[go: up one dir, main page]

JPS6375687A - Spot light mapping radar apparatus - Google Patents

Spot light mapping radar apparatus

Info

Publication number
JPS6375687A
JPS6375687A JP61221623A JP22162386A JPS6375687A JP S6375687 A JPS6375687 A JP S6375687A JP 61221623 A JP61221623 A JP 61221623A JP 22162386 A JP22162386 A JP 22162386A JP S6375687 A JPS6375687 A JP S6375687A
Authority
JP
Japan
Prior art keywords
antenna
beam direction
time
azimuth
spotlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61221623A
Other languages
Japanese (ja)
Other versions
JPH0245158B2 (en
Inventor
Akira Sasao
笹尾 昭
Hiromichi Shirohata
白籏 弘道
Takahiko Fujisaka
貴彦 藤坂
Yoshimasa Ohashi
大橋 由昌
Tomomasa Kondo
近藤 倫正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Mitsubishi Electric Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Mitsubishi Electric Corp
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Mitsubishi Electric Corp, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP61221623A priority Critical patent/JPS6375687A/en
Publication of JPS6375687A publication Critical patent/JPS6375687A/en
Publication of JPH0245158B2 publication Critical patent/JPH0245158B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To perform continuous observation, by adding a beam direction control apparatus calculating an antenna beam direction satisfying a predetermined condition at a synthetic aperture time set to a required value. CONSTITUTION:On the basis of the speed V of a flight body, the distance R0 up to an observation object, the angle theta0 formed by a flight body advance direction and an observation object direction and an antenna beam width thetaB etc. from an inertial navigation apparatus 9, a time T capable of performing continuous observation satisfying formula I wherein time (t) and an aperture time T are t.(-T/2<t<T/2) is automatically set to a beam direction control apparatus 10. Whereupon, the apparatus 10 calculates an antenna beam direction theta(t) satisfying formula II to automatically drive an antenna. Then, receiving and detection outputs are processed by a pulse compression apparatus 5 enhancing distance/azimuth resolving power and an azimuth compression apparatus 6 and an observation object being ground surface or the surface of the sea is continuously observed and the corresponding image is displayed on a display device 7.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は人工衛星、航空機等の飛しよう体lこ搭載さ
n、地表あるいは海面上の映像を得るスポットライトマ
ツピングレーダ装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a spotlight mapping radar device for obtaining images on the ground or sea surface mounted on a flying body such as an artificial satellite or an aircraft. .

〔従来の技術〕[Conventional technology]

従来のこの種のスポットライトマツピングレーダ装置に
ついては2例えば、 Br0Ok61n(3r、E、θ
d。
For a conventional spotlight mapping radar device of this kind, for example, Br0Ok61n (3r, E, θ
d.

”Radar TechnOlogy” 、Artec
h House 、 197 Bのch、 181こ詳
しく述べらnているが、ここでは装置の構成と原理につ
いて簡単に説明する。
“Radar Technology”, Artec
h House, 197 B, ch. 181 Although this has been described in detail, the configuration and principle of the device will be briefly explained here.

第7図は、従来のスポットライトマツピングレーダ装置
の構成を示すブロック図であり、第8図及び第9図はそ
の動作原理及び運用を説明するための図である。
FIG. 7 is a block diagram showing the configuration of a conventional spotlight mapping radar device, and FIGS. 8 and 9 are diagrams for explaining its operating principle and operation.

図中、(1)は送信機、(2)は送受切換器、(3)は
アンテナ、(4)は受信機、(5)はパルス圧縮装置、
(6)はアジマス圧縮装置、(7)は表示装置、 (8
+iまり7アレンス信号発生装置、(9)は慣性航法装
置、aυはアンテナ駆動装置、(イ)は送信信号、(ロ
)は受信信号、(ハ)は観測対象、に)は観測対象(ハ
)中の1点、(ホ)はアンテナ駆動装置、(へ)はスポ
ットライトマツピングレーダ装置が搭載された飛しよう
体を表す。
In the figure, (1) is a transmitter, (2) is a transmitter/receiver switch, (3) is an antenna, (4) is a receiver, (5) is a pulse compression device,
(6) is an azimuth compression device, (7) is a display device, (8
+i Mari 7 Arens signal generator, (9) is the inertial navigation device, aυ is the antenna drive device, (A) is the transmitted signal, (B) is the received signal, (C) is the observation target, and (2) is the observation target (H). 1 point in ), (E) represents an antenna drive device, and (F) represents a flying object equipped with a spotlight matuping radar device.

