JPS63177565A - Semiconductor integrated circuit device and its manufacturing method - Google Patents
Semiconductor integrated circuit device and its manufacturing methodInfo
- Publication number
- JPS63177565A JPS63177565A JP62010256A JP1025687A JPS63177565A JP S63177565 A JPS63177565 A JP S63177565A JP 62010256 A JP62010256 A JP 62010256A JP 1025687 A JP1025687 A JP 1025687A JP S63177565 A JPS63177565 A JP S63177565A
- Authority
- JP
- Japan
- Prior art keywords
- vertical
- film
- manufacturing
- region
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、MO3型半導体集積回路装置およびその製造
方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an MO3 type semiconductor integrated circuit device and a manufacturing method thereof.
従来、集積回路装置の集積度を高めるための立体構造デ
バイス(3次元デバイス)としては、シリコン(Si)
基板の上に絶縁膜を成膜し、その上にSi層を成膜する
SOI技術がある。また、素子分離領域やキャパシタを
小面積化するために、Si基板に溝を掘ってここに分離
領域やキャパシタを形成する技術およびキャパシタとM
OS)ランジスタを一諸に形成する技術がある。Conventionally, silicon (Si) has been used as a three-dimensional device (three-dimensional device) to increase the degree of integration of integrated circuit devices.
There is an SOI technique in which an insulating film is formed on a substrate and a Si layer is formed on top of the insulating film. In addition, in order to reduce the area of element isolation regions and capacitors, we have developed a technology to dig trenches in the Si substrate and form isolation regions and capacitors there, as well as capacitors and M
OS) There is a technology to form transistors all at once.
上述した従来技術のうちSOI技術は、絶縁膜上に良質
で均一なSi単結晶が未だ形成できず、この解決には時
間がかがる。また、キャパシタ付き溝掘りトランジスタ
では、ソース電源が埋め込まれていないという欠点があ
った。Among the conventional techniques mentioned above, the SOI technique has not yet been able to form a high-quality, uniform Si single crystal on an insulating film, and it takes time to solve this problem. Additionally, the trenched transistor with a capacitor has the disadvantage that the source power source is not embedded.
本発明の目的は、このような欠点を除き、装置の高集積
化と高速化を図り、製造工程を短縮した半導体集積回路
およびその製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor integrated circuit and a method for manufacturing the same, which eliminates such drawbacks, achieves higher integration and speed of the device, and shortens the manufacturing process.
〔問題点を解決するための手段〕
第1の発明の半導体集積回路装置の構成は、シリコン基
板表面から垂直に内部に穿たれた溝に接したこのシリコ
ン基板側に、この基板の表面から順次ドレイン用不純物
層、バックゲート、ソース用不純物層が設けられ、前記
溝の底面にはソース電源用不純物層が、前記溝の側面に
は前記バックゲートの表面にゲート絶縁膜が、前記溝の
内部にはその下から順次ソース電源用電極、絶縁膜およ
びゲート電極用金属がそれぞれ設けられた縦型構造のM
OSトランジスタを有することを特徴とする。[Means for Solving the Problems] The structure of the semiconductor integrated circuit device of the first invention is such that on the silicon substrate side that is in contact with the groove perpendicularly drilled inward from the surface of the silicon substrate, A drain impurity layer, a back gate, and a source impurity layer are provided, a source power supply impurity layer is provided on the bottom surface of the trench, a gate insulating film is provided on the surface of the back gate on the side surface of the trench, and a gate insulating film is provided on the surface of the back gate on the side surface of the trench. has a vertical structure in which a source power supply electrode, an insulating film, and a gate electrode metal are provided sequentially from below.
It is characterized by having an OS transistor.
