[go: up one dir, main page]

JPS6328403A - High-pressure carbon dioxide extractor - Google Patents

High-pressure carbon dioxide extractor

Info

Publication number
JPS6328403A
JPS6328403A JP16987586A JP16987586A JPS6328403A JP S6328403 A JPS6328403 A JP S6328403A JP 16987586 A JP16987586 A JP 16987586A JP 16987586 A JP16987586 A JP 16987586A JP S6328403 A JPS6328403 A JP S6328403A
Authority
JP
Japan
Prior art keywords
carbon dioxide
pressure
liquefied
dioxide gas
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16987586A
Other languages
Japanese (ja)
Inventor
Tadanori Aki
安芸 忠徳
Tetsuya Murakami
哲也 村上
Hisato Tashiro
田代 久登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP16987586A priority Critical patent/JPS6328403A/en
Publication of JPS6328403A publication Critical patent/JPS6328403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)

Abstract

PURPOSE:To obtain the title extractor with improved extraction efficiency by providing a compressor behind a separation vessel wherein the desired components are extracted with high-pressure carbon dioxide and the extract is separated by reducing the pressure, compressing the gaseous carbon dioxide, and then cooling and liquefying the carbon dioxide. CONSTITUTION:The pressure of the liquefied carbon dioxide after extracting the desired components emerging from an extraction vessel 1 is reduced to 50atm which is lower than the critical pressure by a pressure reducing valve 8. Consequently, gaseous carbon dioxide is adiabatically expanded and cooled, and a part of the gas is liquefied. Accordingly, the carbon dioxide is heated by a heating vaporizer 5, gasified, and then supplied to the separation vessel 2. The carbon dioxide separated from the desired components and emerging from the separation vessel 2 is compressed, for example, to 70atm by the compressor 9, supplied to the condenser 6, and cooled and liquefied. The saturation temp. of the carbon dioxide is increased to 28 deg.C by the compression, hence the latent heat of vaporization is decreased, and the amt. of cooling water for the condenser 6 can be reduced. The carbon dioxide liquefied in the condenser 6 is transiently stored in a liquefied carbon dioxide storage tank 3, and then pressurized to the extraction pressure by a pump 7.

Description

【発明の詳細な説明】 産業上の利用分野) 本発明は高圧炭酸ガスを油剤として原料中の目的成分を
抽出する高圧炭酸ガス抽出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application) The present invention relates to a high-pressure carbon dioxide extraction device for extracting target components from raw materials using high-pressure carbon dioxide as an oil agent.

従来の技術) 従来、食品工業、化粧品、医薬品等の分野で、有機溶剤
を抽剤とした抽出方法が利用されてきた。
Prior art) Extraction methods using organic solvents as extractants have been used in the food industry, cosmetics, pharmaceuticals, and other fields.

しかしながらこの方法では、目的成分と爵剤の分離に加
熱を伴う蒸発操作を必要とするため、目的成分が熱影響
を受けて変質し易い場合には適さないし、また残留する
有機溶剤が人体に有害な場合には食品等には使用できな
い等の欠点がある。これらの欠点を解消する方法として
最近、抽剤として高圧炭酸ガスを使用する方法が注目を
あびている。ここで高圧炭酸ガスとは液体炭酸ガスおよ
び臨界点(31℃、73気圧)を超えた状態のいわゆる
超臨界炭酸ガスの総称を言う。高圧炭酸ガスは常温で抽
出できる、化学的に安定している、人体に無害等の抽剤
として秀れた性質を有しているため多くの分野で用いら
れている。この高圧炭酸ガスによシ抽出された目的成分
と炭酸ガスを分、憶する方法に関しては次の3通りの方
法が提案されている。
However, this method requires an evaporation operation accompanied by heating to separate the target component from the additive, so it is not suitable when the target component is susceptible to deterioration due to the influence of heat, and the residual organic solvent is harmful to the human body. In such cases, there are disadvantages such as the fact that it cannot be used for foods, etc. Recently, as a method to overcome these drawbacks, a method of using high-pressure carbon dioxide gas as an extractant has been attracting attention. Here, high-pressure carbon dioxide is a general term for liquid carbon dioxide and so-called supercritical carbon dioxide in a state exceeding the critical point (31° C., 73 atmospheres). High-pressure carbon dioxide gas is used in many fields because it has excellent properties as an extractant, such as being able to be extracted at room temperature, being chemically stable, and being harmless to the human body. The following three methods have been proposed for separating and storing the target component extracted by this high-pressure carbon dioxide gas and carbon dioxide gas.

