JPS6327062A - Mis field-effect transistor - Google Patents
Mis field-effect transistorInfo
- Publication number
- JPS6327062A JPS6327062A JP61170202A JP17020286A JPS6327062A JP S6327062 A JPS6327062 A JP S6327062A JP 61170202 A JP61170202 A JP 61170202A JP 17020286 A JP17020286 A JP 17020286A JP S6327062 A JPS6327062 A JP S6327062A
- Authority
- JP
- Japan
- Prior art keywords
- drain
- substrate
- mis
- diffusion layer
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/351—Substrate regions of field-effect devices
- H10D62/357—Substrate regions of field-effect devices of FETs
- H10D62/364—Substrate regions of field-effect devices of FETs of IGFETs
- H10D62/371—Inactive supplementary semiconductor regions, e.g. for preventing punch-through, improving capacity effect or leakage current
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/601—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs
- H10D30/603—Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs having asymmetry in the channel direction, e.g. lateral high-voltage MISFETs having drain offset region or extended drain IGFETs [EDMOS]
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はMIS型電界効果トランジスタに関し、特に高
耐圧構造を有するMIS型電界効果トランジスタに関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an MIS type field effect transistor, and particularly to a MIS type field effect transistor having a high breakdown voltage structure.
MIS型電界効果トランジスタ(以後M I S・FE
Tという)のドレイン耐圧は、ドレイン、−ソース問お
よび、ドレイン、ゲート間の電界集中によりドレイン近
傍のゲート直下で起こるアバランシュ破壊で決まる。従
って、従来からMIS型電界効果トランジスタを高耐圧
化する手段が種々“講ぜられている。MIS field effect transistor (hereinafter referred to as MIS/FE)
The drain breakdown voltage of T is determined by the avalanche breakdown that occurs directly under the gate near the drain due to electric field concentration between the drain and source and between the drain and gate. Therefore, various means have been conventionally taken to increase the withstand voltage of MIS field effect transistors.
第2図は従来の高耐圧化MIS電界効果トランジスタの
断面図で高濃度ドレイン領域6をゲート電極4から数μ
m離して形成しこの高濃度ドレイン領域6と同導電型を
もつ低濃度<21017.、−3)のドレイン層領域7
が高濃度ドレイン層領域6を囲むように形成され、ゲー
ト直下のアバランシュ破壊を防止するよう工夫されてい
る。FIG. 2 is a cross-sectional view of a conventional high-voltage MIS field effect transistor, in which the highly doped drain region 6 is located several μm from the gate electrode 4.
m and has the same conductivity type as this high concentration drain region 6 and has a low concentration <21017. , -3) drain layer region 7
is formed so as to surround the highly doped drain layer region 6, and is designed to prevent avalanche breakdown directly under the gate.
ここで、1はP型シリコン基板、2はフィールド酸化膜
、3はゲートvifヒ膜をそれぞれ示している。Here, 1 represents a P-type silicon substrate, 2 represents a field oxide film, and 3 represents a gate vif film.
しかしながら、この従来の高耐圧MIS型電界効果トラ
ンジスタは、ゲート・バイアスがソースと共通の場合、
ゲート、ドレイン間の電界によりチャネル下のドレイン
近傍で起きるアバランシェ破壊耐圧によって耐圧が決ま
る。However, in this conventional high voltage MIS field effect transistor, when the gate bias is common to the source,
The breakdown voltage is determined by the avalanche breakdown voltage that occurs near the drain under the channel due to the electric field between the gate and drain.