第2の発明の半導体集積回路装置の製造方法の構成は、
シリコン基板表面に第1の絶縁膜を形成し、この第1の
絶縁膜の所定領域を垂直エッチにて除去した後に、その
領域にドレイン用不純物をドープしてドレイン領域を形
成し、このドレイン領域に縦溝を形成し、この縦溝の側
面のシリコン基板をゲート領域とし、その縦溝の下部に
ソースおよびソース電源用不純物をドープしソース領域
を形成した後、これら各領域と前記縦溝の表面に高融点
金属を成膜し、続いて熱処理によりシリサイド化反応を
起させ、次に未反応の高融点金属膜を除去してセルファ
ラインなソース電極を形成することにより縦型MOSト
ランジスタを製造することを特徴とする。The structure of the method for manufacturing a semiconductor integrated circuit device according to the second invention is as follows:
A first insulating film is formed on the surface of a silicon substrate, a predetermined region of the first insulating film is removed by vertical etching, and then a drain region is formed by doping impurities for a drain into the region. A vertical groove is formed in the vertical groove, the silicon substrate on the side surface of the vertical groove is used as a gate region, and the lower part of the vertical groove is doped with impurities for source and source power supply to form a source region. Vertical MOS transistors are manufactured by forming a high melting point metal film on the surface, causing a silicidation reaction through heat treatment, and then removing the unreacted high melting point metal film to form a self-aligned source electrode. It is characterized by
第3の発明の半導体集積回路装置の製造方法の構成は、
第1導電型の縦型構造MOSトランジスタを製作した後
、そのウェーハ表面を所定厚さで垂直エツチングに対す
るマスク剤で覆い、第2導電型の縦型構造MOSトラン
ジスタを製作するための、数次の垂直エツチングに対し
て前記マスク剤の膜をマスクとして用いることを特徴と
する。The structure of the method for manufacturing a semiconductor integrated circuit device according to the third invention is as follows:
After fabricating the vertical structure MOS transistor of the first conductivity type, the wafer surface is covered with a masking agent for vertical etching to a predetermined thickness, and a multi-order process is performed to fabricate the vertical structure MOS transistor of the second conductivity type. The method is characterized in that the film of the masking agent is used as a mask for vertical etching.
次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図(a)〜(j)は本発明の一実施例を工程順に示
した断面図、第2図は第1図(j)の平面図である。FIGS. 1(a) to (j) are sectional views showing an embodiment of the present invention in the order of steps, and FIG. 2 is a plan view of FIG. 1(j).
まず、第1図(a)に示す如く、比抵抗が数ΩCのP型
Si基板1の表面に熱酸化した薄い5i02膜2を形成
し、この5i02膜2の所望の領域にAsをイオン注入
し、深さ3000人程度0高濃度N型不純物層3を形成
し、しがる後、5i02膜2の上に厚さ1μm程度のC
VDSio2膜4を形成する。このN型不純物層3は、
将来、NチャンネルMOSトランジスタのドレイン引出
し部となるものである。First, as shown in FIG. 1(a), a thin thermally oxidized 5i02 film 2 is formed on the surface of a P-type Si substrate 1 with a specific resistance of several ΩC, and As is ion-implanted into a desired region of this 5i02 film 2. After forming a highly concentrated N-type impurity layer 3 to a depth of about 3,000 layers and curing, a C layer with a thickness of about 1 μm is formed on the 5i02 film 2.
A VDSio2 film 4 is formed. This N-type impurity layer 3 is
This will become the drain lead-out portion of an N-channel MOS transistor in the future.
次に、第1図(b)の如く、通常のフォトリソグラフィ
工程を用いて、フォトレジストをマスクとする5i02
膜2の垂直エツチングにより、CVD5i02膜4と熱
5i02膜2を一辺が1.2μmの正方形状に除去する
。次に、^Sのドープにより深さ3000人の高濃度N
型不純物層6を形成する。Next, as shown in FIG. 1(b), using a normal photolithography process, a photoresist is used as a mask.
By vertically etching the film 2, the CVD 5i02 film 4 and the thermal 5i02 film 2 are removed in a square shape of 1.2 μm on each side. Next, by doping with ^S, a high concentration of N to a depth of 3000 people was created.
A type impurity layer 6 is formed.
不純物層6は、将来NチャンネルMO8)ランジスタの
ドレインとなるものであるが、既に形成されている不純
物層2とつながって連続した高濃度N型不純物層となる
。The impurity layer 6, which will become the drain of the N-channel MO transistor 8) in the future, is connected to the already formed impurity layer 2 to form a continuous high-concentration N-type impurity layer.