(イ)分離槽の圧力を適宜圧力以下1で減圧し、炭酸ガ
スに対する目的成分の溶解度を下げることKより分離す
る。
(a) The pressure in the separation tank is appropriately reduced to 1 or less to lower the solubility of the target component in carbon dioxide gas.

(ロ)分離槽の温度を抽出槽の温度とは変化させて(多
くの場合、昇温させて)、炭酸ガスに対する目的成分の
n落度を下げることにより分離する(ハ)分離槽に吸着
剤を装填し、目的成分を吸着し分離する。ここで、(ロ
)の方法は目的抽出成分が熱で変質し易い場合には適さ
ないし、また(ハ)の方法は吸着剤と目的成分の分離、
吸着剤の再生といった操作が必要になる等の問題がある
ため、(イ)の減圧によって炭酸ガスと目的抽出成分を
分離する方法が最も多く用いられている。
(b) The temperature of the separation tank is changed from the temperature of the extraction tank (in many cases, the temperature is raised), and the target component is separated by lowering the drop rate against carbon dioxide (c) Adsorption in the separation tank The target component is adsorbed and separated. Here, the method (b) is not suitable when the target extracted component is easily altered by heat, and the method (c) is not suitable for separating the adsorbent and the target component.
Since there are problems such as the need for operations such as regeneration of the adsorbent, the most commonly used method is (a), in which carbon dioxide gas and the target extraction component are separated by reduced pressure.

以下従来の減圧分離法について作業系統を示す第3図に
基づいてさらに説明する。抽出される原料は抽出槽lの
図示Viきれない原料投入口より装入きれる。液戻貯槽
3中の液体炭酸ガスはポンプ7によって抽出圧力まで昇
圧されそして加熱器&によって抽出温度まで予熱されて
抽出槽/に連続供給される。抽出槽/に於ては液体炭酸
ガスは原料中の目的成分を抽出し、頂部より流出するが
この後減圧弁fKよって目的成分と炭酸ガスが分離でき
る圧力迄減圧される。この減圧後の圧力としては一役的
;Cは分離が十分に行われるのに好適な臨界圧力以下の
UO−夕O気圧の圧力が用いられる。この減圧の際、炭
酸ガスは断熱膨張により温度が下がり炭酸ガスの一部は
液化するので加熱気化器夕により加熱しガス化してから
分離槽!に供給する。分離槽コに於ては抽出目的成分は
炭酸ガスから分離され分離槽lの底部より抜取られる。
The conventional vacuum separation method will be further explained below with reference to FIG. 3 showing the work system. The raw material to be extracted can be charged through the raw material inlet of the extraction tank 1, which is not shown in the drawing. The liquid carbon dioxide in the liquid return storage tank 3 is pressurized to the extraction pressure by the pump 7, preheated to the extraction temperature by the heater &, and continuously supplied to the extraction tank/. In the extraction tank/, the liquid carbon dioxide extracts the target component from the raw material and flows out from the top, after which the pressure is reduced by the pressure reducing valve fK to a pressure that allows the target component and carbon dioxide to be separated. The pressure after this pressure reduction plays an important role; C is a pressure of UO - 0 atm below the critical pressure suitable for sufficient separation. During this depressurization, the temperature of the carbon dioxide gas decreases due to adiabatic expansion, and some of the carbon dioxide gas liquefies, so it is heated in a heating vaporizer, gasified, and then transferred to a separation tank. supply to. In the separation tank 1, the component to be extracted is separated from the carbon dioxide gas and extracted from the bottom of the separation tank 1.

