[go: up one dir, main page]

JPS63122211A - Molecular beam generating device - Google Patents

Molecular beam generating device

Info

Publication number
JPS63122211A
JPS63122211A JP27017086A JP27017086A JPS63122211A JP S63122211 A JPS63122211 A JP S63122211A JP 27017086 A JP27017086 A JP 27017086A JP 27017086 A JP27017086 A JP 27017086A JP S63122211 A JPS63122211 A JP S63122211A
Authority
JP
Japan
Prior art keywords
shutter
molecular beam
crucible
heat radiation
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27017086A
Other languages
Japanese (ja)
Inventor
Keiji Shimizu
清水 啓次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27017086A priority Critical patent/JPS63122211A/en
Publication of JPS63122211A publication Critical patent/JPS63122211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To grow a crystal having the microscopic structure of a superlattice and the like into an excellent controllability by a method wherein a shutter is formed in a conical shape, and the title device is constructed in such a manner that the vertex of the device is arranged in the direction of a crucible. CONSTITUTION:A shutter 4a is formed into a conical shape, and it is arranged in such a manner this its vertex is directed toward a crucible. A part of the heat radiation emitted from the crucible and the surface of a molecular beam material comes out to outside the crucible without interruption by the shutter 4a. Also, a part of the heat radiation made incident on the shutter is reflected in the angle equal to the angle of incidence, but as the shutter 4a is formed into a conical shape having the vertical angle of 90 deg., all the heat radiation is reflected in the direction outside the crucible 1. Accordingly, the rate of the heat radiation reflected by the shutter 4a and returned to the crucible can be made smaller than that of the previous examples, and the difference in the surface temperature of a molecular beam material 3 when the shutter 4a is closed and when it is opened can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は分子線エピタキシャル装置の分子線発生装置に
関し、特にシャッター開閉時に分子線強度が安定である
分子線発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a molecular beam generating device for a molecular beam epitaxial device, and particularly to a molecular beam generating device whose molecular beam intensity is stable when the shutter is opened and closed.

〔従来の技術) 分子線エピタキシャル法に、超高真空中のもとて分子線
材料を加熱等の手段により発生させた分子線を、加熱し
た基板に入射させて結晶成長を行なり方法でるる。材料
を分子線の形で供給するところから2分子線エピタキシ
ャル法は、膜厚および不純物ドーピングの制御性が良好
でるる事や急峻なヘテロ接合が得られること等の利点を
有している。
[Prior art] Molecular beam epitaxial method involves a method in which molecular beams generated by heating a source molecular beam material in an ultra-high vacuum are incident on a heated substrate to grow crystals. . Since the material is supplied in the form of a molecular beam, the bimolecular beam epitaxial method has advantages such as good controllability of film thickness and impurity doping, and the ability to obtain a steep heterojunction.

従来の分子線発生装置は第3図に示したよう和、ルツボ
lの周囲に配置したヒーター2により、ルツボ内に入れ
た分子線材料3を加熱して蒸発又は昇華させて分子線を
ルツボ開口部から噴出させる。
As shown in Fig. 3, the conventional molecular beam generator uses a heater 2 placed around a crucible 1 to heat the molecular beam material 3 placed in the crucible, evaporate or sublimate it, and release the molecular beam into the crucible opening. Make it squirt from the part.

分子線の断続はルツボ開口部に近接して配置したシャッ
ター4bvi−機械的に開閉させて行なう。
The molecular beam is interrupted by mechanically opening and closing a shutter 4bvi placed close to the crucible opening.