すなわち、第4図および第5図はMIS型電界効果トラ
ンジスタのオン、オフ状態における空乏層の伸びを従来
構造と本発明構造について比較した図であるが、いまこ
の図を用いて説明すると、この構造のMIS−FETの
耐圧は第4図のA点におけるアバランシェ破壊耐圧で決
まる。ここで、ゲート・バイアスをチャネルがオンする
電圧に上げる(NチャンネルM I S F E Tの
場合VG>O)と、インパクトアイオニゼーションによ
りホールが基板に流れ基板電流I subが生じる。こ
のとき、ドレイン空乏層はゲート、ドレイン間電圧が小
さくなるなめに、特にチャネルの下で空乏層の曲がりが
緩やかになる。すなわち、第4図の′ように空乏層がソ
ースに接するとB点でパンチスルーを起こし、パンチス
ルー電流I9が流れる。従ってゲートバイアスV o
=0の場合の耐圧B’Josより低い電圧で基板電流I
tubとパンチスルー電流■2によりドレイン電流が
増大するようになる。 第3図は従来構造と本発明構造
における高耐圧MIS電界効果トランジスタの電流電圧
特性の比較図で、特性曲線(A)は従来構造のものがこ
のオン状態においてドレイン電流を増大せしめる有様を
示したものである。That is, FIGS. 4 and 5 are diagrams comparing the extension of the depletion layer in the ON and OFF states of MIS type field effect transistors for the conventional structure and the structure of the present invention. The breakdown voltage of the MIS-FET structure is determined by the avalanche breakdown voltage at point A in FIG. Here, when the gate bias is increased to a voltage at which the channel is turned on (VG>O in the case of an N-channel MISFET), holes flow into the substrate due to impact ionization and a substrate current I sub is generated. At this time, since the voltage between the gate and the drain in the drain depletion layer becomes small, the depletion layer curves gently, especially under the channel. That is, when the depletion layer contacts the source as shown in FIG. 4, punch-through occurs at point B, and a punch-through current I9 flows. Therefore, the gate bias V o
The substrate current I at a voltage lower than the withstand voltage B'Jos when = 0
The drain current increases due to tub and punch-through current (2). Figure 3 is a comparison diagram of the current-voltage characteristics of high-voltage MIS field effect transistors with a conventional structure and the structure of the present invention, and the characteristic curve (A) shows how the conventional structure increases the drain current in the on state. It is something that
本発明の目的は、上記の状況に鑑み、オン状態における
基板電流およびパンチスルー電流の増大問題を解決した
高耐圧のMIS型電界効果トランジスタを提供すること
である。SUMMARY OF THE INVENTION In view of the above circumstances, an object of the present invention is to provide a high voltage MIS field effect transistor that solves the problem of increase in substrate current and punch-through current in the on state.
〔問題点を解決するための手段〕。[Means for solving problems].
本発明によれば、MIS型電界効果トランジスタは一導
電型を有する半導体基板の−1面上に高濃度ドレイン拡
散層領域を囲むように低濃度ドレイン拡散層を形成する
MIS型電界効果トランジスタにおいて、前記半導体基
板と同一導電型を有し且つ半導体基板より高い不純物濃
度を有する不純物拡散層がソース拡散層領域の直下と隣
接し且つ前記ドレイン側方向に伸びるように形成される
ことを含む。According to the present invention, the MIS type field effect transistor is a MIS type field effect transistor in which a low concentration drain diffusion layer is formed on the -1 plane of a semiconductor substrate having one conductivity type so as to surround a high concentration drain diffusion layer region. An impurity diffusion layer having the same conductivity type as the semiconductor substrate and having a higher impurity concentration than the semiconductor substrate is formed directly below and adjacent to the source diffusion layer region and extending toward the drain side.
以下図面を参照−して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.
第1図は本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing one embodiment of the present invention.
ここでP型シリコン基板1上にはN型ドレイン低濃度層
領域7が多結晶シリコンゲート電極4に自己整合的に形
成され、さらに高濃度ソース拡散層領域らが多結晶シリ
コンゲート電極4に自己整合的に形成される。また高濃
度ドレイン6は多結晶シリコンゲート電極層4から数μ
mのオフセット長をとり、低濃度ドレイン層領域7内に
形成される。さらに、高濃度ソース拡散層領域5の下部
と隣接しかつドレイン方向に1μm程度伸びる濃度10
17cm−3程度のP型不純物拡散層8が200key
程度の高いエネルギーイオン注入工程で形成される。か
かる構造のMIS−FETは高濃度ソース拡散層領域5
の下に低濃度のP型不純物拡散層8を設けているので、
オフ状態におくとドレインが高電圧になると共に生じる
インパクトアイオニゼーションにより発生されたホール
基板電流は基板とソース間接合を順バイアスしソースか
ら基板へ流れ込む電子の注入を抑えるよう作用する。Here, on the P-type silicon substrate 1, an N-type drain low concentration layer region 7 is formed in a self-aligned manner with the polycrystalline silicon gate electrode 4, and furthermore, a high concentration source diffusion layer region and the like are formed self-aligned with the polycrystalline silicon gate electrode 4. Consistently formed. In addition, the highly doped drain 6 is several μm away from the polycrystalline silicon gate electrode layer 4.
It has an offset length of m and is formed in the lightly doped drain layer region 7. Further, a concentration layer 10 adjacent to the lower part of the high concentration source diffusion layer region 5 and extending approximately 1 μm in the drain direction is provided.