−方炭酸ガスは油剤として再利用するため凝縮器6で冷
却し液化する。この冷却の際、炭酸ガスの液化温度は前
記分離圧力であるt、to−ro負気圧飽和@匠である
5〜/j℃になっているので通常の冷却水は使用できず
冷媒を使用する必要がある、冷媒としてはエチレ/グリ
コール或はプロピレングリクールの水溶液等が用いられ
る。凝縮器tで冷却により液化された炭酸ガヌは液戻貯
槽3に一且貯留され前記の様にボッグアで昇圧して高圧
炭酸ガスとして循環再使用される。
- The carbon dioxide gas is cooled and liquefied in a condenser 6 in order to be reused as an oil agent. During this cooling, the liquefaction temperature of carbon dioxide is t, which is the separation pressure, and the to-ro negative pressure saturation is 5~/j℃, so normal cooling water cannot be used and a refrigerant is used. As the necessary refrigerant, an aqueous solution of ethylene/glycol or propylene glycol is used. The carbon dioxide gas liquefied by cooling in the condenser t is stored in the liquid return storage tank 3, and as described above, is pressurized in the bog-a and recycled as high-pressure carbon dioxide gas for circulation and reuse.

発明が解決しようとする問題点) 以上説明した従来の減圧分離方法では、抽剤とし。(Problem that the invention seeks to solve) In the conventional vacuum separation method explained above, extractant is used.

ての炭酸ガスは、 冷却凝縮→加圧→加熱→抽出→断熱膨張→加熱の工程か
らなる循環サイクルを繰返す。これらの工程の内冷却凝
縮工程の圧力は分離圧力によって左右されるが前述の様
な分離圧力(グ0−30気圧)では物性上蒸発潜熱が高
いため冷却熱量が多くなること、又この圧力の飽和温度
が5〜75℃と低いため通常の冷却水は使用できず冷媒
の使用が必要でありこの冷媒の用意のために冷凍機等か
らなる冷媒発生設備の設置も必要である等という問題が
ある。さらには運転上の問題であるが抽出原料は天然物
が多いため通常は水分が含有されるがこの水分が炭酸ガ
ス中に移行した場合は取扱いが厄介な炭酸ガスの水和物
を生成することであるこの水和物は水分を含む炭酸ガス
を加圧下で10℃以下に冷却液化すると生成する固体結
晶であるが、この結晶が析出すると配管の閉塞、ポンプ
逆止弁への閉塞等のトラブルの原因になり易く、従来こ
の種のトラブルの解決法としては液体炭酸ガスラインに
セトラーやフィルターを設置して、水和物結晶を分離除
去したり、炭酸ガスラインに乾燥器を設ける等の方法が
用いられているがいずれも根本的な解決策には至ってな
い。本発明は以上の従来の減圧分離法の問題点すなわち
炭酸ガス循環の際の冷却液化の熱量が多いこと、冷媒及
びその発生設備が必要なこと、水和物の生成が回避でき
ないこと等の問題点を解決した高圧炭酸ガス抽出装置を
提供することを目的とするものである。
All carbon dioxide gas repeats a circulation cycle consisting of the steps of cooling and condensation → pressurization → heating → extraction → adiabatic expansion → heating. Among these processes, the pressure in the cooling and condensing process is influenced by the separation pressure, but at the separation pressure as mentioned above (0-30 atm), the latent heat of vaporization is high due to physical properties, so the amount of cooling heat is large. Because the saturation temperature is as low as 5 to 75 degrees Celsius, normal cooling water cannot be used and a refrigerant must be used, and in order to prepare this refrigerant, it is necessary to install refrigerant generation equipment such as a refrigerator. be. Furthermore, as an operational issue, since the raw materials for extraction are mostly natural, they usually contain water, but if this water migrates into carbon dioxide gas, it creates carbon dioxide hydrates that are difficult to handle. This hydrate is a solid crystal that is produced when carbon dioxide gas containing water is cooled and liquefied under pressure to below 10°C, but when these crystals precipitate, they can cause problems such as clogging of pipes and pump check valves. Conventional solutions to this type of trouble include installing a settler or filter in the liquid carbon dioxide gas line to separate and remove hydrate crystals, or installing a dryer in the carbon dioxide gas line. have been used, but none of them have led to a fundamental solution. The present invention solves the above-mentioned problems of the conventional vacuum separation method, such as the large amount of heat required for cooling and liquefaction during carbon dioxide circulation, the need for a refrigerant and its generation equipment, and the unavoidable formation of hydrates. The object of the present invention is to provide a high-pressure carbon dioxide extraction device that solves the above problems.