次に、第1図(c)に示す如く、熱酸化によって溝5の
露出しなSi表面に、厚さ2000人の5102M7を
形成し、更にCVD5iO□膜を3000人堆積させた
後、5i02垂直エツチにより、サイドウオール8を形
成し、底面の5i027の除去を行う。次に、第1図(
d)の如く、Si基板1を深さ1.8μm垂直エッチす
る。Next, as shown in FIG. 1(c), 5102M7 with a thickness of 2000 layers is formed on the exposed Si surface of the groove 5 by thermal oxidation, and after further depositing 3000 layers of CVD 5iO□ film, 5i02 vertical The sidewall 8 is formed by etching, and the bottom surface 5i027 is removed. Next, Figure 1 (
d), the Si substrate 1 is vertically etched to a depth of 1.8 μm.
次に、第1図(e)に示す如く、熱酸化により満5の露
出しなSi表面に、厚さ1000人の5i02膜9を形
成した後、5i02垂直エツチにより、底面の5i02
膜9を除去し、続いてSi垂直エッチにより、更に0.
8μmの深さの溝を掘る。この溝の側面のSi基板1は
ゲート領域となるバックゲートに相当する。Next, as shown in FIG. 1(e), a 5i02 film 9 with a thickness of 1000 is formed on the exposed Si surface by thermal oxidation, and then the 5i02 film 9 on the bottom surface is etched by 5i02 vertical etching.
Film 9 is removed, followed by an additional Si vertical etch.
Dig a trench 8 μm deep. The Si substrate 1 on the side surface of this groove corresponds to a back gate serving as a gate region.
次に、第1図(f)に示す如く、溝の下部のSiが露出
した部分にAsを拡散してソース領域となる深さ300
0人の高濃度N型層10を形成し、更にイオン注入によ
りいっそう高濃度のBをドープしてアニールし、深さ5
000人の高濃度P型層11を形成イし、これらN型層
10.P型層11が電源を構成する。Next, as shown in FIG. 1(f), As is diffused into the exposed portion of Si at the bottom of the trench to a depth of 300 mm, which will become the source region.
A high concentration N-type layer 10 of 0 is formed, and then an even higher concentration of B is doped by ion implantation and annealed to form a layer 10 with a depth of 5.
000 high concentration P-type layer 11 is formed, and these N-type layers 10. P-type layer 11 constitutes a power source.
次に、第1図(g)に示す如<、W層12を厚さ200
0人、CVDで形成した後、アニールして溝下部のSi
と接触した部分をWSiz層13に変える。さらに、第
1図(h)に示す如く、未反応のW層12を除去した後
、溝側面の5i02膜9を等方エッチで除去する。この
等方エッチでサイドウオール5i028も殆んど除去さ
れる。Next, as shown in FIG. 1(g), the W layer 12 is formed to a thickness of 200
After forming by CVD, annealing is performed to form Si at the bottom of the groove.
The part in contact with the WSiz layer 13 is changed to the WSiz layer 13. Furthermore, as shown in FIG. 1(h), after removing the unreacted W layer 12, the 5i02 film 9 on the side surfaces of the trench is removed by isotropic etching. This isotropic etching also removes most of the sidewall 5i028.
次に、第1図(i)に示す如く、熱酸化により溝の側面
に厚さ200人の5i02膜14を形成する。この時、
WSi2膜13の表面も酸化され、酸化膜15が形成さ
れる。次に、第1図(j)に示す如く、リンドープポリ
シリコン16を5000人成膜し、図の左半分をレジス
トでマスクして、ポリシリコン垂直エッチを行い、更に
、厚さ8000人のBPSG膜17全17し、ドレイン
引出し部3の表面に、配線コンタクト用窓をあけて金属
配線18を形成する。Next, as shown in FIG. 1(i), a 5i02 film 14 with a thickness of 200 mm is formed on the side surfaces of the trench by thermal oxidation. At this time,
The surface of the WSi2 film 13 is also oxidized, and an oxide film 15 is formed. Next, as shown in FIG. 1(j), 5,000 layers of phosphorus-doped polysilicon 16 are deposited, the left half of the figure is masked with a resist, and vertical etching of the polysilicon is performed. The BPSG film 17 is completely removed, and a metal wiring 18 is formed on the surface of the drain lead-out portion 3 with a window for wiring contact formed therein.
