。
One or more piezoelectric bimorph elements are arranged parallel to the flow in a closed container provided in the middle of the flow path, and one end of the piezoelectric bimorph element is fixed. micro pump.
JP23025785A 1985-10-15 1985-10-15 Micropump Pending JPS6291676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23025785A JPS6291676A (en) 1985-10-15 1985-10-15 Micropump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23025785A JPS6291676A (en) 1985-10-15 1985-10-15 Micropump

Publications (1)

Publication Number Publication Date
JPS6291676A true JPS6291676A (en) 1987-04-27

Family

ID=16904966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23025785A Pending JPS6291676A (en) 1985-10-15 1985-10-15 Micropump

Country Status (1)

Country Link
JP (1) JPS6291676A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419184A (en) * 1987-07-13 1989-01-23 Nec Corp Piezoelectric type micro-pump
WO2000052336A1 (en) * 1999-03-03 2000-09-08 Ngk Insulators, Ltd. Pump
JP2007162514A (en) * 2005-12-09 2007-06-28 Kyocera Corp Fluid actuator and heat generating device and analyzer using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419184A (en) * 1987-07-13 1989-01-23 Nec Corp Piezoelectric type micro-pump
WO2000052336A1 (en) * 1999-03-03 2000-09-08 Ngk Insulators, Ltd. Pump
US6565331B1 (en) 1999-03-03 2003-05-20 Ngk Insulators, Ltd. Pump
US6666658B2 (en) 1999-03-03 2003-12-23 Ngk Insulators, Ltd. Microfluidic pump device
US6682318B2 (en) 1999-03-03 2004-01-27 Ngk Insulators, Ltd. Pump
JP2007162514A (en) * 2005-12-09 2007-06-28 Kyocera Corp Fluid actuator and heat generating device and analyzer using the same

Similar Documents

Publication Publication Date Title
Linnemann et al. A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases
KR0119362B1 (en) Micro-miniaturized, electrostatically driven diaphragm micropump
US4938742A (en) Piezoelectric micropump with microvalves
US6071087A (en) Ferroelectric pump
JP3814132B2 (en) Pump and driving method thereof
US8272851B2 (en) Fluidic energy transfer devices
Miyazaki et al. A piezo-electric pump driven by a flexural progressive wave
WO2005060593A2 (en) Micropump for electronics cooling
Ogawa et al. Development of liquid pumping devices using vibrating microchannel walls
WO2003069159A1 (en) Piezoelectrically driven fluid pump
CN1983658A (en) Wiring structure of vibrator, and piezoelectric pump
CN101526078A (en) Precision liquid-gas transmission and matching machine based on piezoelectric material
JPS6291676A (en) Micropump
US8668474B2 (en) Electro-active valveless pump
JP2001221166A (en) Displacement type pump with spiral pipes and fluid transfer method
US10883486B1 (en) Forced surface traveling wave-driven microfluidic pump
JPS61171891A (en) Piezo-electric pump
JPH0354383A (en) Piezoelectric pump
DK1350077T3 (en) Through Strömning Meter
Tanaka et al. Fabrication and basic characterization of a piezoelectric valveless micro jet pump
AU2199599A (en) Ferroelectric pump
EP3510284B1 (en) Micropumps
JPS62233499A (en) Micropump
Honda et al. Fabrication and testing of a small pump composed of a magnet and an elastic plate
JP2509068B2 (en) Valve device and method of using the same