慣性航法装置(9)により測定さnた飛しよう体の位置
、速度に応じて、アンテナ駆動装置(Iのによりアンテ
ナ(31i g測対象に)に向ける。その後、送信機(
1)で発生した送信パルス信号は、送受切換器(2)及
びアンテナ(3)ヲ介して、送信信号(イ)として地上
あるいは海面の観測対象に)へ向けて放射される。
Depending on the position and speed of the flying object measured by the inertial navigation device (9), the antenna drive device (I) directs the antenna (31i to the object to be measured).Then, the transmitter (
The transmission pulse signal generated in step 1) is radiated as a transmission signal (a) to an observation target on the ground or sea surface via a transmitter/receiver switcher (2) and an antenna (3).

放射さnた送信信号(イ)は、観測対象で反射さ2′L
The radiated transmission signal (a) is reflected by the observation target 2'L
.

受信信号(ロ)として再びアンテナ(3)によって受信
さnる。受信信号(ロ)は送受切換器を介して、受信機
(4;へ入力さnる。受イ」機(4)は高周波の受(i
信号を増幅及び検波し、ベースバンドのビデオ信号に変
換する。このビデオ信号は距離分解能を高めるためパル
ス圧縮装置(51に入力され、パルス圧縮が行われる。
It is received again by the antenna (3) as a received signal (b). The received signal (b) is input to the receiver (4) via the transmitter/receiver switch.
The signal is amplified and detected, and converted to a baseband video signal. This video signal is input to a pulse compression device (51) to perform pulse compression in order to improve distance resolution.

パルス圧縮によって、飛しよう体(へ)の進行方向に対
して垂直方向すなわち距離(レンジ]方向の分解能を向
上させる。このとき、レンジ分解能ΔRは。
Pulse compression improves the resolution in the direction perpendicular to the traveling direction of the flying object, that is, in the distance (range) direction.At this time, the range resolution ΔR is:

ΔR=−−f4+ (C;光速、τ;パルス圧縮後のパルス幅〕で示さ几る
。その後ビデオ信号は、アジマス圧縮装置(6)へ入力
さn、飛しよう体(へ)の進行方向すなわちアジマス方
向の分解能を向上させる。アジマス圧縮(まスポットラ
イトマツピングレーダ装置を搭載した飛しよう体(へ)
のt+fdlによって生じるドツプラー効果を利用して
行わγLる。今、第8図に示すようlこ飛しよう体が速
度Vで等速直+1i!3!運動しているものとし、観測
対象(ハ)中の1点に)が1時刻t=Qのとき距離Ha
 eスクィント角θoにある場合を考入る。このきき2
時刻tにおける飛しよう体(へ)さ点に)きの相対距離
R(t)は。
It is expressed as ΔR=−−f4+ (C: speed of light, τ: pulse width after pulse compression).The video signal is then input to the azimuth compression device (6). Improve resolution in the azimuth direction. Azimuth compression (flying object equipped with a spotlight pine radar device)
This is done using the Doppler effect caused by t+fdl of γL. Now, as shown in Figure 8, the flying body has a velocity of V and a constant velocity of +1i! 3! Assume that the observation target (C) is in motion, and when the point in the observation target (C) is 1 time t = Q, the distance Ha
Consider the case at e Squint angle θo. This hearing 2
The relative distance R(t) of the flying body (to the point) at time t is.