第1図(j)に於いて、N型不純物N6.はドレイン、
同じく10はソースであり、SiO□膜14はゲート絶
縁膜、リンドープポリシリコン16はゲート電極とゲー
ト引出線であり、1つ縦型構造のNチャンネルMO9)
ランジスタを構成している。ソース10は、WSi2層
13とP型不純物層11を通して、P型Si基板1と同
電位に保持される。この第1図(j>の構造の平面図が
第2図である。In FIG. 1(j), the N-type impurity N6. is the drain,
Similarly, 10 is a source, the SiO□ film 14 is a gate insulating film, the phosphorus-doped polysilicon 16 is a gate electrode and a gate lead line, and one vertically structured N-channel MO 9).
It constitutes a transistor. The source 10 is held at the same potential as the P-type Si substrate 1 through the WSi2 layer 13 and the P-type impurity layer 11. FIG. 2 is a plan view of the structure of FIG. 1 (j>).
以上の説明は、Nチャンネルトランジスタについて説明
したが、全く同様のことがPチャンネルトランジスタに
も適用できることは明らかである。Although the above description has been made regarding an N-channel transistor, it is clear that the same thing can be applied to a P-channel transistor as well.
第3図(a)〜(f)は本発明の第2の実施例を工程順
に示した断面図、第4図は第3図(f)の平面図であり
、CMO3集積回路に適用した例を示している。3(a) to 3(f) are cross-sectional views showing the second embodiment of the present invention in the order of steps, and FIG. 4 is a plan view of FIG. 3(f), which is an example applied to a CMO3 integrated circuit. It shows.
まず、第3図(a)に於いて、P型Si基板21の表面
に厚さ5000人の5i02膜12を、熱酸化により形
成した後、幅1.2μmの分離帯用溝を深さ7μmで形
成し、更に溝の内側に熱酸化により厚さ1000人ノ5
i02膜23を形成した後、CVD5iO□膜24によ
って溝を埋める。次に、第3図(b)に示す如く、分離
帯の右側に深さ6μmのN型ウェル25を形成する。First, in FIG. 3(a), a 5000-thick 5i02 film 12 is formed on the surface of a P-type Si substrate 21 by thermal oxidation, and then a separation zone groove having a width of 1.2 μm and a depth of 7 μm is formed. The inside of the groove is formed with a thickness of 1,000 mm by thermal oxidation.
After forming the i02 film 23, the trench is filled with a CVD5iO□ film 24. Next, as shown in FIG. 3(b), an N-type well 25 with a depth of 6 μm is formed on the right side of the isolation zone.
次に、第3図(c)の如く、深さ3000人のN型ドレ
イン引出部26と深さ5000人のP型ドレイン引出部
27を形成した後、Si基板表面の5i02膜を全て除
去して改めて熱−酸化による1000人の5i02膜2
8と、1.2μmのCVD5iOz膜29を形成する。Next, as shown in FIG. 3(c), after forming an N-type drain extraction part 26 with a depth of 3000mm and a P-type drain extraction part 27 with a depth of 5000mm, the 5i02 film on the surface of the Si substrate is completely removed. 5i02 film 2 of 1000 people by thermal oxidation
8 and a 1.2 μm CVD5iOz film 29 is formed.
次に、第3図(d)に示す如く、Nチャンネルトランジ
スタ30を製作した後、厚さ8000人のCV D S
iO□膜31全31する。なお、トランジスタ30を製
作する方法は、第1実施例の工程と 。Next, as shown in FIG. 3(d), after fabricating the N-channel transistor 30, a CV D S
iO□ film 31 total 31. Note that the method for manufacturing the transistor 30 is the same as that of the first embodiment.
同じでよい。但し、ポリシリコンゲート電極32は、引
出部は形成しない。The same is fine. However, the polysilicon gate electrode 32 does not have a lead portion formed therein.