問題点を解決するための手段) 本発明は以上の事情に鑑みて成されたものであって、そ
の要旨とするところは、高圧炭酸ガスを抽剤として用い
抽出槽にて原料中の目的成分を抽出した後減圧して分離
槽にて目的成分を炭酸ガスから分離した後、該炭酸ガス
を凝縮器にて冷却液化しそして昇圧して抽剤として循環
使用する高圧炭酸ガス抽出装置に於いて、前記分離槽の
後に圧縮機を設け炭酸ガスを昇圧してから冷却液化する
ことを特徴とする高圧炭酸ガス抽出装置である。本発明
者は炭酸ガスの熱力学的特性について検討した結果飽和
圧力が臨界圧力(73気圧)に近い程蒸発潜熱は小さく
なるとともに飽和温度も高くなる事実に着目し本発明を
成すに至ったのである。
Means for Solving the Problems) The present invention has been made in view of the above circumstances, and its gist is to extract target components from raw materials in an extraction tank using high-pressure carbon dioxide gas as an extractant. In a high-pressure carbon dioxide extraction device, the target component is separated from carbon dioxide gas in a separation tank by reducing the pressure, and then cooling and liquefying the carbon dioxide gas in a condenser, increasing the pressure, and circulating it as an extractant. , a high-pressure carbon dioxide extraction apparatus characterized in that a compressor is provided after the separation tank to increase the pressure of carbon dioxide and then cool and liquefy it. As a result of studying the thermodynamic properties of carbon dioxide gas, the present inventor focused on the fact that the closer the saturation pressure is to the critical pressure (73 atmospheres), the lower the latent heat of vaporization becomes, and the higher the saturation temperature becomes. be.

即ち分離槽を出る炭酸ガスを臨界圧以下で昇圧した場合
、炭酸ガスの蒸発潜熱が小さくなるとともに飽和温度も
高くなるので通常の冷却水で冷却液化できる温度範囲に
なり同時に冷却水量も節減できるのである。分離槽を出
る炭酸ガスは前述の様に冷却液化後ポンプにて抽出圧力
迄再び昇圧する必要があるので冷却液化の前段で昇圧す
ることはサイクル的に見ても不利にはならない。又別の
利点としては分離槽を出る炭酸ガスを圧縮機で昇圧した
場合、断熱圧縮により炭酸ガスの温肛は相当上昇するの
で、圧縮機の後段に熱交換器を設け、減圧弁を出るガス
と熱交換することKより断熱膨張して一部冷却液化した
炭酸ガスの加熱気化に役立たせることができる。これに
より凝縮器の冷却負荷を軽減する利点もある。本発明の
他の大きい効果としては凝縮器の冷却液化温度が20℃
以上と高くなるため前述の閉塞トラブルの原因になる炭
酸ガス−水系の水和物の生成を防止でき、このトラブル
の根本的解消を成し得たことである。
In other words, when the carbon dioxide gas exiting the separation tank is pressurized below the critical pressure, the latent heat of vaporization of the carbon dioxide gas decreases and the saturation temperature increases, so the temperature range is within which it can be cooled and liquefied using normal cooling water, and at the same time, the amount of cooling water can be saved. be. As mentioned above, the carbon dioxide gas leaving the separation tank needs to be pressurized again to the extraction pressure by the pump after being cooled and liquefied, so increasing the pressure before cooling and liquefying is not disadvantageous in terms of the cycle. Another advantage is that when the pressure of the carbon dioxide gas leaving the separation tank is increased using a compressor, the temperature of the carbon dioxide gas increases considerably due to adiabatic compression. By exchanging heat with K, it can be used to heat and vaporize the carbon dioxide gas, which is adiabatically expanded and partially cooled and liquefied. This also has the advantage of reducing the cooling load on the condenser. Another major effect of the present invention is that the cooling liquefaction temperature of the condenser is 20°C.
It is possible to prevent the formation of carbon dioxide-water hydrates, which cause the above-mentioned blockage problem due to the increase in the amount of water, and to fundamentally eliminate this problem.