で与えられる。よって、瞬時ドツプラー周波afa(1
)は、送信波長λを用いて で与えられる。第3式より明らかなように、受信信号は
、その瞬時ドツプラー周波数が時刻tとさもに変化する
チャープ信号となっている。このとき、第3式中のλ、
RO1θQ、Vは既知あるいは慣性航法装置(9)lこ
より測定可能なパラメータであるから2点に)のドツプ
ラー周波数の時間変化の履歴すなわちドツプラーヒスト
リーはリファレンス信号発生装置(8)により計算で求
めることができる。
is given by Therefore, the instantaneous Doppler frequency afa(1
) is given by using the transmission wavelength λ. As is clear from the third equation, the received signal is a chirp signal whose instantaneous Doppler frequency changes at the same time as time t. At this time, λ in the third formula,
Since RO1θQ,V are parameters that are known or can be measured from the inertial navigation device (9), the history of temporal changes in the Doppler frequency of the inertial navigation device (9), that is, the Doppler history, can be obtained by calculation using the reference signal generator (8). Can be done.

従って、各レンジ毎に、一連の受信43号と、リファレ
ンス信号発生装置(8)で発生させたリファレンス信号
上の相関をとることによって、パルス圧縮と同様にアジ
マス圧縮が可能となる。
Therefore, by correlating the series of reception signals 43 and the reference signal generated by the reference signal generator (8) for each range, azimuth compression can be performed in the same way as pulse compression.

一般に、スポットライトマツピングレーダ装置π で(1,θoは、θo=−に設定さ、?する。このとき
Generally, in the spotlight mapping radar device π (1, θo is set to θo=−, ?). At this time.

−8−成開口時間Tはアンテナビーム嘔θBではなくア
ンテナ駆動装置のアジマス角可動範囲θS (飛しよう
体の進行方向を基準として、アンテナビームのボアサイ
ト方向が(π−1)S )/2から(π+θs)/2ま
での範囲で可動とする。〕で決定され。
-8- The aperture time T is determined not by the antenna beam θB but by the azimuth angle movable range θS of the antenna drive device (the boresight direction of the antenna beam is (π-1)S)/2 It is assumed that it is movable within the range from (π+θs)/2. ] is determined.

θS 2R□tan() T =                 (41で与
えられる。合成開口時間をTとすると、アジマス分解能
Δrは。
θS 2R□tan() T = (given by 41. If the synthetic aperture time is T, the azimuth resolution Δr is.

で与えられる。is given by

以上の処理によって、レンジ力向及びアジマス方向の両
方向で高分解能化された受信信号は1表示装置(7)上
に、2次元レーダ映像として表示される。
Through the above processing, the received signal with high resolution in both the range power direction and the azimuth direction is displayed as a two-dimensional radar image on one display device (7).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のスポットライトマツピングレーダ装置は以上のよ
うに構成されているので、アンテナ駆動装置のアジマス
角可動範囲を選ぶことにより、アジマス分解能を自由に
選択できるが、第9図に示すように連続して観測を行っ
た場合に、観測対象が不連続になり、広い範囲を連続し
て観測することが困難であった。
Since the conventional spotlight mapping radar device is configured as described above, the azimuth resolution can be freely selected by selecting the azimuth angle movable range of the antenna driving device. When observations were made over a wide area, the observation target became discontinuous, making it difficult to continuously observe a wide range.

この発明は、上記のような問題点を解消するためになさ
れたもので、地上あるいは海面等の観測対象を連続して
観測することができるように、アンテナ駆動ヲ自動化し
たスポットライトマツピングレーダ装置を得ることを目
的とする。
This invention was made to solve the above-mentioned problems, and is a spotlight matuping radar device that automates the antenna drive so that observation targets on the ground or the sea surface can be continuously observed. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るスポットライトマツピングレーダ装置は
、連続した観測が可能なように合成開口時間を自動設定
し1合成開口中のアンテナの動きをコントロールするた
めIこビーム方向制御装置を付加したものである。
The spotlight mapping radar device according to the present invention automatically sets the synthetic aperture time to enable continuous observation, and is equipped with an I-beam direction control device to control the movement of the antenna during one synthetic aperture. be.