次に、第3図(e)に示す如く、Pチャンネルトランジ
スタ33を製作する。これもNチャンネルトランジスタ
30の製作方法と殆んど同じであり、ゲート長すなわち
、ソース・ドレイン間距離調整のため溝堀り深さが異な
る程度である。なお、Pチャンネルトランジスタ底面の
電源用N型領域は、リンのイオン注入で形成し、XJを
深くとるようにした。また、ポリシリコンはゲート電極
34となる。Next, as shown in FIG. 3(e), a P-channel transistor 33 is manufactured. This is also almost the same as the manufacturing method of the N-channel transistor 30, except that the groove depth is different in order to adjust the gate length, that is, the distance between the source and drain. Note that the N-type region for power supply at the bottom of the P-channel transistor was formed by ion implantation of phosphorus, so that XJ was deep. Further, polysilicon becomes the gate electrode 34.
次に、第3図(f>に示す如く、CV D SiO2膜
37を除去し、リンドープポリシリコン膜35を成膜し
、フォトリングラフィ工程を経てポリシリコン垂直エッ
チにより両チャンネルのゲート電極32.34を連結す
る配線を形成する。次に、厚さ8000人のBPSG膜
36全36する。この第3図(f)を平面図に示したの
が第4図である。Next, as shown in FIG. 3(f>), the CVD SiO2 film 37 is removed, a phosphorus-doped polysilicon film 35 is formed, and the gate electrodes 32 of both channels are formed by vertical polysilicon etching after a photolithography process. Next, a BPSG film 36 with a thickness of 8000 mm is formed.FIG. 4 is a plan view of FIG. 3(f).
以上の説明はNチャンネルトランジスタを先に造る例を
説明したが、Pチャンネルトランジスタを先に造っても
全く同様である。Although the above explanation has been given for an example in which an N-channel transistor is manufactured first, the same applies even if a P-channel transistor is manufactured first.
以上説明したように本発明は、Si基板に穿たれた溝に
接しなSi基板側に、上がら順次ドレイン用不純物層、
バックゲート、ソース用不純物層およびソース電源用不
純物層を設け、溝の側面にはバックゲートの表面にゲー
ト絶縁膜を設け、溝の内部には、下から順次ソース電源
用金属、絶縁膜およびゲート電極用金属を設けて、MO
Sトランジスタを縦に形成できるので、集積回路チップ
上の占有表面積が小さくなり、集積回路の集積度を上げ
る効果がある。また、溝の周囲長がトランジスタのゲー
ト幅を決定するので、小さい面積で大きなゲート幅とな
り、集積回路の高速動作化に効果がある。As explained above, in the present invention, a drain impurity layer is sequentially formed on the Si substrate side that is in contact with the groove drilled in the Si substrate, starting from the top.
A back gate, an impurity layer for the source, and an impurity layer for the source power supply are provided, and a gate insulating film is provided on the surface of the back gate on the sides of the trench. By providing metal for electrode, MO
Since the S transistors can be formed vertically, the surface area occupied on the integrated circuit chip is reduced, which has the effect of increasing the degree of integration of the integrated circuit. Furthermore, since the peripheral length of the trench determines the gate width of the transistor, a large gate width can be achieved with a small area, which is effective in increasing the speed of operation of the integrated circuit.
また、本発明はSi垂直エッチに対してマスク性を有す
る充分な厚さの絶縁膜で、溝掘り開始前のSi基板表面
を覆うことにより、この絶縁膜を垂直エッチする時にの
み事前の位置合わせ工程と、フォトレジスト等のマスク
剤を要するが、以後の数回に及ぶ垂直エッチの時には、
絶縁膜自体がマスク剤となるので、位置合わせ工程なし
にMOSトランジスタが形成される。このため製造工程
が短縮化され、位置合わせ誤差を考慮しないでバタン設
計出来ることがら、集積回路の集積度を上げる効果があ
る。また、絶縁膜は数回の垂直エッチで厚さが減少する
ものの、ゲート金属形成完了時に適度の厚さを残すこと
ができるので、これをフィールド絶縁膜として使用する
ことができる。この絶縁膜が薄い場合には、ゲート電極
形成後、絶縁膜を追加成長して改めてフォトリングラフ
ィ工程により、ゲート金属引出し用の窓あけと、引出し
用金属膜の成膜工程を要するから、充分な厚さの上記絶
縁膜を溝堀エッチ前に成膜しておくことはこの点からも
製造工程短縮の効果が大きい。In addition, the present invention covers the surface of the Si substrate before starting trenching with an insulating film of sufficient thickness that has masking properties for Si vertical etching, so that the insulating film can be aligned in advance only when vertical etching is performed. Although it requires a process and a masking agent such as photoresist, during the subsequent vertical etching,
Since the insulating film itself serves as a masking agent, a MOS transistor can be formed without an alignment process. Therefore, the manufacturing process is shortened, and the button design can be performed without considering alignment errors, which has the effect of increasing the degree of integration of the integrated circuit. Further, although the thickness of the insulating film is reduced by several vertical etchings, a suitable thickness can be left after the gate metal formation is completed, so that it can be used as a field insulating film. If this insulating film is thin, after forming the gate electrode, it is necessary to grow an additional insulating film and perform a photolithography process again to open a window for the gate metal drawer and form a metal film for the drawer. From this point of view as well, forming the insulating film with a certain thickness before the groove trench etching has a great effect in shortening the manufacturing process.
