[go: up one dir, main page]

JPS6361929A - Diaphragm performance diagnosis method for pressure transmitters - Google Patents

Diaphragm performance diagnosis method for pressure transmitters

Info

Publication number
JPS6361929A
JPS6361929A JP20581486A JP20581486A JPS6361929A JP S6361929 A JPS6361929 A JP S6361929A JP 20581486 A JP20581486 A JP 20581486A JP 20581486 A JP20581486 A JP 20581486A JP S6361929 A JPS6361929 A JP S6361929A
Authority
JP
Japan
Prior art keywords
diaphragm
differential pressure
pressure
sensor
pressure transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20581486A
Other languages
Japanese (ja)
Other versions
JPH0371653B2 (en
Inventor
Keizo Otani
圭三 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP20581486A priority Critical patent/JPS6361929A/en
Publication of JPS6361929A publication Critical patent/JPS6361929A/en
Publication of JPH0371653B2 publication Critical patent/JPH0371653B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To easily and accurate diagnose the performance deterioration of the diaphragm of a differential pressure transmitter, etc., by calculating the compliance of at least one diaphragm. CONSTITUTION:Respective resistance value variations of a differential pressure sensor (DPS) 33, a static pressure sensor 34, and a temperature sensor 35 are detected 52 and the detection output is converted into a digital signal through a multiplexer 53 and an analog-digital converter 54 and then supplied to a CPU55. Here, the detection output of the DPS33 is normally converted into a differential pressure measured value and the collector-emitter resistance values of the digital-analog converter 56 and driving circuit Q1 are controlled to send out the measured value with a current value on the basis of a power source E applied to a two-wire transmission line through a resistor R. Then the current value is detected as the terminal voltage across the resistance R and supplied as a measurement signal Sm to a controller, etc. Consequently, the performance deterioration of the diaphragm of the differential pressure transmitter, etc., is easily and accurately diagnosed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、差圧発信器等の圧力発信器に生ずる隔膜の性
能劣化を診断する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for diagnosing performance deterioration of a diaphragm occurring in a pressure transmitter such as a differential pressure transmitter.

〔従来の技術〕[Conventional technology]

圧力、差圧等の計測に用いる圧力発信器は、センタダイ
ヤフラムを介する高圧室と低圧室とを備え、各室をバリ
アダイヤフラム等の隔膜によシ密閉すると共に、各室中
へシリコン液等の封入液を封入しており、各室を外部と
遮断するバリアダイヤフラムは、高耐久品として裏作さ
れているが、使用条件によっては接触する流体の付着、
または、接触する流体の作用により腐蝕等が生じ、これ
によって機械的な特性が変化し、計測すべき圧力を各室
内へ正確に伝達することが不可能となシ、この際には圧
力発信器の検出出力が不正確となるため、従来は、経験
的に検出出力の値に応じて異常の有無を判断し、あるい
は、定期点検により圧力発信器をチェックし、バリヤダ
イヤプラムの性能劣化に基づく異常の有無を診断してい
る。
A pressure transmitter used to measure pressure, differential pressure, etc. is equipped with a high pressure chamber and a low pressure chamber via a center diaphragm, each chamber is sealed with a diaphragm such as a barrier diaphragm, and silicone liquid etc. is injected into each chamber. The barrier diaphragm that seals the filled liquid and isolates each chamber from the outside is manufactured as a highly durable product, but depending on the usage conditions, it may be susceptible to adhesion of the fluid it comes in contact with.
Alternatively, corrosion may occur due to the action of the fluid in contact, which changes the mechanical properties and makes it impossible to accurately transmit the pressure to be measured into each room. Conventionally, the detection output of the barrier diaphragm is inaccurate, so in the past, the presence or absence of an abnormality was determined empirically based on the detection output value, or the pressure transmitter was checked through periodic inspections, and the pressure transmitter was checked based on the performance deterioration of the barrier diaphragm. Diagnosing the presence or absence of an abnormality.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、経験による判断では、不正確な結果しか得られ
ず、定期点検による場合は別途に各1の測定器を要する
と共に、多くの手間を要し、いずれにしても診断が面倒
かつ多大な工数を要するものとなる問題を生じている。
However, judgment based on experience can only yield inaccurate results, and periodic inspection requires a separate measuring device and a lot of effort. This is creating a problem that requires additional support.

〔問題点を解決するための手段〕[Means for solving problems]

前述の問題を解決するため、本発明はつぎの手段により
構成するものとなっている。
In order to solve the above-mentioned problem, the present invention is constructed by the following means.

すなわち、各々の隔膜により外部と遮断されかつ封入液
の封入された高圧室および低圧室を備えた圧力発信器の
隔膜のコンプライアンスを算出するのに必要とする初期
定数をメモリへ格納し、前記各室中の少なくとも一方の
静圧を検出する静圧センサおよび圧力発信器の温度を検
出する@度センサを設け、圧力発信器へ既知圧力を印加
し、このときにおける圧力発信器の検出出力と静圧セン
サおよび温度センサの各検出出力とメモリの初期定数と
を用いて各隔膜中食なくとも一方のコンプライアンスを
算出し、このコンプライアンスの値に応じて隔膜の性能
診断を行なうものとなっている。
That is, the initial constants required to calculate the compliance of the diaphragm of a pressure transmitter equipped with a high-pressure chamber and a low-pressure chamber that are isolated from the outside by each diaphragm and filled with a sealed liquid are stored in a memory, and each of the above-mentioned A static pressure sensor that detects at least one static pressure in the room and a temperature sensor that detects the temperature of the pressure transmitter are provided, a known pressure is applied to the pressure transmitter, and the detected output of the pressure transmitter and the static The compliance of at least one of the diaphragms is calculated using each detection output of the pressure sensor and the temperature sensor and the initial constant of the memory, and the performance of the diaphragm is diagnosed according to this compliance value.