P-type impurity diffusion layer 8 of about 17 cm-3 is 200 keys
It is formed using a high energy ion implantation process. The MIS-FET with such a structure has a high concentration source diffusion layer region 5.
Since a low concentration P-type impurity diffusion layer 8 is provided below,
When the drain is in the OFF state, a high voltage is applied to the drain, and the hole substrate current generated by impact ionization acts to forward bias the junction between the substrate and the source and suppress the injection of electrons flowing from the source to the substrate.
また、低濃度P型不純物拡散層8はソース側からドレイ
ン側へ伸ばされて形成されているので、オン状態に在り
かつドレイン電圧が高い場合でも、第5図で明らかなよ
うにドレインから伸びてくる空乏層の伸びを減らすこと
ができ、ソース、ドレイン間のパンチスルーの発生を抑
えることが可能となる。第3図における特性曲線<B>
はこの状態を示すもので、ドレイン電流の増大が抑制さ
れる。−すなわち、トランジスタのオン耐圧を向上せし
めることができる。また、低濃度P型不純物拡散層8は
、チャネル領域の下に形成されているのでMIS−FE
TLきい値電圧V↑に影響を及ぼすことはない。以上は
、Nチャネル型MO5FETに実施した場合を説明した
が、Pチャネル型のMOSFETにも適用し得ることは
明白である。Furthermore, since the low concentration P-type impurity diffusion layer 8 is formed extending from the source side to the drain side, even when it is in the on state and the drain voltage is high, it does not extend from the drain as is clear from FIG. This makes it possible to reduce the elongation of the depletion layer and suppress the occurrence of punch-through between the source and drain. Characteristic curve <B> in Fig. 3
indicates this state, and the increase in drain current is suppressed. - That is, the on-breakdown voltage of the transistor can be improved. Furthermore, since the low concentration P-type impurity diffusion layer 8 is formed under the channel region, the MIS-FE
It does not affect the TL threshold voltage V↑. Although the above description has been made of the case where the present invention is applied to an N-channel type MOSFET, it is obvious that the present invention can also be applied to a P-channel type MOSFET.
以上詳細に説明したように、本発明によれば、MIS−
FETのソース拡散層の底面部にはドレイン側に伸びた
半導体基板と同一導電型で且つ半導体基板より高濃度の
不純物層を設けることによって、MIS−FETにしき
い電圧7丁以上のゲート電圧を加えたオン状態において
もドレインに高い電圧を印加した場合に生じる基板電流
I 1lubとパンチスルー電流工、を抑えることがで
きるので、MIS−FETオン耐圧を著しく向上せしめ
ることができる。As explained in detail above, according to the present invention, MIS-
By providing an impurity layer on the bottom of the source diffusion layer of the FET that has the same conductivity type as the semiconductor substrate extending toward the drain side and has a higher concentration than the semiconductor substrate, a gate voltage of 7 or more threshold voltages can be applied to the MIS-FET. Even in the on state, the substrate current I1lub and punch-through current generated when a high voltage is applied to the drain can be suppressed, so the on-state withstand voltage of the MIS-FET can be significantly improved.
第1図は本発明の一実施例を示す高耐圧MIS型電界効
果トランジスタの断面図、第2図は従来の高耐圧MIS
型電界効果トランジスタのの断面図、第3図は従来構造
と本発明構造における高耐圧MIS型電界効果トランジ
スタの電流−電圧特性の比較図、第4図および第5図は
MIS型電界効果トランジスタのオン、オフ状態におけ
る空乏層の伸びをそれぞれ従来構造と本発明構造につい
て比較した図である。
1・・・P型シリコン基板、2・・・フィールド酸化膜
、3・・・ゲート酸化膜、4・・・多結晶シリコンゲー
ト電極、5・・・N型ソース拡散層領域、6・・・N型
ドレイン拡散層領域、7・・・N型ドレイン低濃度層領
域、8・・・P型紙濃度拡散層。
茅 I 切
ト′L(ン電H=V。
N%シキルNθ5FFTのド゛しイシ電メし沖酬ト生宇
3 回Fig. 1 is a cross-sectional view of a high voltage MIS field effect transistor showing an embodiment of the present invention, and Fig. 2 is a cross-sectional view of a conventional high voltage MIS field effect transistor.