さらに、本発明の製造方法に於いて、表面絶縁膜溝掘り
後に、ドレイン用不純物をドープすることにより、ドレ
インを溝に接してセルファラインで形成出来るので、ド
レイン面積の縮小から集積回路の集積度向上と、動作速
度向上の効果がある。また溝の下部外側にソースおよび
ソース電源用不純物をドープした後、高融点金属を成膜
し、続いてシリサイド化反応をさせた後、未反応の高融
点金属を除去することにより、ソース電源用電極をセル
ファラインで所望の位置に形成できると共に、その後の
ゲート電極形成を容易にすることができる。Furthermore, in the manufacturing method of the present invention, by doping impurities for the drain after trenching the surface insulating film, the drain can be formed in contact with the trench with a self-line, thereby reducing the drain area and increasing the integration density of the integrated circuit. This has the effect of improving performance and speed of operation. In addition, after doping the outside of the lower part of the trench with impurities for the source and source power supply, a film of high melting point metal is formed, followed by a silicidation reaction, and the unreacted high melting point metal is removed. The electrode can be formed at a desired position by self-alignment, and the subsequent formation of the gate electrode can be facilitated.
さらに、本発明はCMOS集積回路の製造方法に於いて
、第1の導電型のMOS)ランジスタ製作の後、ウェー
ハ表面を垂直エッチに対する充分厚いマスク剤で覆うこ
とにより、第2の導電型のトランジスタを最初の位置決
めのための位置合わせたけて、後は位置合わせなしで製
作することができ、製造工程短縮の効果がある。Furthermore, the present invention provides a method for manufacturing a CMOS integrated circuit, in which after fabricating a first conductivity type MOS transistor, the wafer surface is coated with a sufficiently thick masking agent for vertical etching, thereby forming a second conductivity type transistor. It is possible to perform initial alignment and then manufacture without alignment, which has the effect of shortening the manufacturing process.
第1図(a)〜(j>は本発明の第1実施例を製作工程
順に示した断面図、第2図は第1図の実施例の平面図、
第3図(a)〜(f>は本発明の第2の実施例を製造工
程順に示した断面図、第4図は第3図の平面図である。
1.21・・・Si基板、2,7.9.22,23゜2
8・・・5i02膜、3,26.27・・・ドレイン引
出部、4.24,29.31・・・CV D 5i02
膜、5・・・溝、6・・・ドレイン、8・・・5i02
サイドウオール、10・・・ソース(高濃度N型層)、
11・・・ソース電源用不純物層(高濃度P型層)、1
2・・・高融点金属(W)層、13・・・ソース電極用
シリサイド(WSi2層)、14・・・ゲー)Si02
膜、15・・・シリサイドの酸化膜、16,32.34
・・・ゲート電極、17.36・・・BPSG膜、18
・・・金属配線、25・・・N型ウェル、30・・・N
チャンネルMOSトランジスタ、33・・・Pチャンネ
ルMOSトランジスタ、35・・・ゲート電極引出部。FIGS. 1(a) to (j> are cross-sectional views showing the first embodiment of the present invention in the order of manufacturing steps, FIG. 2 is a plan view of the embodiment shown in FIG. 1,
3(a) to 3(f) are cross-sectional views showing the second embodiment of the present invention in the order of manufacturing steps, and FIG. 4 is a plan view of FIG. 3. 1.21...Si substrate, 2,7.9.22,23゜2
8...5i02 membrane, 3,26.27...drain extraction part, 4.24,29.31...CV D 5i02
Membrane, 5... Groove, 6... Drain, 8...5i02
Sidewall, 10... Source (high concentration N-type layer),
11... Impurity layer for source power supply (high concentration P-type layer), 1
2... High melting point metal (W) layer, 13... Silicide for source electrode (WSi 2 layer), 14... Ge) Si02
Film, 15...Silicide oxide film, 16, 32.34
...Gate electrode, 17.36...BPSG film, 18
...Metal wiring, 25...N type well, 30...N
Channel MOS transistor, 33... P channel MOS transistor, 35... Gate electrode lead-out portion.