〔作用〕[Effect]

この発明におけるスポットライトマツピングレーダ装置
ではビーム方向制御装置により、慣性航法装置により測
定した飛しよう体の位置より観測対象までの距離ROを
設定し、飛しよう体の移動速度V及びアンテナビーム幅
θBにもとづいて。
In the spotlight mapping radar device according to the present invention, the distance RO from the position of the flying object measured by the inertial navigation device to the observation target is set by the beam direction control device, and the distance RO is set from the position of the flying object measured by the inertial navigation device to the moving speed V of the flying object and the antenna beam width θB. Based on.

連続した領域を観測できるように合成開口時間Tを自動
的に設定し2合成開口中のアンテナの動きを自動制御す
る。
The synthetic aperture time T is automatically set so that a continuous area can be observed, and the movement of the antenna during the two synthetic apertures is automatically controlled.

これによって、この発明のスポットライトマツピングレ
ーダ装置では、地表あるいは海面を連続して観測できる
As a result, the spotlight matuping radar device of the present invention can continuously observe the ground surface or the sea surface.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一夾施例を第1図に示し1図面につい
て詳細に説明する。第1図において、 (10はこの発
明において新たに付加されたビーム方向制御装置であり
、 allはαOの指示のもとにアンテナを駆動する装
置である。図中のその他の装置(1)へ(9)の動作は
、従来の装置と同等であるので、以下の説明では、ビー
ム方向制御装置α1とアンテナ駆動装置αυの動作を中
心に述べる。ビーム力開制御装置α値の動作フローチャ
ートを第2図に示し2図面に従って動作を説明する。
Hereinafter, one embodiment of the present invention is shown in FIG. 1, and one drawing will be described in detail. In FIG. 1, (10 is a beam direction control device newly added in this invention, and all is a device that drives the antenna under the instruction of αO. To other devices (1) in the figure Since the operation in (9) is equivalent to that of the conventional device, the following explanation will focus on the operations of the beam direction control device α1 and the antenna drive device αυ. The operation will be explained according to FIG. 2.

ステップQυで、慣性航法装置(91により測定した飛
しよう体の位置及び速度情報を入力し、飛しよう体から
観測対象の中心までの距! ROを飛しよう体の進行方
向と観測対象方向とのなす角、すなわちスクイント角θ
o及び飛しよう体の移動速度Vを設定し、アンテナ駆動
装置Iのアジマス角可動範囲θSをアンテナ(3)のア
ジマス方向ビーム幅θBに等しく設定する。ただし、以
下の説明におπ いて、θo=−とする。
In step Qυ, input the position and speed information of the flying object measured by the inertial navigation device (91), and calculate the distance from the flying object to the center of the observation target! The angle formed by the squint angle θ
o and the moving speed V of the flying object are set, and the azimuth angle movable range θS of the antenna driving device I is set equal to the azimuth direction beam width θB of the antenna (3). However, in the following explanation, θo=-.

θS=θB(6) ステップ■では、第6弐七第4式より2合成開口時間T ■ を計算する。θS=θB(6) In step ■, 2 synthetic opening time T from the 6th 27th equation 4 ■ Calculate.

合成開口時間Tが決定された後、ステップ@から(1)
で、アンテナのビーム力開制御のため、実時刻tinを
合成開口中の時刻t にfi!4する。まず、ステップので、実時刻tinを
合成開口時間Tで割った時の剰余Rθのtin Rom = tin −[−) T        (
91を求める。第9式において、ガウス記号〔〕はカッ
コ内の最大の整数値をとるものとする。
After the synthetic opening time T is determined, from step @(1)
In order to control the beam power opening of the antenna, the actual time tin is set to the time t during the synthetic aperture fi! 4. First, because of the step, the remainder Rθ when the real time tin is divided by the synthetic opening time T is tin Rom = tin − [−) T (
Find 91. In the ninth equation, the Gauss symbol [ ] shall take the largest integer value within the parentheses.