〔作用〕[Effect]

したがって、隔膜のコンプライアンスが所定の範囲より
逸脱し、または、初期値よシ変化すれば、これの性能が
劣化したことを診断することができる。
Therefore, if the compliance of the diaphragm deviates from a predetermined range or changes from its initial value, it can be diagnosed that the performance of the diaphragm has deteriorated.

〔実施例〕〔Example〕

以下、実施例を示す図によって本発明の詳細な説明する
Hereinafter, the present invention will be explained in detail with reference to figures showing examples.

第2図は差圧発信器の断面図でちゃ、計測すべき圧力の
印加される透孔1a、1bt−有するカバー2m、2b
が両側方からガスケット3a、3bにより密閉状として
被着されたボディ4a、4bには、透孔1m、1bと対
向してバリアダイヤフラム5a、5bが周囲をボディ4
m、4bと密着のうえ設けてあり。
Figure 2 is a cross-sectional view of the differential pressure transmitter, with through holes 1a and 1b through which the pressure to be measured is applied, and covers 2m and 2b with through holes 1a and 1b.
Barrier diaphragms 5a, 5b surround the bodies 4a, 4b, which are hermetically sealed with gaskets 3a, 3b from both sides, facing the through holes 1m, 1b.
It is installed in close contact with M and 4B.

これの各内側に間隙5m、9bが形成され、これらの中
央部と連通孔7m、7bによシ連通する内室8m、8b
の中間には、各内室9m 、 ab間を密閉状に隔離す
るセンタダイヤフラム9が設けである。
Gaps 5m and 9b are formed inside each of these, and inner chambers 8m and 8b communicate with the center of these through communication holes 7m and 7b.
A center diaphragm 9 is provided between each of the inner chambers 9 m and 9 to airtightly isolate the space between the inner chambers.

また、ボディ4h、4bの下方には、間隙sa、sbお
よび内室13m、8bと連通し、かつ、封入液10a。
Further, below the bodies 4h and 4b, a sealed liquid 10a is communicated with the gaps sa and sb and the inner chambers 13m and 8b.

10bの注入口11a 、 11bと連通する連通孔1
2a。
Communication hole 1 communicating with injection ports 11a and 11b of 10b
2a.

12bが設けであると共に、ボディ4*、4bの上方に
は、内室gm、8bと上面側との連通孔13m、13b
が穿設してあり、カバー2a、2bとボディ4m 、 
4bとはボルト14およびナツト15によシ密着して係
止されている。
12b is provided, and above the bodies 4*, 4b are communication holes 13m, 13b between the inner chamber gm, 8b and the upper surface side.
are drilled, covers 2a, 2b and body 4m,
4b is tightly secured to bolt 14 and nut 15.

一方、ボディ4m 、 4bの上面には、溶接により固
着された外筒21中に、これと環状の間隙22を形成し
て同様に固着された筒状部材23が設けてあり、外筒2
1の上端周囲と密着されて外筒21の上端開放部を密閉
し、かつ、筒状部材23の上端周囲と密着してこれの内
部へ嵌合するセンサペース24の下面に、ガラス製の支
持筒25が固定されてお9、センサベース24と支持筒
25とには、間隙22と支持筒25の下面とを連絡する
連通孔26が穿設されていると共に、支持筒25の下面
へ連通孔26を周囲から密閉する状態としくダイヤプラ
ム形の複合センサ2γが固定されている。
On the other hand, on the upper surface of the bodies 4m and 4b, a cylindrical member 23 is provided in an outer cylinder 21 fixed by welding and similarly fixed with an annular gap 22 therebetween.
A support made of glass is attached to the lower surface of the sensor space 24, which is in close contact with the upper end of the cylindrical member 23 to seal the open upper end of the outer cylinder 21, and which is in close contact with the upper end of the cylindrical member 23 and is fitted into the interior thereof. The tube 25 is fixed 9, and the sensor base 24 and the support tube 25 are provided with a communication hole 26 that communicates between the gap 22 and the lower surface of the support tube 25, and also communicates with the lower surface of the support tube 25. A diaphragm-shaped composite sensor 2γ is fixed to seal the hole 26 from the surroundings.

また、支持筒25および筒状部材23と各々間隙を形成
し、かつ、複合センサ27より下方まで突出してスリー
ブ28がセンサベース24の下面へ固着されておυ、こ
れの下端開放面には多数の透孔を有する雑音防止用のシ
ールド板29が被着されている。
Further, a sleeve 28 is fixed to the lower surface of the sensor base 24, forming a gap with the support cylinder 25 and the cylindrical member 23, and protruding below the composite sensor 27. A shield plate 29 for noise prevention having a through hole is attached.