第3図において、5は熱反射板、6FX、感温索子でめ
る熱電対、7は冷却用の液体N素溜めでおる。
In FIG. 3, numeral 5 is a heat reflecting plate, 6FX is a thermocouple connected to a temperature-sensitive wire, and 7 is a liquid N reservoir for cooling.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の分子線発生装置によシGaAs(砒化ガリウム)
の結晶成長を行なり場合、1μm/h程度の成長速度と
なる分子線強度を得るには、Ga(ガリウム)を入れた
ルツボの温度t−1000〜1200°Cに制御する。
The above-mentioned molecular beam generator uses GaAs (gallium arsenide).
When performing crystal growth, the temperature of the crucible containing Ga (gallium) is controlled to t-1000 to 1200°C in order to obtain a molecular beam intensity that provides a growth rate of about 1 μm/h.

シャッター4bを開いて分子?fMヲ噴出させていると
きは9分子線材料3の表面から熱輻射によシ熱が散逸す
るために分子線材料3の表面温度は内部の温度よりも俄
くなる。一方、シャッターを閉じて分子線を遮断してい
るときは、輻射熱がシャッター4bで反射して再びルツ
ボ内に戻るために9分子線材料3の表面温度がシャッタ
ー4bを開いているときに比べて高くなる。そのため、
シャッター4bを開いた直後は分子線材料3の表面温度
が経時変化するため9分子線強度が定常値と異なった値
を示すことになる。
Molecule by opening shutter 4b? When fM is ejected, heat is dissipated from the surface of the molecular beam material 3 by thermal radiation, so the surface temperature of the molecular beam material 3 becomes lower than the internal temperature. On the other hand, when the shutter is closed to block the molecular beam, the surface temperature of the 9-molecular beam material 3 is lower than when the shutter 4b is open because the radiant heat is reflected by the shutter 4b and returns to the crucible. It gets expensive. Therefore,
Immediately after opening the shutter 4b, the surface temperature of the molecular beam material 3 changes over time, so the nine molecular beam intensity shows a value different from the steady value.

第4図は、Ga(ガリウム)をPBN(パイロリティク
窒化ホウ素)製ルツボに入れて真全中で1100℃に加
熱したときの分子線強度の経時変化を測定した結果でろ
る。尚1分子線強度にBeyard−Alpert型電
離真空計で測定している。シャッターを開い九厘後は9
時間が充分経過して安定したときに比べて2分子線強度
が約20%大きくなっている。シャッターを開いた時点
から分子線強度が定常値になるまでに要する時間は、ル
ツボの温度・分子線材料の形状・シャッターを閉じてい
た時間等により異なるが、数十秒〜数分であり。
FIG. 4 shows the results of measuring changes in molecular beam intensity over time when Ga (gallium) was placed in a PBN (pyrolytic boron nitride) crucible and heated to 1100° C. in a vacuum. The single molecule beam intensity was measured using a Bayard-Alpert type ionization vacuum gauge. 9 after opening the shutter
The bimolecular beam intensity is about 20% higher than when it stabilizes after a sufficient period of time has elapsed. The time required for the molecular beam intensity to reach a steady value from the time the shutter is opened varies depending on the temperature of the crucible, the shape of the molecular beam material, the time the shutter is closed, etc., but is from several tens of seconds to several minutes.

数十A〜数百への厚さの結晶層の成長時間に和尚する。The growth time of the crystal layer with a thickness of several tens of amps to several hundred is acceptable.

分子線強度が不安定な期間は、膜厚・不純物ドーピング
・混晶比等の制御が困難となり、超格子等の超薄膜の構
造の結晶の炸裂やへテロ接合の格子整合が困難になると
いった欠点があった。
During periods when the molecular beam intensity is unstable, it becomes difficult to control film thickness, impurity doping, mixed crystal ratio, etc., and crystal explosions in ultra-thin film structures such as superlattices and lattice matching in heterojunctions become difficult. There were drawbacks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の分子線発生装置は、シャッターの形状が日蝕状
であって、頂点をルツボ方向に向けて配置しているとい
う構造を有している。
The molecular beam generator of the present invention has a structure in which the shutter has a solar eclipse shape and is disposed with its apex facing toward the crucible.