ステップCDでは、この剰余Remの絶対値lRem1
とT / 2とを比較し、  l Roml ) T/
2であわばステップ(至)へ進み。
In step CD, the absolute value lRem1 of this remainder Rem
and T/2, l Roml) T/
At step 2, proceed to the final step.

t −Hem−T             (11)
とし、  lRem1≦T/2 であわばステップ(ハ
)へ進みt=Rem               a
υとする。時刻変換の様子を第3図Eζ示す。第3図に
おいて、横軸は、実時刻tinを表し、縦軸は変換後の
時刻tを表す。また1図中の黒丸はこの点が含まれるこ
とを示し、白丸はこの点が含まnないことを示しており
、ノコギリ回状の山の1つ1つが各々観測回数#1から
#5に対応する。
t-Hem-T (11)
Then, if lRem1≦T/2, proceed to step (c) and t=Rem a
Let υ. The state of time conversion is shown in FIG. 3 Eζ. In FIG. 3, the horizontal axis represents actual time tin, and the vertical axis represents time t after conversion. In addition, a black circle in Figure 1 indicates that this point is included, and a white circle indicates that this point is not included, and each sawtooth circular mountain corresponds to the number of observations #1 to #5. do.

ステップ(5)で、変換後の時刻tに対応したアンテナ
ビーム方向θ(1) = cos−1(r、 +v2t2 )     (1
3を求め、ステップ@でアンテナ駆動装置(1,υへ指
示を出す。θ(1)の計算例を第4図Eこ示す。
In step (5), the antenna beam direction θ(1) = cos-1(r, +v2t2) (1
3 is obtained, and an instruction is issued to the antenna driving device (1, υ) in step @. An example of calculating θ(1) is shown in FIG. 4E.

ステップ翰で観測終了の判定を行い、継続の場合は、実
時刻tin lz更新し、ステップ(至)へ戻る。
At step 3, it is determined whether the observation has ended, and if it is to continue, the actual time tin lz is updated and the process returns to step (end).

終了の場合は、処理を終える。In the case of termination, the process ends.

以上の処理によって、アンテナ・ビームの方向θは、実
時刻tinに対して第5図に示すように自動的Iζ制御
され、#1の区間で第1回目の観測。
Through the above processing, the direction θ of the antenna beam is automatically controlled Iζ as shown in FIG. 5 with respect to the real time tin, and the first observation is made in the section #1.

#2の区間で第2回目の観測、#3の区間で第3回目の
観測が行われ、このときそれぞれの観測において、アン
テナのアジマス角可動範囲が自動的に(π−θB)/2
から(π+θB)/2までに制限されるため、第6図に
示すように、$1.$2.#3.#4、#5の観測によ
って、地上あるいは海面を連続して観測できる。以上の
説明では簡単のため。
The second observation is carried out in section #2, and the third observation is carried out in section #3. At this time, in each observation, the azimuth angle movable range of the antenna is automatically adjusted to (π-θB)/2.
to (π+θB)/2, so as shown in FIG. 6, $1. $2. #3. Observations #4 and #5 enable continuous observation of the ground or sea surface. The above explanation is for simplicity.

θoを−を例にとって述べたが、この発明は任意のθo
に対して有効である。
Although θo has been described using - as an example, this invention can be applied to any θo
It is valid for

