JPS639974B2 - - Google Patents
Info
- Publication number
- JPS639974B2 JPS639974B2 JP55088613A JP8861380A JPS639974B2 JP S639974 B2 JPS639974 B2 JP S639974B2 JP 55088613 A JP55088613 A JP 55088613A JP 8861380 A JP8861380 A JP 8861380A JP S639974 B2 JPS639974 B2 JP S639974B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- foamed
- molded product
- foamed particles
- smoothness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000002245 particle Substances 0.000 claims description 173
- 239000011347 resin Substances 0.000 claims description 33
- 229920005989 resin Polymers 0.000 claims description 33
- 238000005187 foaming Methods 0.000 claims description 32
- 229920003020 cross-linked polyethylene Polymers 0.000 claims description 22
- 239000004703 cross-linked polyethylene Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- 239000006260 foam Substances 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 229920013716 polyethylene resin Polymers 0.000 claims description 6
- 230000032683 aging Effects 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 238000009413 insulation Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 11
- 230000006835 compression Effects 0.000 description 10
- 238000007906 compression Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 238000013016 damping Methods 0.000 description 9
- 230000004927 fusion Effects 0.000 description 9
- 239000007789 gas Substances 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000004088 foaming agent Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 239000002344 surface layer Substances 0.000 description 7
- 210000003491 skin Anatomy 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- 239000002932 luster Substances 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000004604 Blowing Agent Substances 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 230000003139 buffering effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 210000002615 epidermis Anatomy 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000012774 insulation material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000003431 cross linking reagent Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical group O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000003878 thermal aging Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/22—After-treatment of expandable particles; Forming foamed products
- C08J9/228—Forming foamed products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C67/00—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
- B29C67/20—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored
- B29C67/205—Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for porous or cellular articles, e.g. of foam plastics, coarse-pored comprising surface fusion, and bonding of particles to form voids, e.g. sintering
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
- C08J9/18—Making expandable particles by impregnating polymer particles with the blowing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C44/00—Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
- B29C44/34—Auxiliary operations
- B29C44/3415—Heating or cooling