Figure 3 is a comparison diagram of current-voltage characteristics of high voltage MIS type field effect transistors in the conventional structure and the structure of the present invention, and Figures 4 and 5 are cross-sectional views of MIS type field effect transistors. FIG. 4 is a diagram comparing the growth of the depletion layer in the on and off states for the conventional structure and the structure of the present invention, respectively. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Field oxide film, 3... Gate oxide film, 4... Polycrystalline silicon gate electrode, 5... N-type source diffusion layer region, 6... N-type drain diffusion layer region, 7... N-type drain low concentration layer region, 8... P-type paper concentration diffusion layer. I cut 'L (power H=V.
Claims (1)
イン拡散層領域を囲むように低濃度ドレイン拡散層を形
成するMIS型電界効果トランジスタにおいて、前記半
導体基板と同一導電型を有し且つ半導体基板より高い不
純物濃度を有する不純物拡散層がソース拡散層領域の直
下と隣接し且つ前記ドレイン側方向に伸びるように形成
されることを特徴とするMIS型電界効果トランジスタ
。In a MIS type field effect transistor in which a low concentration drain diffusion layer is formed on one principal surface of a semiconductor substrate having one conductivity type so as to surround a high efficiency drain diffusion layer region, the semiconductor substrate has the same conductivity type as the semiconductor substrate and has a low concentration drain diffusion layer. A MIS type field effect transistor characterized in that an impurity diffusion layer having an impurity concentration higher than that of a substrate is formed directly below and adjacent to a source diffusion layer region and extending toward the drain side.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61170202A JPS6327062A (en) | 1986-07-18 | 1986-07-18 | Mis field-effect transistor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP61170202A JPS6327062A (en) | 1986-07-18 | 1986-07-18 | Mis field-effect transistor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPS6327062A true JPS6327062A (en) | 1988-02-04 |
Family
ID=15900559
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP61170202A Pending JPS6327062A (en) | 1986-07-18 | 1986-07-18 | Mis field-effect transistor |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS6327062A (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02218153A (en) * | 1989-02-17 | 1990-08-30 | Matsushita Electron Corp | Resistor and mis transistor |
| JP2010087149A (en) * | 2008-09-30 | 2010-04-15 | Nec Electronics Corp | Semiconductor device and method of manufacturing same |
-
1986
- 1986-07-18 JP JP61170202A patent/JPS6327062A/en active Pending
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02218153A (en) * | 1989-02-17 | 1990-08-30 | Matsushita Electron Corp | Resistor and mis transistor |
| JP2010087149A (en) * | 2008-09-30 | 2010-04-15 | Nec Electronics Corp | Semiconductor device and method of manufacturing same |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6917054B2 (en) | Semiconductor device | |
| US5675172A (en) | Metal-insulator-semiconductor device having reduced threshold voltage and high mobility for high speed/low-voltage operation | |
| US6713794B2 (en) | Lateral semiconductor device | |
| US5274259A (en) | High voltage transistor | |
| US6744083B2 (en) | Submicron MOSFET having asymmetric channel profile | |
| US6380566B1 (en) | Semiconductor device having FET structure with high breakdown voltage | |
| US6091086A (en) | Reverse blocking IGBT | |
| JPH09508492A (en) | Three-terminal gate-controlled semiconductor switching device with rectifying gate | |
| US10957771B2 (en) | Transistor device with a field electrode that includes two layers | |
| US4952991A (en) | Vertical field-effect transistor having a high breakdown voltage and a small on-resistance | |
| JP2983110B2 (en) | Semiconductor device and manufacturing method thereof | |
| US5578512A (en) | Power MESFET structure and fabrication process with high breakdown voltage and enhanced source to drain current | |
| US5596216A (en) | Semiconductor device with diode and capable of device protection | |
| JPH07135307A (en) | Semiconductor device | |
| KR20190124894A (en) | Semiconductor device and method manufacturing the same | |
| JPS6327062A (en) | Mis field-effect transistor | |
| JP3211529B2 (en) | Vertical MIS transistor | |
| US20040155286A1 (en) | Semiconductor device with enhanced drain and gate | |
| US20020185695A1 (en) | Lateral DMOS structure with lateral extension structure for reduced charge trapping in gate oxide | |
| JP2626198B2 (en) | Field effect transistor | |
| CN216871980U (en) | Metal-oxide semiconductor field effect transistor structure | |
| US20240063256A1 (en) | Semiconductor device and method for fabricating same | |
| JP3167046B2 (en) | Static induction semiconductor device | |
| JP2818416B2 (en) | MOS field effect transistor | |
| JPH07263691A (en) | Carrier injection transistor |