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によ几ば、ビーム方向制御装置
により、飛しよう体の移動速度、観測対象までの距離、
アンテナビーム幅に応じて、迷αした観測が可能なよう
に合成開口時間を自動設定するこきにより、アンテナの
アジマス角可動範囲を制限し、更fこ合成開口中のアン
テナ・ビーム方向を適時計算し、アンテナ、I動装置を
制御することができるため、従来のスポットライトマツ
ピングレーダ装置では困難であった連続した領域の観測
が可能となる。
As described above, according to the present invention, the beam direction control device can control the moving speed of the flying object, the distance to the observation target,
By automatically setting the synthetic aperture time to enable stray observations according to the antenna beam width, the antenna's azimuth angle movable range is limited, and the antenna beam direction during the synthetic aperture is calculated in a timely manner. However, since the antenna and I-motion device can be controlled, it becomes possible to observe a continuous area, which was difficult with conventional spotlight mapping radar equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施汐すによるスポットライトマ
ツピングレーダ装置の構成図、第2図はこの発明におい
て付加さrしたビーム力向制御装fi(1Bの動作フロ
ーチャート、第3図、第4図及び第5図は、動作説明の
ための図、第6図(ばこの発明の詳細な説明するための
図、第7図は従来のスポットライトマツピングレーダ装
置の構成囚、第8図はスポットライトマツピングレーダ
の動作原理を説明するための図、第9図は従来のスポッ
トライトマツピングレーダ装置の運用例を示す図である
。 図中、(1)は送信機、(2)は送受切換器、(3)は
アンテナ、(4)は受信機、(5)はパルス圧縮装置、
(6)はアジマス圧縮装置、(7)は表示装置、(8)
はリファレンス信号発生装置、(9)は慣性航法装置、
αlはビーム力向制御装置、住υはアンテナ駆動装置で
ある。 なお2図中、同一符号は同−又は■」画部分を示す。
FIG. 1 is a block diagram of a spotlight mapping radar device according to an embodiment of the present invention, FIG. 2 is an operation flowchart of the beam force direction control device fi (1B) added in the present invention, 4 and 5 are diagrams for explaining the operation, Figure 6 is a diagram for explaining the details of the invention, Figure 7 is the configuration of a conventional spotlight mapping radar device, and Figure 8 is a diagram for explaining the details of the invention. 9 is a diagram for explaining the operating principle of a spotlight mapping radar, and FIG. 9 is a diagram showing an example of operation of a conventional spotlight mapping radar device. In the figure, (1) is a transmitter, (2) is a transmitter/receiver switch, (3) is an antenna, (4) is a receiver, (5) is a pulse compression device,
(6) is an azimuth compression device, (7) is a display device, (8)
is a reference signal generator, (9) is an inertial navigation device,
αl is a beam force direction control device, and υ is an antenna drive device. Note that in the two figures, the same reference numerals indicate the same - or ■'' portions.

Claims (2)

【特許請求の範囲】[Claims] (1)人工衛星、航空機等の飛しよう体に搭載され、地
表あるいは海面の映像を得るスポットライトマッピング
レーダ装置において、飛しよう体の動きを計測する慣性
航法装置と、慣性航法装置により計測した飛しよう体の
速度V、観測対象までの距離R_o、飛しよう体の進行
方向と観測対象方向とのなす角θ_o及びアンテナビー
ム幅θ_Bより合成開口時間T及び時刻t−(−T/2
<t≦T/2)におけるビーム方向θ(t)を第1式 ▲数式、化学式、表等があります▼(1) により決定するビーム方向制御装置と、ビーム方向制御
装置の出力に応じてアンテナを、駆動するアンテナ駆動
装置と、観測対象に向けて電波を発射し、反射波を受信
するアンテナと、送信機と、受信機と、受信機により検
波された信号のレンジ分解能を向上させるパルス圧縮装
置と、アジマス分解能を向上させるアジマス圧縮装置と
、アジマス圧縮に必要なリフアレンス信号を発生するリ
フアレンス信号発生装置と、表示装置とを具備すること
を特徴とするスポットライトマッピングレーダ装置。
(1) In a spotlight mapping radar device that is mounted on a flying object such as an artificial satellite or an aircraft and obtains images of the ground or sea surface, there is an inertial navigation device that measures the movement of the flying object, and an inertial navigation device that measures the movement of the flying object. The synthetic aperture time T and time t-(-T/2
<t≦T/2), the beam direction θ(t) is determined by the first formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (1) A beam direction control device and an antenna according to the output of the beam direction control device an antenna driver that drives the antenna, an antenna that emits radio waves toward the observation target and receives reflected waves, a transmitter, a receiver, and pulse compression that improves the range resolution of the signal detected by the receiver. What is claimed is: 1. A spotlight mapping radar device comprising: an azimuth compression device that improves azimuth resolution; a reference signal generation device that generates a reference signal necessary for azimuth compression; and a display device.
(2)前記ビーム方向制御装置において、合成開口時間
T及び時刻 t(−T/2<t≦T/2)におけるビ ーム方向θ(t)を第21式 T=(R_oθ_B)/v (21) 及び第22式 θ(t)=cos−i((R_ocosθ_o−vsi
n2θ_ot)/R_o)) (22)の近似式を用い
て計算することを特徴とする特許請求の範囲第1項記載
のスポットライトマッピングレーダ装置。
(2) In the beam direction control device, the beam direction θ(t) at the synthetic aperture time T and time t (-T/2<t≦T/2) is calculated using the following formula: T=(R_oθ_B)/v (21) and the 22nd formula θ(t)=cos-i((R_ocosθ_o-vsi
2. The spotlight mapping radar device according to claim 1, wherein the calculation is performed using the approximation formula of n2θ_ot)/R_o)) (22).
JP61221623A 1986-09-19 1986-09-19 Spot light mapping radar apparatus Granted JPS6375687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61221623A JPS6375687A (en) 1986-09-19 1986-09-19 Spot light mapping radar apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61221623A JPS6375687A (en) 1986-09-19 1986-09-19 Spot light mapping radar apparatus