Claims (3)
接したこのシリコン基板側に、この基板の表面から順次
ドレイン用不純物層、前記シリコン基板内のゲート領域
、ソース用不純物層が設けられ、前記溝の底面にはソー
ス電源用不純物層が、前記溝の側面には前記ゲート領域
の表面にゲート絶縁膜が、前記溝の内部にはその底面か
ら順次ソース電源用電極、絶縁膜およびゲート電極用金
属がそれぞれ設けられた縦型構造のMOSトランジスタ
を有することを特徴とする半導体集積回路装置。(1) A drain impurity layer, a gate region in the silicon substrate, and a source impurity layer are sequentially provided from the surface of the silicon substrate on the side of the silicon substrate that is in contact with a trench perpendicularly drilled inward from the surface of the silicon substrate. , a source power source impurity layer is formed on the bottom surface of the trench, a gate insulating film is formed on the surface of the gate region on the side surface of the trench, and a source power source electrode, an insulating film, and a gate are formed inside the trench in order from the bottom surface. A semiconductor integrated circuit device comprising vertically structured MOS transistors each provided with electrode metal.
第1の絶縁膜の所定領域を垂直エッチにて除去した後に
、その領域にドレイン用不純物をドープしてドレイン領
域を形成し、このドレイン領域に縦溝を形成し、この縦
溝の側面のシリコン基板をゲート領域とし、その縦溝の
下部にソースおよびソース電源用不純物をドープしソー
ス領域を形成した後、これら各領域と前記縦溝の表面に
高融点金属を成膜し、続いて熱処理によりシリサイド化
反応を起させ、次に未反応の高融点金属膜を除去してセ
ルフアラインなソース電極を形成することにより縦型M
OSトランジスタを製造することを特徴とする半導体集
積回路装置の製造方法。(2) forming a first insulating film on the surface of the silicon substrate, removing a predetermined region of the first insulating film by vertical etching, and then doping the region with a drain impurity to form a drain region; A vertical groove is formed in this drain region, the silicon substrate on the side surface of this vertical groove is used as a gate region, and the lower part of the vertical groove is doped with impurities for source and source power supply to form a source region. Vertical M
A method for manufacturing a semiconductor integrated circuit device, comprising manufacturing an OS transistor.
した後、そのウェーハ表面を所定厚さで垂直エッチング
に対するマスク剤で覆い、第2導電型の縦型構造MOS
トランジスタを製作するための、数次の垂直エッチング
に対して前記マスク剤の膜をマスクとして用いることを
特徴とする半導体集積回路の製造方法。(3) After fabricating a first conductivity type vertical structure MOS transistor, the wafer surface is covered with a masking agent for vertical etching to a predetermined thickness, and a second conductivity type vertical structure MOS transistor is fabricated.