実  施  例 ) 以下実施例を示す図面に基づいて本発明の内容をさらに
説明する。第1図は第1の実施例の第一図は第一の実施
例の作業系統図である。図しこ於て第3図の従来法と同
じ機器については同一の記号を用いている。
Embodiment) The content of the present invention will be further explained below based on drawings showing embodiments. FIG. 1 is a work system diagram of the first embodiment. In the figure, the same symbols are used for the same equipment as in the conventional method shown in FIG.

最初Kv、/の実施例について説明する。抽出槽/を出
る目的成分を抽出しだ液体炭酸ガスは、減圧弁、!’に
よって臨界圧力以下のタOス圧迄減圧ばれる。この減圧
の際炭酸ガスは断熱膨張し滉gが下がるため炭酸ガスの
一部は液化するので加熱気化器jにより加熱しガス化し
てから分11に供給する。分離N!を出る目的抽出成分
を分離した炭酸ガスは圧縮機9によって例えば70気圧
迄昇圧されてから凝縮器2に入り冷却液化される。この
昇圧により炭酸ガスの飽和温度(液化温度)け2rIQ
K上昇するので通常の冷却水の使用が可能になるととも
に蒸発潜熱が小さくなるので凝縮器6用の冷却水の水量
も節減できる。凝縮器乙で液化された炭酸ガスは一且液
炭貯槽JK貯留され次いでポンプ7により抽出圧力例え
ば300気圧迄昇圧されるが、前記の如くポンプ7の吸
込圧は70気圧迄高くなっているのでポンプ7の動力は
比例して少くなる。さらに凝縮器&における液化温度が
20℃以上になるため閉塞トラブルの原因になる水和物
の生成も防止できる。
First, an example of Kv, / will be described. The liquid carbon dioxide that extracted the target component exits the extraction tank/reducing valve,! ', the pressure is reduced to a pressure below the critical pressure. During this pressure reduction, the carbon dioxide gas expands adiabatically and the temperature g decreases, so that a part of the carbon dioxide gas is liquefied, so it is heated by a heating vaporizer j, gasified, and then supplied to the portion 11. Separation N! The carbon dioxide gas from which the target extraction components have been separated is pressurized by a compressor 9 to, for example, 70 atmospheres, and then enters a condenser 2 where it is cooled and liquefied. This pressure increase increases the saturation temperature (liquefaction temperature) of carbon dioxide by 2rIQ.
Since the K is increased, it is possible to use normal cooling water, and the latent heat of vaporization is reduced, so the amount of cooling water for the condenser 6 can also be reduced. The carbon dioxide gas liquefied in the condenser B is stored in the liquid coal storage tank JK, and then the extraction pressure is increased to, for example, 300 atm by the pump 7, but as mentioned above, the suction pressure of the pump 7 is as high as 70 atm. The power of the pump 7 decreases proportionally. Furthermore, since the liquefaction temperature in the condenser is 20° C. or higher, the formation of hydrates, which can cause blockage problems, can be prevented.