Publications (2)

Publication Number Publication Date
JPS6375687A true JPS6375687A (en) 1988-04-06
JPH0245158B2 JPH0245158B2 (en) 1990-10-08

Family

ID=16769659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61221623A Granted JPS6375687A (en) 1986-09-19 1986-09-19 Spot light mapping radar apparatus

Country Status (1)

Country Link
JP (1) JPS6375687A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600699A1 (en) * 1992-11-30 1994-06-08 All Nippon Airways Co. Ltd. Mobile receiver for satellite broadcast
JP2000298168A (en) * 1999-02-12 2000-10-24 Nec Corp Sar device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0600699A1 (en) * 1992-11-30 1994-06-08 All Nippon Airways Co. Ltd. Mobile receiver for satellite broadcast
JP2000298168A (en) * 1999-02-12 2000-10-24 Nec Corp Sar device

Also Published As

Publication number Publication date
JPH0245158B2 (en) 1990-10-08

Similar Documents

Publication Publication Date Title
CN1135901C (en) Method of detecting atmospheric weather conditions
Walterscheid et al. Bistatic SAR experiments with PAMIR and TerraSAR-X—setup, processing, and image results
US20210055734A1 (en) Methods Circuits Devices Assemblies Systems and Related Machine Executable Code for Providing and Operating an Active Sensor on a Host Vehicle
JPH02210285A (en) Spot light maping radar device
US20200132826A1 (en) Method and apparatus for non-line-of-sight detection and coded radar signals
US6456227B2 (en) Weather radar
Caris et al. Millimeter wave radar for perimeter surveillance and detection of MAVs (Micro Aerial Vehicles)
US11385324B2 (en) System and methodologies for air surveillance and weather measurement
JP2016217976A (en) Radar system and radar signal processing method
US10698103B2 (en) System and method for generating high-resolution imagery using electromagnetic signals
US3213447A (en) Radar system for terrain avoidance
JPS6375687A (en) Spot light mapping radar apparatus
US20150287224A1 (en) Virtual tracer methods and systems
CN109444889A (en) One kind is based on star Chinese herbaceous peony view double-base SAR visual aids control loop and method
Barkhatov et al. Toward 3D passive radar exploiting DVB-T2 transmitters of opportunity
RU2131622C1 (en) Flying vehicle collision warning device
US3569967A (en) Echo processing apparatus of side looking detection systems operating with frequency modulated transmitted pulses
GB2299722A (en) Improvement to radars and sonars
RU2719547C1 (en) Onboard radar station
GB2092749A (en) Detecting obstacles to vehicles
RU2529523C1 (en) Ground mapping method using on-board radar set
Guo et al. Multi-channel scan mode and imaging algorithm for synthetic aperture ladar
RU2273033C2 (en) Method for determining traveling speed of airborne target at ground-based radiolocation station
JPS58223770A (en) Synthetic aperture radar device
US3161875A (en) Object locating system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term