A method of manufacturing a semiconductor integrated circuit, characterized in that the film of the masking agent is used as a mask for several orders of vertical etching for manufacturing a transistor.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62010256A JPH07112066B2 (en) | 1987-01-19 | 1987-01-19 | Semiconductor integrated circuit device and manufacturing method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP62010256A JPH07112066B2 (en) | 1987-01-19 | 1987-01-19 | Semiconductor integrated circuit device and manufacturing method thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS63177565A true JPS63177565A (en) | 1988-07-21 |
| JPH07112066B2 JPH07112066B2 (en) | 1995-11-29 |
Family
ID=11745235
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP62010256A Expired - Lifetime JPH07112066B2 (en) | 1987-01-19 | 1987-01-19 | Semiconductor integrated circuit device and manufacturing method thereof |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH07112066B2 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0704894A3 (en) * | 1994-09-23 | 1997-11-26 | Siemens Aktiengesellschaft | Process for forming a low ohmic contact between a metallic layer and a semiconductor material |
| WO2000067313A1 (en) * | 1999-04-30 | 2000-11-09 | Infineon Technologies North America Corp. | Double gated transistor |
| US6818949B2 (en) | 1999-03-25 | 2004-11-16 | Renesas Technology Corp. | Semiconductor device and method for fabricating the same |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS539482A (en) * | 1976-07-15 | 1978-01-27 | Hitachi Ltd | Mis semiconductor device and its production |
| JPS58207675A (en) * | 1982-05-28 | 1983-12-03 | Oki Electric Ind Co Ltd | MIS type semiconductor device |
| JPS59138367A (en) * | 1983-01-28 | 1984-08-08 | Sony Corp | Semiconductor device |
-
1987
- 1987-01-19 JP JP62010256A patent/JPH07112066B2/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS539482A (en) * | 1976-07-15 | 1978-01-27 | Hitachi Ltd | Mis semiconductor device and its production |
| JPS58207675A (en) * | 1982-05-28 | 1983-12-03 | Oki Electric Ind Co Ltd | MIS type semiconductor device |
| JPS59138367A (en) * | 1983-01-28 | 1984-08-08 | Sony Corp | Semiconductor device |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0704894A3 (en) * | 1994-09-23 | 1997-11-26 | Siemens Aktiengesellschaft | Process for forming a low ohmic contact between a metallic layer and a semiconductor material |
| US6818949B2 (en) | 1999-03-25 | 2004-11-16 | Renesas Technology Corp. | Semiconductor device and method for fabricating the same |
| US7189621B2 (en) | 1999-03-25 | 2007-03-13 | Hitachi, Ltd. | Semiconductor device and method for fabricating the same |
| WO2000067313A1 (en) * | 1999-04-30 | 2000-11-09 | Infineon Technologies North America Corp. | Double gated transistor |
| KR100690120B1 (en) * | 1999-04-30 | 2007-03-08 | 인피니언 테크놀로지스 노쓰 아메리카 코포레이션 | Double gate transistor |
Also Published As
| Publication number | Publication date |
|---|---|
| JPH07112066B2 (en) | 1995-11-29 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4939154A (en) | Method of fabricating an insulated gate semiconductor device having a self-aligned gate | |
| JPH07153952A (en) | Semiconductor device and manufacturing method thereof | |
| JPS63177565A (en) | Semiconductor integrated circuit device and its manufacturing method | |
| JPH01114070A (en) | Manufacture of semiconductor device | |
| JPH06334146A (en) | Semiconductor device | |
| JPS60145664A (en) | Manufacture of semiconductor device | |
| JPH04277617A (en) | Manufacturing method of semiconductor device | |
| JP3088556B2 (en) | Semiconductor device manufacturing method | |
| JP3314341B2 (en) | Method of forming C-MOS gate array and base contact | |
| JPH067596B2 (en) | Method for manufacturing semiconductor device | |
| JPH0491481A (en) | Mis field effect transistor | |
| JP2734434B2 (en) | Semiconductor device and manufacturing method thereof | |
| KR0149942B1 (en) | Method for fabricating cmos device | |
| KR100373581B1 (en) | How to manufacture self-aligned contact trench DMOS transistors | |
| JPS639965A (en) | Manufacture of semiconductor storage device | |
| JPH02105576A (en) | Field effect transistor | |
| JPS61134073A (en) | Manufacturing method of semiconductor device | |
| JPH06232394A (en) | Manufacture of semiconductor device | |
| JPH07335893A (en) | Semiconductor device | |
| JPS6156448A (en) | Method for manufacturing complementary semiconductor device | |
| JPH06181312A (en) | Manufacture of semiconductor device | |
| JP2990288B2 (en) | Gate array | |
| JPH07106436A (en) | Semiconductor memory and preparation thereof | |
| JPS6129176A (en) | Manufacture of semiconductor device | |
| JPH0527995B2 (en) |