なお、複合センサ27のリード線は、スリーブ28、セ
ンサペース24中を貫通し、上面のビン20m 、 2
0bへ導出され、上方へ係止された圧力伝送器30中の
回路と接続されている。
Incidentally, the lead wire of the composite sensor 27 passes through the sleeve 28 and the sensor space 24, and connects to the bins 20m and 2 on the top surface.
0b and is connected to the circuit in the pressure transmitter 30 locked upward.

第1図は、複合センサ27の拡大平面図であり。FIG. 1 is an enlarged plan view of the composite sensor 27.

シリコン等O基板31が用いられ、これの中央部にダイ
ヤフラム32が形成しであると共に、これらの絶縁皮膜
面上へ集積回路技術によシ、ダイヤフラム32と基板3
1との境界近傍かつ互に対角線上の四方に差圧センサ3
3a〜33dが形成され、これらの近傍かつ基板31上
に静圧スンサ34a〜34dが形成されている一方、差
圧センサ33mと33bとのほぼ中間かつ基板31上に
温度センサ35が形成されておシ、差圧センサ33&〜
33dおよび静圧センサ34a〜34dには、ストレイ
ンゲージとして作用する半導体素子が用いられ、温度セ
ンサ35としては、サーミスタとしての作用を呈する半
導体素子が用いられている。
An O substrate 31 such as silicon is used, and a diaphragm 32 is formed in the center thereof, and the diaphragm 32 and the substrate 3 are formed on the surface of these insulating films by integrated circuit technology.
Differential pressure sensors 3 are installed near the boundary with 1 and on diagonal lines from each other.
3a to 33d are formed, and static pressure sensors 34a to 34d are formed near these sensors and on the substrate 31, while a temperature sensor 35 is formed on the substrate 31 approximately midway between the differential pressure sensors 33m and 33b. Oshi, differential pressure sensor 33&~
33d and the static pressure sensors 34a to 34d, semiconductor elements that function as strain gauges are used, and as the temperature sensor 35, semiconductor elements that function as a thermistor are used.

また、差圧センサ33a〜33dと静圧センサ34a〜
34dとは、導体36によりブリッジ状に接続され、各
接続点がランド3Tによシリード線と接続されるものと
なっておシ、ダイヤフラム32の歪に応する差圧センサ
33a〜33dの抵抗値変化により、ダイヤプラム32
0両面間差圧を検出する一方、静圧センサ34a〜34
dの形成面へ印加される静圧に応する基板31と静圧セ
ンサ34a〜34dとの圧縮率差によ勺、静圧センサ3
4a〜34dの抵抗値が変化するため、これによって静
圧の検出を行なうものとなっている。
Additionally, differential pressure sensors 33a to 33d and static pressure sensors 34a to
34d is connected in a bridge shape by a conductor 36, and each connection point is connected to a series lead wire by a land 3T, and the resistance value of the differential pressure sensors 33a to 33d corresponds to the distortion of the diaphragm 32. Due to changes, diaphragm 32
The static pressure sensors 34a to 34 detect the differential pressure between both sides.
Due to the compressibility difference between the substrate 31 and the static pressure sensors 34a to 34d, which corresponds to the static pressure applied to the forming surface of d, the static pressure sensor 3
Since the resistance values of 4a to 34d change, the static pressure is detected based on this.

なお、温度センサ35は、周囲の温度に応じて抵抗値が
変化し、これによって差圧セン?33a〜33dを含む
差圧発信器全体の温度を検出するものとなっている。
Note that the resistance value of the temperature sensor 35 changes depending on the ambient temperature, and this causes the temperature sensor 35 to function as a differential pressure sensor. The temperature of the entire differential pressure transmitter including 33a to 33d is detected.

したがって、第2図の透孔1a側へ高圧PMを印加する
と共に、透孔1b側へ低圧PLを印加すれば、これに応
じてバリアダイヤフラム5a、5bが変位し、この変位
が封入液10m 、 10bを介してセンタダイヤフラ
ムSへ印加され、PgとPt、との差圧にしたがってセ
ンタダイヤフラム9が変位し、これによつ″C差圧の大
部分が吸収される一方、連通孔13m 、 13b 、
間隙22.連通孔26を経て差圧の一部が複合センサ2
7のダイヤフラム32へ印加され、これの歪に応じて差
圧センサ33a〜33dによシPHとPt、との差圧が
検出されると共に、複合センサ27の取付方向にしたが
い、静圧センサ34&〜34dによりP、またはPLの
静圧が検出され、これらの検出状況が第2図において破
断線によシ示す圧力伝送器30を介し、電気信号として
送出される。
Therefore, if high pressure PM is applied to the through hole 1a side in FIG. 2 and low pressure PL is applied to the through hole 1b side, the barrier diaphragms 5a and 5b will be displaced accordingly, and this displacement will cause the filled liquid to 10m, 10b to the center diaphragm S, and the center diaphragm 9 is displaced according to the differential pressure between Pg and Pt, thereby absorbing most of the differential pressure "C". ,
Gap 22. A part of the differential pressure passes through the communication hole 26 to the composite sensor 2.
The differential pressure between PH and Pt is applied to the diaphragm 32 of No. 7, and the differential pressure between PH and Pt is detected by the differential pressure sensors 33a to 33d according to the strain thereof. 34d detects the static pressure of P or PL, and the detection status is sent out as an electrical signal via the pressure transmitter 30 shown by the broken line in FIG.