- B29C44/3426—Heating by introducing steam in the mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2025/00—Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
- C08J2203/142—Halogenated saturated hydrocarbons, e.g. H3C-CF3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
- C08J2323/04—Homopolymers or copolymers of ethene
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Molding Of Porous Articles (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
本発明は、粒子自体に膨張能を有した発泡粒子
に更に発泡能を付与させて、従来にない特性を具
備した成形体を得る方法に関するものである。
従来、架橋ポリエチレン発泡粒子を型内に充て
んし、これを加熱発泡させて粒子間を溶着させ、
型に一致した成形体にする方法は種々提案されて
いる。このようにして得られた成形体は、弾力性
に富むことから住居、冷凍庫、船舶、自動車等に
おける断熱材、各種物品の包装、輸送の際の緩衝
材、マツト、パツキング等のクツシヨン材、その
他装飾品、玩具用材料などの分野への活用に大き
な期待が寄せられていた。
しかしながら現実は、その成形方法により得ら
れる発泡成形体の性質に制限があり用途に対応す
る特性を実現できないため、その需要は完全に伸
び悩みの状態にある。
例えば装飾品、玩具分野では、成形体表面に凹
凸が多く、無光沢な上にぬめりがあつて見栄えが
しない欠点があるし、断熱材分野では、経時的な
断熱性能の低下が著しい上に、特に成形体の表面
が約70℃を越える高温雰囲気に曝される天井材な
どに用いると成形体の寸法が4〜7%収縮し、各
ユニツト間にすき間が生じて断熱材としての役割
を果しえなくなるという欠点がある。
また、緩衝材、クツシヨン材の分野では、特に
耐熱クリープ性に乏しく、輸出途上の船倉内で緩
衝材がその性能を失ない内容物を破損させてしま
う欠点がある。
一方、生産者の立場からは、例えば従来の成形
体は成形やせが大きいために、金型の内型寸法は
それを見込んで大き目に製作するのが普通である
が、肉厚みの異なる部分を有する製品を目的とす
る場合、その各部分における収縮状態がまちまち
になるため、その金型寸法は製作者の経験と勘を
頼りに試行錯誤を繰り返して決めなければないと
いう大きな欠点がある。
また、100mmを越える厚肉成形体を作つて、こ
れを薄くスライスして使用し生産性を向上しよう
とすることも試みられる。
しかし、従来の成形方法で得られる肉厚成形体
は、ひけや表面しわが多くなる上に、成形体内部
の粒子融着が悪化するので、実用に耐えないし、
厚みを調整してスライスし得たとしても、成形体
内部からのスライス品は吸水性が大きく断熱性能
の持続性が保てない欠点がある。
さらに、低密度の成形体にして単位コストの低
廉化を計ろうとすると、緩衝特性、クリープ特性
が低下する欠点がある。
上記従来のこれらの欠点はいずれも、型内で膨
張する発泡粒子の発泡能が不足するために、得ら
れる成形体の各所に過度の応力やそれに起因する
ひずみが生じることが原因であると考えられる。
本発明はこのような現状を克服するために研究
し、開発されたもので、その目的の第1は光沢が
あつて、粒子間にくぼみのない平滑な表面を持つ
成形体を提供すること、その目的の第2は熱経時
的収縮率が小さく、耐吸水性、耐熱クリープ性に
優れる成形体を提供すること、その目的の第3
は、ひけ、しわのない厚肉成形体の製造を可能に
し、その内部をスライスした成形品でも、経時断
熱性に優れた成形体を提供すること、その目的の
第4は、低密度の状態にあつても緩衝特性、圧縮
強度、耐クリープ性に優れた成形体を提供するこ
と及び第5の目的は、対型再現性に優れた成形体
の製造方法を提供することにある。
本発明に従えば、これらの目的は、架橋ポリエ
チレン樹脂を素材として用いて、平滑度(S)が
1.05以下の表面を有し、発泡倍率約20〜40倍、か
つその中に圧入された空気圧の減衰係数(T)が
(1/1500〜1/2500)Dの範囲内にある球状発泡粒
子を調整し、次いでこれを発泡粒子の元のかさ容
積の約95〜50%になるまで圧縮したのち、型内に
充てんし、膨張能が低下しないうちに加熱し、発
泡させるか、あるいはこのようにして得られた成
形体をさらに60℃以上の温度で6時間以上熟成さ
せることにより、達成することができる。
本発明方法で用いる架橋ポリエチレン樹脂発泡
粒子は、その表面に内部組織よりも硬度の高い組
織から成る皮膜を有し、将来の架橋ポリエチレン
樹脂発泡粒子と比較したとき、一見して識別しう
る真珠様の表面光沢をもつという点で従来の架橋
ポリエチレン樹脂発泡粒子と異なつている。
このような特徴をもつた発泡粒子であるために
は、前記したように、平滑度(S)が1.05以下の
表面であること、発泡倍率(D)が約20〜40倍の範囲
にあること、及び粒子内に圧入された空気圧の減
衰係数(T)が
D/1500≧T≧D/2500 ……()
の範囲にあることが必要である。
ここでいう平滑度(S)とは、粒子表面の各セ
ルごとの凹凸の程度を表わす因子であり、完全に
セルの凹凸のない理想的な平滑表面の場合には
1.00となる。したがつて粒子の全体的な表面状態
としてみた場合この平滑度(S)が1.00に近づく
ほど平滑であるということができる。
この平滑度(S)は、次のようにして求めるこ
とができる。
すなわち、発泡粒子を薄片にカツトし、その断
面について、特に表面輪郭部に焦点を合せて顕微
鏡写真をとる。次いで、第1図の模式図に示すよ
うに、輪郭部の隣接するセルとの接点を各セルご
とに直線で結び、この直線の各セルごとの長さ
a1,a2,a3……の総和Aと、各セルの表層部の実
際の長さb1,b2,b3……の総和Bとの比B/Aを
求め、これを平滑度Sとする。
このようにして得られる平滑度と光沢性との相
関関係を調べるために、正常な色感を有する成年
男子5人に対し、種々の平滑度を有する架橋ポリ
エチレン樹脂発泡粒子について肉眼によりその光
沢性の評価を行わせたところ、第1表に示す結果
を得た。この表における評点は、強い光沢がある
と感じた場合に4点、光沢があると感じた場合に
3点、光沢があるとはいえないと感じた場合に2
点、光沢がないと感じた場合に1点をそれぞれ与
えたものである。
The present invention relates to a method for obtaining a molded article with unprecedented properties by further imparting foaming ability to foamed particles that themselves have expansion ability. Conventionally, a mold is filled with cross-linked polyethylene foam particles, which are then heated and foamed to fuse the particles together.