〔実施例〕〔Example〕

次に9本発明について図面を参照して説明する。 Next, nine aspects of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の断面図でるる。図において
、第3図と同じ番号のものは第3図と同一構成物である
。4aはシャッターであるが、従来のものと異なる点は
シャッターの形状が日蝕状でろって、その頂点をルツボ
の方向に向けて配置している点である。本実適例では、
シャッター4aの形状が頂角が90°の日蝕状のシャッ
ターを用いている。ここで、シャッター4a2閉じても
FIG. 1 is a sectional view of one embodiment of the present invention. In the figures, the same numbers as in FIG. 3 are the same components as in FIG. 3. The shutter 4a is different from conventional ones in that the shape of the shutter is solar eclipse-like, and its apex is oriented toward the crucible. In this practical example,
The shutter 4a has a solar eclipse shape with an apex angle of 90°. Here, even if the shutter 4a2 is closed.

ルツボとシャッタ−4a間に隙間があるが、シャッター
48の外径を十分大きくすれば分子線の遮蔽効果を損な
うことはなho ルツボ及び分子線材料表面からの熱輻射の一部分は、シ
ャッター4aにさえぎられることなくルツボ1の外に出
てゆく。また、シャッターに入射し良熱輻射のうちの一
部分は入射角に等しい角度で反射するが、シャッター4
aが90”の頂角を有する日蝕状をしているため1反射
方向はすべてルツボlの外になる。従って、シャッター
4aで反射して再びルツボ内に戻ってくる熱輻射の割合
は。
Although there is a gap between the crucible and the shutter 4a, if the outer diameter of the shutter 48 is made sufficiently large, the shielding effect of the molecular beam will not be impaired. It goes out of Crucible 1 without being blocked. Also, a part of the good thermal radiation incident on the shutter is reflected at an angle equal to the incident angle, but the shutter 4
Since a has a solar eclipse shape with an apex angle of 90'', all one reflection direction is outside the crucible l. Therefore, the proportion of thermal radiation that is reflected by the shutter 4a and returns into the crucible is:

第3因の従来例に比べて小さくすることができ。The third factor can be made smaller compared to the conventional example.

シャッター4aを閉じているときと開いているときの分
子線材料3の表面温度の差を緩和することができる。第
4図にGaをPBN製ルツルツボれて真空中で1100
℃に加熱したときの分子線強度の経時変化を測定した結
果である。シャッターを開放にした直後の分子線強度の
変動は1チ以内でめりた0 〔発明の効果〕 以上説明したように本発明は、シャッターでの熱輻射の
反射による分子線材料表面の温度上昇を抑制することに
より、シャッター開放直後の分子線強度の変動を減少さ
せることができ、超格子等の微細な構造を有する結晶を
制御性よく成長させることができる効果がある。
The difference in surface temperature of the molecular beam material 3 when the shutter 4a is closed and when it is opened can be alleviated. Figure 4 shows Ga in a PBN crucible in vacuum at 1100°C.
These are the results of measuring changes in molecular beam intensity over time when heated to ℃. Immediately after the shutter was opened, the fluctuation of the molecular beam intensity was within 1 inch. [Effects of the Invention] As explained above, the present invention suppresses the temperature increase on the surface of the molecular beam material due to the reflection of thermal radiation at the shutter. By suppressing this, it is possible to reduce fluctuations in the molecular beam intensity immediately after the shutter is opened, and there is an effect that crystals having a fine structure such as a superlattice can be grown with good controllability.