第3図は、以上の差圧発信器を示す模式図であり、封入
液10m 、 10bの漏洩状況を診断する原理を説明
するため、つぎのとおシに記号を定める。
FIG. 3 is a schematic diagram showing the differential pressure transmitter described above, and in order to explain the principle of diagnosing the leakage situation of the sealed liquid 10m, 10b, the following symbols are defined.

VMa内宣8aおよびこれと連通する各部を含む高圧室
41の全容積 ■L:内室8bおよびこれと連通する各部を含む低圧室
42の全容積 P+i:印加高圧 PLe印加低圧 Ph:高圧室41内の静圧 Pt:低圧室42内の静圧 Δ■!I:ハリアダイヤフラム5aの変位量Δvc:セ
ンタダイヤフ2ム9の変位量ΔvL:ハリアダイヤフラ
ム5bの変位量Φ3 :バリアダイヤフラム5aのコン
プライアンス ΦC:センタダイヤフラム9のコンプライアンス ΦL :バリアダイヤフラム5bのコンプライアンス Δ7!:高圧室41の容積変化量 Δ7□:低圧室42の容積変化量 α :封入gloa 、 1abの温度膨張係数ΔT:
工場出荷時の初期温度との温度差また、前述の各記号を
用いれば、第3図の構成においては、一般的に次式が成
立するものとなっている。
Total volume of the high pressure chamber 41 including the VMa internal chamber 8a and parts communicating with it L: Total volume of the low pressure chamber 42 including the internal chamber 8b and parts communicating with it P+i: Applied high pressure PLe Applied low pressure Ph: High pressure chamber 41 Static pressure Pt inside: Static pressure Δ■ inside the low pressure chamber 42! I: Displacement amount Δvc of the harrier diaphragm 5a: Displacement amount ΔvL of the center diaphragm 2m 9: Displacement amount Φ3 of the harrier diaphragm 5b: Compliance ΦC of the barrier diaphragm 5a: Compliance ΦL of the center diaphragm 9: Compliance Δ7 of the barrier diaphragm 5b! : Volume change amount Δ7□ of high pressure chamber 41 : Volume change amount α of low pressure chamber 42 : Temperature expansion coefficient ΔT of enclosed gloa, 1ab:
Temperature difference from the initial temperature at the time of factory shipment Also, using the above-mentioned symbols, the following formula generally holds true in the configuration of FIG. 3.

1        ・・・・・(1) PtI  Ph=石ΔV・ PA  Pt、=土ΔvL−−−−−(2)ΦL Δ72 =l’1.  jVc+α’ V、、” j’
f   * * m (5)ここにおいて、工場出荷時
に圧力伝送器30中のメモリへ、設計値または実測値に
基づ(V、。
1...(1) PtI Ph=Stone ΔV・PA Pt,=Soil ΔvL---(2) ΦL Δ72 = l'1. jVc+α'V,,"j'
f * * m (5) Here, (V,) is stored in the memory in the pressure transmitter 30 at the time of factory shipment based on the design value or the actual measurement value.

vL 、Φ。、α、および、このときの実測温度T。vL, Φ. , α, and the actually measured temperature T at this time.

を各々初期定数として格納しておき、差圧発信器へ印加
する圧力Pg、P1.をこれに通ずる管路の開閉によシ
各々例えばP tx =L OK5’ f /Crn2
r P L =OKS’ f 7cm2の既知圧力とし
、このときにおける差圧センサ33a〜33dによυ求
めた差圧発信器とじての検出出力(Ph Pz)  と
、静圧センサ34a〜34dによる検出出力Phまたは
Ptと、温度センサ35による検出出力Tとを求めれば
、上式に基づきバリアダイヤフラム5at5bの各コン
プライアンスΦ璽、Φ、、を算出することができる。
are respectively stored as initial constants, and the pressures Pg, P1 . For example, P tx =L OK5' f /Crn2 by opening and closing the pipes leading thereto.
r P L = OKS' f A known pressure of 7 cm2 is assumed, and the detection output (Ph Pz) as a differential pressure transmitter obtained by the differential pressure sensors 33a to 33d at this time and the detection by the static pressure sensors 34a to 34d By determining the output Ph or Pt and the detection output T from the temperature sensor 35, each compliance Φ, Φ, of the barrier diaphragm 5at5b can be calculated based on the above equation.

すなわち、(3)式よυ次式が得られる。In other words, a υ-order equation is obtained as shown in equation (3).

Δvc=Φc (Ph−Pz=)      −−−−
−(6)また、(4) 、 (5)式において封入液1
Qa 、 10bの漏洩がなく、Δマ1=0.Δ7.=
Oとすれば1次式%式% なお、PhまたはPtのいずれか一方を求めれば、差圧
発信器の検出出力(Ph−P17が既知であυ、(Ph
−Pt)=にとしたとき、 k’1−=Ph−氏 により他方を求めることができる。
Δvc=Φc (Ph-Pz=) -----
-(6) Also, in equations (4) and (5), the filled liquid 1
There is no leakage of Qa, 10b, and Δma1=0. Δ7. =
If O, then linear formula % formula % In addition, if either Ph or Pt is found, the detection output of the differential pressure transmitter (Ph - P17 is known, υ, (Ph
-Pt)=, the other can be obtained by k'1-=Ph-.