次に第2の実施例について説明する。抽出槽/を出る目
的成分全抽出した液体炭酸ガスは、減圧弁?によって臨
界圧力以下のjo気圧迄に減圧される。この減圧の際炭
酸ガスは断熱膨張し温度が下がるため炭酸ガスの一部は
液化する。一方分離槽!を出る目的抽出成分を分離した
炭酸ガスは圧縮機りによって例えば70気圧迄昇圧され
る。この昇圧の際炭酸ガスは断熱圧縮によって相当温北
迄昇温する。従って圧縮機りを出る温度上昇した炭酸ガ
スを利用して熱交換器10により殖圧弁ざを出るガスを
加熱すれば第1の実施例における加熱気化器よの加熱熱
量を省略できるとともに凝縮器乙の冷却熱量も節減でき
る。凝縮器乙に於て通常の冷却水が使用できる点、ポン
プ7の動力も少くなる点、水和物の生成を防止できる点
等は第1の実施例の場合と同じである。本発明と従来法
のユーティリティ使用量を比較した結果を第1表及び第
2表に示す。
Next, a second embodiment will be described. Is the liquid carbon dioxide gas, which has extracted all the target components, exiting the extraction tank through a pressure reducing valve? The pressure is reduced to jo pressure, which is below the critical pressure. During this pressure reduction, the carbon dioxide gas expands adiabatically and the temperature drops, so a portion of the carbon dioxide gas liquefies. Separation tank on the other hand! The carbon dioxide gas from which the target extraction components have been separated is pressurized to, for example, 70 atmospheres by a compressor. During this pressure increase, the temperature of carbon dioxide gas increases to an equivalent temperature due to adiabatic compression. Therefore, if the heat exchanger 10 heats the gas exiting the pressure booster valve using the carbon dioxide gas exiting the compressor whose temperature has increased, the amount of heating heat required by the heating vaporizer in the first embodiment can be omitted, and the amount of heat required for the condenser can be omitted. The amount of cooling heat can also be reduced. This embodiment is the same as the first embodiment in that ordinary cooling water can be used in the condenser B, the power of the pump 7 is reduced, and the formation of hydrates can be prevented. Tables 1 and 2 show the results of comparing the amount of utility used by the present invention and the conventional method.

第  /  表 運転条件)抽出圧カニ70に9./c++lG分離圧カ
ニ!O〃 液化圧力=70  〃 抽出@f:コfc 炭酸ガス循環量: / 000 Kg/H第  λ  
 表 運転条件)抽出圧カニ300Kg/da分離圧カニ  
10  g 液化圧カニ  70  # 抽出温度:  <10℃ 炭酸ガス循環! : / 000 Kf/H発明の効果
) 以上説明した本発明に係る装置によれば従来の装置には
無かった次の様な効果が得られる。
Section/Table Operating conditions) Extraction pressure crab 70 to 9. /c++lG separation pressure crab! O〃 Liquefaction pressure = 70 〃 Extraction @ f: CO fc Carbon dioxide circulation amount: / 000 Kg/Hth λ
Table operating conditions) Extraction pressure crab 300Kg/da Separation pressure crab
10 g Liquefied pressure crab 70 # Extraction temperature: <10℃ Carbon dioxide circulation! : / 000 Kf/H Effects of the Invention) According to the apparatus according to the present invention described above, the following effects not available in conventional apparatuses can be obtained.

(イ)凝縮器に於ける液化温度が高くなり通常の冷却水
の使用が可能なので冷媒の発生設備の設置が不要である
(a) Since the liquefaction temperature in the condenser is high and normal cooling water can be used, there is no need to install refrigerant generation equipment.

C口)凝縮器の冷却熱仝が少くなり冷却水の節減ができ
る。
Port C) The cooling heat loss of the condenser is reduced and cooling water can be saved.

(ハ)減圧弁を出るガスの加熱気化用の熱量を節減でき
る。
(c) The amount of heat required for heating and vaporizing the gas exiting the pressure reducing valve can be reduced.

(ニ)炭酸ガス水和物の生成を防止できるのでこれに起
因する閉塞トラブルを解消できる。
(d) Since the formation of carbon dioxide hydrates can be prevented, blockage problems caused by this can be eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施例の作業系統図、第3
図は従来装置の作業系統図である。 l:抽出槽、コニ分離槽、3:液戻貯槽、l:加熱器、
!:加熱気化器、t:凝縮器、7:ポンプ、r:減圧弁
、り:圧縮機、lO:熱交換器。
1 and 2 are work system diagrams of the embodiment of the present invention, and 3.
The figure is a work flow diagram of a conventional device. 1: Extraction tank, Koni separation tank, 3: Liquid return storage tank, 1: Heater,
! : heating vaporizer, t: condenser, 7: pump, r: pressure reducing valve, ri: compressor, lO: heat exchanger.