【図面の簡単な説明】[Brief explanation of the drawing]

第11には2本発明の分子線発生装置の断面図。 第2図は9本発明の分子線発生装置を用いたときのシャ
ッター開放直後のGa分子線強度の経時変化。 第3図は、従来の分子線発生装置の断面図。 第4図は、従来の分子線発生装置を用いたときのシャッ
ター開放直後のGa分子線強度の経時変化。 1・・・ルツボ、2・・・ヒーター、3・・・分子線材
料、4a 、4b・・・シャッター、5・・・熱反射板
、6・・・熱電対、7・・・液体窒素溜。 芳1図 yflJz 回 第3図 峙 r4 箭4旧
11th is a sectional view of the molecular beam generator of the present invention. FIG. 2 shows the change over time in the Ga molecular beam intensity immediately after the shutter is opened when using the molecular beam generator of the present invention. FIG. 3 is a cross-sectional view of a conventional molecular beam generator. FIG. 4 shows the change over time in the Ga molecular beam intensity immediately after the shutter is opened when using a conventional molecular beam generator. DESCRIPTION OF SYMBOLS 1... Crucible, 2... Heater, 3... Molecular beam material, 4a, 4b... Shutter, 5... Heat reflection plate, 6... Thermocouple, 7... Liquid nitrogen reservoir . Fang 1 figure yflJz 3rd figure confrontation r4 箭4 old

Claims (1)

【特許請求の範囲】[Claims]  分子線供給用のルツボの開口部にシャッターを配置し
て分子線の断続を行なう分子線発生装置において、シャ
ッターの形状が円鍾であって、頂点をルツボ方向に向け
て配置することを特徴とする分子線発生装置。
A molecular beam generation device in which a shutter is disposed at the opening of a crucible for supplying molecular beams to intermittent molecular beams is characterized in that the shape of the shutter is circular and the apex is directed toward the crucible. Molecular beam generator.
JP27017086A 1986-11-12 1986-11-12 Molecular beam generating device Pending JPS63122211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27017086A JPS63122211A (en) 1986-11-12 1986-11-12 Molecular beam generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27017086A JPS63122211A (en) 1986-11-12 1986-11-12 Molecular beam generating device

Publications (1)

Publication Number Publication Date
JPS63122211A true JPS63122211A (en) 1988-05-26

Family

ID=17482505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27017086A Pending JPS63122211A (en) 1986-11-12 1986-11-12 Molecular beam generating device

Country Status (1)

Country Link
JP (1) JPS63122211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747745B2 (en) 2000-03-31 2004-06-08 Omron Corporation Displacement sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747745B2 (en) 2000-03-31 2004-06-08 Omron Corporation Displacement sensor

Similar Documents

Publication Publication Date Title
US3716424A (en) Method of preparation of lead sulfide pn junction diodes
US4806321A (en) Use of infrared radiation and an ellipsoidal reflection mirror
JPS63261832A (en) Manufacture of semiconductor device
US4135027A (en) Semiconductor element embodying an optical coating to enhance thermal gradient zone melting processing thereof
JPS63122211A (en) Molecular beam generating device
US4035199A (en) Process for thermal gradient zone melting utilizing a guard ring radiation coating
JPH10214787A (en) Molecular beam cell for si and molecular beam epitaxy system
US4033786A (en) Temperature gradient zone melting utilizing selective radiation coatings
JP2771215B2 (en) Crucible for molecular beam source and method for forming molecular beam epitaxial growth film using the same
JPH01131096A (en) Molecular beam generator
JPS61220414A (en) Molecular beam generator
JPH05887A (en) Molecular beam crystal growth equipment
Micheli et al. Laser microfabrication of thin films: Part one
JP2001185605A (en) Substrate holding mechanism and method of manufacturing compound semiconductor using the same
JPS6341012A (en) Molecular beam generator
JPH0215520B2 (en)
JPS57178315A (en) Manufacture of semiconductor single crystal
JPS59152296A (en) Intensity controller for molecular rays in epitaxial growth with molecular rays
JPH072617Y2 (en) Uniform heating mechanism for PBN crucible
JP2778137B2 (en) Thin film forming method and apparatus
JPS60165713A (en) Wafer loading constitution of molecular beam epitaxial apparatus
JP3536915B2 (en) Method for producing composite oxide single crystal thin film
JPS63282190A (en) Molecular beam crystal growth device
JPH0473285B2 (en)
JPS6057611A (en) Molecular beam source shutter