このため、 (1) 、 (2)式および(6)〜(9
)式から、バリアダイヤプラム5m、5bの各コンプラ
イアンスΦヨ、Φ、は次式により与えられる。
Therefore, equations (1), (2) and (6) to (9)
), the respective compliances Φyo and Φ of the barrier diaphragms 5m and 5b are given by the following formulas.

したがって、メモリ中の各初期定数VNIVLIΦC1
α+’r6−を読み出して用いると共に、各センサの検
出出力(ph−pt)、phまたはPt、および、Tを
用いる演算により、Φ、、Φ、を算出することができる
Therefore, each initial constant VNIVLIΦC1 in memory
Φ, , Φ can be calculated by reading out and using α+'r6- and performing calculations using the detection output (ph-pt) of each sensor, ph or Pt, and T.

とのΦ1.Φ、は、現在のバリアダイヤフラム5m、5
bが有するコンプライアンスであシ、あらかじめ計測許
容誤差に応じて定めた上限値および下限値と、αG、(
111式によ)求めた値との対比を行ない、または、メ
モリ中へ初期筐の各コンプライアンスを格納しておき5
これと同様の対比を行なえば、バリアダイヤフラム5a
、5bの性能劣化有無を確実に診断することができる。
Φ1. Φ is the current barrier diaphragm 5m, 5
The compliance of b is the upper and lower limits determined in advance according to the measurement tolerance, and αG, (
111) or store each compliance of the initial case in memory.
If a similar comparison is made, the barrier diaphragm 5a
, 5b can be reliably diagnosed as to whether or not the performance has deteriorated.

第4図は、以上の原理に基づく回路構成例のブロック図
であり5第2図の差圧発信器(以下、DPT)51  
と連結された圧力伝送器(以下、 PTR)30におい
ては、第1図の差圧センナ(以下、DPS)33.静圧
センサ(以下、5PS)34.および。
FIG. 4 is a block diagram of an example of a circuit configuration based on the above principle.
In the pressure transmitter (hereinafter referred to as PTR) 30 connected to the differential pressure sensor (hereinafter referred to as DPS) 33 in FIG. Static pressure sensor (hereinafter referred to as 5PS) 34. and.

温度センサ(以下、TS)35の各抵抗値変化を検出す
る検出回路(以下、DET)52からの各検出出力を、
マルチプレクサ(以下、MPX)53 により順次にか
つ反復して選択し、アナログ・ディジタル変換器(以下
、ADC) 54 によシデイジタル信号としてからマ
イクロプロセッサ等のプロセッサ(以下、CPU)55
へ与え、ここにおいて、常時はDPS 33の検出出力
を所定の演算によシ差圧計測値へ変換し、ディジタル・
アナログ変換器(以下、DAC)56 および駆動回路
(以下、DR)57を介し、トランジスタ(以下、TR
)Qlへ計測値と対応する順方向バイアスとして与え、
TR・Qlのコレクタ・エミッタ間抵抗値を制御し、線
路L1 r L2からなる2線式伝送路へ抵抗器Rを介
して印加されている電源Eに基づき、例えば4〜20m
Aの統一信号による電流を通じ、これの電流値によシ計
測値の送出を行なうものとなっておシ、この電流値は、
抵抗器Rの端子電圧として検出され、これが計測信号S
mとして制御装置等へ与えられる。
Each detection output from a detection circuit (hereinafter referred to as DET) 52 that detects each resistance value change of a temperature sensor (hereinafter referred to as TS) 35 is
A multiplexer (hereinafter referred to as MPX) 53 sequentially and iteratively selects the signal, converts it into a digital signal through an analog-to-digital converter (hereinafter referred to as ADC) 54, and then outputs the signal to a processor such as a microprocessor (hereinafter referred to as CPU) 55.
Here, the detection output of the DPS 33 is normally converted into a differential pressure measurement value by a predetermined calculation, and then digitally converted.
A transistor (hereinafter referred to as TR) is connected via an analog converter (hereinafter referred to as DAC) 56 and a drive circuit (hereinafter referred to as DR) 57.
) to Ql as a forward bias corresponding to the measured value,
The collector-emitter resistance value of TR/Ql is controlled, and based on the power supply E applied via the resistor R to the two-wire transmission line consisting of lines L1 r L2, for example, 4 to 20 m.
The measured value is transmitted through the current based on the unified signal of A, and the current value is
It is detected as the terminal voltage of resistor R, and this is the measurement signal S.
It is given to the control device etc. as m.

また、線路Ll r L2間の電圧変化は、比較器(以
下、 cp)saにおいて基準電圧E3.と比較のうえ
検出され、ADC59″を介してCPU55へ与えられ
、これを受信信号としてCPU55が解読し、これの内
容に応動するものとなっている。
Further, the voltage change between the lines Ll r L2 is determined by the reference voltage E3. The received signal is detected by comparison with the received signal, and is sent to the CPU 55 via the ADC 59''.The CPU 55 decodes this as a received signal and responds to the contents thereof.