Claims (1)

【特許請求の範囲】[Claims] 高圧炭酸ガスを抽剤として用い抽出槽にて原料中の目的
成分を抽出した後減圧して分離槽にて目的成分を炭酸ガ
スから分離した後、該炭酸ガスを凝縮器にて冷却液化し
そして昇圧して抽剤として循環使用する高圧炭酸ガス抽
出装置に於いて、前記分離槽の後に圧縮機を設け炭酸ガ
スを昇圧してから冷却液化することを特徴とする高圧炭
酸ガス抽出装置。
After extracting the target component in the raw material in an extraction tank using high-pressure carbon dioxide gas as an extraction agent, the pressure is reduced and the target component is separated from the carbon dioxide gas in a separation tank.The carbon dioxide gas is then cooled and liquefied in a condenser. 1. A high-pressure carbon dioxide extraction device which pressurizes the carbon dioxide gas and recirculates it as an extraction agent, wherein a compressor is provided after the separation tank to pressurize the carbon dioxide gas and then cool and liquefy it.
JP16987586A 1986-07-21 1986-07-21 High-pressure carbon dioxide extractor Pending JPS6328403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16987586A JPS6328403A (en) 1986-07-21 1986-07-21 High-pressure carbon dioxide extractor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16987586A JPS6328403A (en) 1986-07-21 1986-07-21 High-pressure carbon dioxide extractor

Publications (1)

Publication Number Publication Date
JPS6328403A true JPS6328403A (en) 1988-02-06

Family

ID=15894576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16987586A Pending JPS6328403A (en) 1986-07-21 1986-07-21 High-pressure carbon dioxide extractor

Country Status (1)

Country Link
JP (1) JPS6328403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225322A (en) * 1988-03-05 1989-09-08 Osaka Oxygen Ind Ltd Washing of wafer or the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01225322A (en) * 1988-03-05 1989-09-08 Osaka Oxygen Ind Ltd Washing of wafer or the like

Similar Documents

Publication Publication Date Title
KR100972215B1 (en) Cold compression of air streams using natural gas cooling
RU2337130C2 (en) Nitrogen elimination from condensated natural gas
JP2690464B2 (en) Method for recovering volatile organic compounds from gas streams
JP4071432B2 (en) Gas liquefaction method
CN101460801B (en) Carbon dioxide purification method
EP1524019B1 (en) Method for removing water contained in solid using liquid material
TWI424870B (en) Method and apparatus for liquefying flue gas from a combustion device
US4699642A (en) Purification of carbon dioxide for use in brewing
EP0804360B1 (en) Recondensation of gaseous hydrocarbons
US4314891A (en) Process for reconcentrating moist glycol
US20090193817A1 (en) Method for refrigerating a thermal load
US9844751B2 (en) Method and apparatus for removing absorbable gases from pressurized industrial gases contaminated with absorbable gases, without supplying cooling energy
TW201200829A (en) Integrated pre-cooled mixed refrigerant system and method
MXPA06014437A (en) Mixed refrigerant liquefaction process.
US12135149B2 (en) Heating and refrigeration system
JPS5947236B2 (en) heat transfer method
CN107683397A (en) The liquefaction of industrial gasses and hydrocarbon gas
JPH026989B2 (en)
JPH0564722A (en) Method for separating carbon dioxide from combustion exhaust gas
JPS6328403A (en) High-pressure carbon dioxide extractor
JP7032033B2 (en) How to operate the oxygen production equipment
JP6974562B2 (en) How to operate the oxygen production equipment
JPH0328681A (en) Air separator
KR20250062996A (en) Natural gas liquefaction apparatus
JP2631809B2 (en) Carbon dioxide recovery and liquefaction equipment from industrial exhaust gas