なお、CPU55は、固定メモリ(以下、ROM)59
中の命令を実行し、必要とするデータを可変メモリ(以
下、RAM) 60ヘアクセスしながら所定の演算およ
び制御を行なうものと力っておシ、不揮発性メモリ(以
下、 NVM)61  には、工場出荷時において上述
の各初期定数が格納されるものとなっている。
Note that the CPU 55 has a fixed memory (hereinafter referred to as ROM) 59.
It is assumed that the non-volatile memory (hereinafter referred to as NVM) 61 performs predetermined calculations and control while executing the instructions in it and accessing the necessary data to variable memory (hereinafter referred to as RAM) 60. , the above-mentioned initial constants are stored at the time of factory shipment.

一方、リード線tl * 62により、線路L1e L
2へ橋絡接続される携帯試験器(以下、PTS)70は
、線路Ll * L2間の電圧変化に基づく信号送受信
が自在となっておシ、キーボード(以下、KB)71の
操作に応じてCPU55と同様のCPU72が応動し、
DAC73およびDR74を介してTR”Q2を制御し
、TR”QIに通ずる電流以外の電流を電源Eから通じ
させ、これをコード化されたパルス状として行なうこと
により、線間電圧をパルス状に変化させ、PTR30に
対する送信を行なうと共に、TRQ+の制御による電流
値変化に応する線間電圧をCF25において基準電圧E
s 2との比較によシ検出し、ADC76を介してCP
U72により解読し、表示器(以下、DP)77により
表示を行なうものとなっている。
On the other hand, the lead wire tl*62 connects the line L1e L
A portable tester (hereinafter referred to as PTS) 70 connected to 2 via a bridge is capable of freely transmitting and receiving signals based on voltage changes between the lines Ll * L2, and can transmit and receive signals based on voltage changes between lines Ll and L2, depending on the operation of a keyboard (hereinafter referred to as KB) 71. CPU72 similar to CPU55 responds,
By controlling TR"Q2 via the DAC73 and DR74, passing a current other than the current flowing through TR"QI from the power source E, and performing this in a coded pulse form, the line voltage is changed in a pulse form. At the same time, the line voltage corresponding to the current value change controlled by TRQ+ is set to the reference voltage E in the CF25.
It is detected by comparison with s2, and CP is detected via ADC76.
It is decoded by U72 and displayed by display device (hereinafter referred to as DP) 77.

なお、CPU72も、R2M17中の命令を実行し、R
AM79に対する必要なデータのアクセスにより演算お
よび制御を行なうものとなっている。
Note that the CPU 72 also executes the instructions in R2M17 and
Computation and control are performed by accessing necessary data to AM79.

したがって、PTS70により、PTR30の計測値を
チェックできると共に、PTR30に対し各種の指令を
送信し、かつ、これに応する応答送信を受信できるもの
となっており、KB71によりバリアダイヤフラム・チ
ェックの指令を行なえば、これがPTR30のCPU5
5により受信され、これに応じてCPU55がNVM6
1中の各初期定数をパルスコードの電流変化によシ送信
すると共に、 DPS33.5PS34 、TS35の
各検出出力をDET52およびMPX53を介して11
次に取入れ、これらに基づく各検出値を同様に送信する
ため、これらがCPU72において受信されるものとな
り、これらを用いてCPU72が上述のσ■、(ID式
による演算を実行し、かつ1.この結果に応じて上述の
判断を行ない、これKよる診断状況をDP77により表
示する。
Therefore, the PTS 70 can check the measured value of the PTR 30, send various commands to the PTR 30, and receive corresponding response transmissions, and the KB 71 can send commands to check the barrier diaphragm. If you do this, this will be the CPU5 of PTR30.
5, and in response, the CPU 55
In addition to transmitting each initial constant in 1 according to the current change of the pulse code, each detection output of DPS33.5PS34 and TS35 is transmitted to 11 through DET52 and MPX53.
Next, since each detected value based on these is transmitted in the same way, these are received by the CPU 72, and using these, the CPU 72 executes the calculations based on the above-mentioned σ■, (ID formula, and 1. The above-mentioned judgment is made according to this result, and the diagnostic status based on this is displayed on the DP 77.

第5図はPTS70の外形を示し、囚は正面図、(B)
は側面図であ)、手持形の外@81へ全回路および電源
を収容し、正面に複数の押ボタンキー82からなるKB
71を設けると共に、これの上方へ液晶表示素子等のD
P77を装着しておシ、先端へクリップ83m 、 8
3bを接続したリード線t1 、 t2からなるコード
84を導出し、これによフ、線路り、 、 L、の端子
板等に対する接続を自在としている。
Figure 5 shows the external appearance of PTS70, the figure is a front view, and (B)
is a side view), all the circuits and power supply are housed in the outside of the handheld type 81, and the KB consisting of a plurality of push button keys 82 is located on the front.
71 is provided, and a D of a liquid crystal display element, etc. is provided above this.
Attach P77 and clip to the tip 83m, 8
A cord 84 consisting of lead wires t1 and t2 connected to 3b is drawn out, and can be freely connected to the terminal board of F, line, L, L, etc.

したがって、クリップa3m 、 83bを用いて前述
の接続を行なったうえ、rDIA CHECK jキー
82を押下すれば、内部のCPU72による送受信およ
び演算によ)上述の判断がなされ、DP77において例
えばrHP  DIA ABNORMALJの表示がな
され、高圧室42のバリアダイヤフラムS&の性能劣化
が直ちに示されるため、特別な測定器の準備等を行なう
ことなく、容易にかつ正確にDPT51のバリアダイヤ
フラム5aに異常を生じたことの診断が行なわれる。
Therefore, if the above connection is made using the clips a3m and 83b and the rDIA CHECK j key 82 is pressed, the above judgment is made (through transmission/reception and calculation by the internal CPU 72), and the DP 77 performs the rHP DIA ABNORMALJ Since the display immediately indicates the performance deterioration of the barrier diaphragm S& of the high pressure chamber 42, it is possible to easily and accurately diagnose an abnormality in the barrier diaphragm 5a of the DPT 51 without preparing any special measuring equipment. will be carried out.

ただし、バリアダイヤフラム5a、sbt用いるほか、
同等の機能を有する各種の隔膜を用いた場合も同様であ
シ、差圧の計測のみならず、絶対圧力の計測においても
適用することができると共に、場合によっては、(1■
、(111式の演算をいずれか一方のみ行なうものとし
、隔膜の性能に対して影響を与える流体が接する方の隔
膜についてのみ診断を行なってもよく、これに応じた初
期値のみをメモリへ格納してもよい。
However, in addition to using barrier diaphragm 5a and sbt,
The same is true when using various diaphragms with equivalent functions, and it can be applied not only to the measurement of differential pressure but also to the measurement of absolute pressure, and in some cases, (1)
, (The calculation of formula 111 is performed only on one side, and the diagnosis may be performed only on the diaphragm that is in contact with the fluid that affects the performance of the diaphragm, and only the initial value corresponding to this is stored in the memory.) You may.

ま九、NVM61は、DPT51に付帯するものであれ
ばよく、長期間に内容を保持できる他のメモリ素子を用
いても同様であυ、上述の演算および判断’i PTR
30のCPU55において行ない、または、制御装置等
のCPUによシ行ない、別途の表示器により診断結果の
表示を行なってもよ<、5ps34およびTS35の配
設状況は、第1図に示すほか、条件に応じて選定すれば
よい等、種々の変形が自在である。
9. The NVM 61 only needs to be attached to the DPT 51, and it is also possible to use other memory elements that can retain the contents for a long period of time.
30 CPU 55, or it may be performed by a CPU such as a control device, and the diagnosis results may be displayed on a separate display.The arrangement of the 5ps34 and TS35 is shown in FIG. Various modifications can be made, such as selection depending on conditions.

〔発明の効果〕〔Effect of the invention〕

以上の説明によシ明らかなとおり本発次によれば、容易
にかつ正確に差圧発信器等の隔膜に生ずる性能の劣化を
診断できるため、同等の構成を有する各種圧力発信器の
隔膜性能診断において顕著な効果が得られる。
As is clear from the above explanation, according to the present invention, it is possible to easily and accurately diagnose performance deterioration occurring in the diaphragm of differential pressure transmitters, etc. Significant effects can be obtained in diagnosis.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の夾施例を示し、第1図は複合センサの平面
図、第2図は差圧発信器の断面図、第3図は差圧発信器
の模式図、第4図は回路構成のブロック図、第5図は携
帯試験器の外形図である。 5m、5b・働・・バリアダイヤフラム、T&。 7b、131,13b、26・・・・連通孔、8m、8
b・・・・轡内室、9・O・・センタダイヤフラム、1
Qa 、 1ib−・・・封入液、27・・φψ複合セ
ンサ、30・・・・圧力伝送器、31・・・・基板、3
2・・φ・ダイヤフラム、 33 、33a〜33d 
−−−−DPS (差圧センサ)、34.34a〜34
d・・・・sps (静圧センサ)、35 ・・・・T
S (温度センサ)、41φ・・・高圧電、42・・・
・低圧室、51・・・・DPT (差圧発信器)、55
.72・−・−CPU (プロセッサ)。 59.78・・・・ROM (固定メモリ)、60゜7
9−−俸・RAM(可変メモリ)、61−・・・NVM
 (不揮発注メモリ)、58.75・・・・cp (比
較器)、T1−・・・KB(キーボード)、17・・・
・DP(表示器)、Ql、Ql・−−−TR()ランジ
スタ)、 L、 、L2e m @ @線路、11.1
2 ・・・・リード線、E−・・・電源。 第1図 第3図 第2図
The figures show various embodiments of the present invention, in which Fig. 1 is a plan view of a composite sensor, Fig. 2 is a sectional view of a differential pressure transmitter, Fig. 3 is a schematic diagram of a differential pressure transmitter, and Fig. 4 is a circuit. A block diagram of the configuration, and FIG. 5 is an outline drawing of the portable tester. 5m, 5b・Working・Barrier diaphragm, T&. 7b, 131, 13b, 26...Communication hole, 8m, 8
b... Inner chamber, 9 O... Center diaphragm, 1
Qa, 1ib-... Filled liquid, 27... φψ composite sensor, 30... Pressure transmitter, 31... Board, 3
2...φ・Diaphragm, 33, 33a to 33d
-----DPS (differential pressure sensor), 34.34a~34
d...sps (static pressure sensor), 35...T
S (temperature sensor), 41φ...high voltage electric, 42...
・Low pressure chamber, 51...DPT (differential pressure transmitter), 55
.. 72...-CPU (processor). 59.78...ROM (fixed memory), 60°7
9--Salary/RAM (variable memory), 61-...NVM
(Non-volatile ordering memory), 58.75...cp (comparator), T1-...KB (keyboard), 17...
・DP (indicator), Ql, Ql・---TR () transistor), L, , L2e m @ @ line, 11.1
2... Lead wire, E-... Power supply. Figure 1 Figure 3 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 各々の隔膜により外部と遮断されかつ封入液の封入され
た高圧室および低圧室を備えた圧力発信器の前記隔膜の
コンプライアンスを算出するのに必要とする初期定数を
メモリへ格納し、前記各室中の少なくとも一方の静圧を
検出する静圧センサおよび前記圧力発信器の温度を検出
する温度センサを設け、前記圧力発信器へ既知圧力を印
加し、このときにおける前記圧力発信器の検出出力と前
記静圧センサおよび温度センサの各検出出力と前記メモ
リの初期定数とを用いて前記各隔膜中少なくとも一方の
コンプライアンスを算出し、該コンプライアンスの値に
応じて前記隔膜の性能診断を行なうことを特徴とする圧
力発信器の隔膜性能診断方法。
Initial constants required to calculate the compliance of the diaphragms of a pressure transmitter equipped with a high pressure chamber and a low pressure chamber that are isolated from the outside by each diaphragm and filled with a sealed liquid are stored in a memory, A static pressure sensor that detects static pressure of at least one of the pressure transmitters and a temperature sensor that detects the temperature of the pressure transmitter are provided, a known pressure is applied to the pressure transmitter, and the detection output of the pressure transmitter at this time is The compliance of at least one of the diaphragms is calculated using each detection output of the static pressure sensor and the temperature sensor and the initial constant of the memory, and the performance of the diaphragm is diagnosed according to the compliance value. A method for diagnosing diaphragm performance of pressure transmitters.
JP20581486A 1986-09-03 1986-09-03 Diaphragm performance diagnosis method for pressure transmitters Granted JPS6361929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20581486A JPS6361929A (en) 1986-09-03 1986-09-03 Diaphragm performance diagnosis method for pressure transmitters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20581486A JPS6361929A (en) 1986-09-03 1986-09-03 Diaphragm performance diagnosis method for pressure transmitters

Publications (2)

Publication Number Publication Date
JPS6361929A true JPS6361929A (en) 1988-03-18
JPH0371653B2 JPH0371653B2 (en) 1991-11-14

Family

ID=16513139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20581486A Granted JPS6361929A (en) 1986-09-03 1986-09-03 Diaphragm performance diagnosis method for pressure transmitters

Country Status (1)

Country Link
JP (1) JPS6361929A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504772A (en) * 2008-10-06 2012-02-23 ローズマウント インコーポレイテッド Process transmitter and thermal diagnostic method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504772A (en) * 2008-10-06 2012-02-23 ローズマウント インコーポレイテッド Process transmitter and thermal diagnostic method

Also Published As

Publication number Publication date
JPH0371653B2 (en) 1991-11-14

Similar Documents

Publication Publication Date Title
CN102331324B (en) There is the differential pressure transmitter of additional two absolute pressure transducers
US10183859B2 (en) Dual range high precision pressure sensor
EP2286197B1 (en) Improved temperature compensation of a multivariable pressure transmitter
AU707544B2 (en) Pressure transmitter with remote seal diaphragm and correction circuit therefor
JP5409965B2 (en) Differential pressure sensor with line pressure measurement
CA2207020C (en) Excitation of polysilicon-based pressure sensors
US20060278005A1 (en) Pressure sensor using compressible sensor body
US20070295095A1 (en) Apparatus for providing an output proportional to pressure divided by temperature (P/T)
US7278317B2 (en) Pressure measurement
US20070157734A1 (en) Wireless pressure sensor
US8175839B2 (en) Wireless interface for a plurality of transducers
US10670482B2 (en) Sensor element for a pressure sensor
US7483795B2 (en) Pressure and temperature compensation algorithm for use with a piezo-resistive strain gauge type pressure sensor
US7347098B2 (en) Apparatus for providing an output proportional to pressure divided by temperature (P/T)
CN210833912U (en) Temperature monitoring instrument and system capable of realizing automatic temperature calibration
CN110940449B (en) Remote seal diaphragm system
US4708010A (en) Apparatus and method for calibrating span of pressure measuring instruments
JPS6361929A (en) Diaphragm performance diagnosis method for pressure transmitters
CN108204865A (en) Industrial instrument, industrial control system and RTD temp measuring methods
JPH0371652B2 (en)
Šaponjić et al. Correction of a piezoresistive pressure sensor using a microcontroller
CN206583553U (en) Industrial instrument and industrial control system
US20060052967A1 (en) Pressure and temperature measurement of a piezo-resistive device using differential channel of a ratiometric analog to digital converter
US10067022B2 (en) Absolute pressure sensor
KR100295622B1 (en) Vibration and temperature senser