Various methods have been proposed for forming a molded article that conforms to the mold. Due to its high elasticity, the molded products obtained in this way are used as insulation materials in homes, freezers, ships, automobiles, etc., packaging for various goods, cushioning materials for transportation, cushioning materials such as mats and packing materials, etc. There were great expectations for its use in fields such as decorative items and materials for toys. However, in reality, the properties of the foam molded product obtained by this molding method are limited, and the characteristics corresponding to the intended use cannot be achieved, so the demand for it has completely stagnated. For example, in the field of ornaments and toys, the surface of the molded product has many irregularities and is matte and slimy, making it unattractive.In the field of insulation materials, the insulation performance deteriorates significantly over time, and In particular, when used for ceiling materials where the surface of the molded product is exposed to high-temperature atmospheres exceeding approximately 70°C, the dimensions of the molded product will shrink by 4 to 7%, creating gaps between each unit, which will no longer function as a heat insulator. The disadvantage is that it becomes impossible to use. In addition, in the field of cushioning materials and cushioning materials, there is a drawback in that they are particularly poor in heat creep resistance, and the cushioning materials do not lose their performance and may damage the contents in the hold of a ship during export. On the other hand, from a producer's perspective, for example, conventional molded products have a large molding thinness, so the internal dimensions of the mold are usually made larger in consideration of this, but parts with different wall thicknesses are When the purpose is to make a product, the major drawback is that the shrinkage state in each part varies, so the mold dimensions must be determined through repeated trial and error, relying on the experience and intuition of the manufacturer. It has also been attempted to improve productivity by making thick-walled molded bodies exceeding 100 mm and slicing them into thin pieces. However, thick molded bodies obtained by conventional molding methods not only have many sink marks and surface wrinkles, but also have poor particle fusion inside the molded body, so they are not suitable for practical use.
Even if the thickness can be adjusted and sliced, the sliced product from the inside of the molded product has a drawback that it has a large water absorption capacity and cannot maintain its insulation performance. Furthermore, if an attempt is made to reduce the unit cost by forming a molded article with a low density, there is a drawback that the cushioning properties and creep properties deteriorate. It is thought that all of the above-mentioned conventional drawbacks are caused by the insufficient foaming ability of the foamed particles that expand in the mold, which causes excessive stress and resulting distortion in various parts of the resulting molded product. It will be done. The present invention was researched and developed to overcome the current situation, and its first purpose is to provide a molded product that is glossy and has a smooth surface with no depressions between particles. The second purpose is to provide a molded product with a small thermal shrinkage rate and excellent water absorption resistance and heat creep resistance.
The fourth objective is to enable the production of thick-walled molded products without sink marks or wrinkles, and to provide molded products with excellent thermal insulation properties over time, even if the inside of the molded product is sliced. A fifth object of the present invention is to provide a molded product with excellent cushioning properties, compressive strength, and creep resistance, and to provide a method for producing a molded product with excellent mold-to-mold reproducibility. According to the present invention, these objectives are achieved by using crosslinked polyethylene resin as a material and achieving smoothness (S).
Spherical foam particles with a surface of 1.05 or less, an expansion ratio of about 20 to 40 times, and an attenuation coefficient (T) of the air pressure injected into the particles are within the range of (1/1500 to 1/2500) D. This is then compressed to about 95-50% of the original bulk volume of the foamed particles, and then filled into a mold and heated and foamed before the expansion ability decreases, or in this way. This can be achieved by further aging the molded product obtained at a temperature of 60° C. or higher for 6 hours or more. The cross-linked polyethylene resin foam particles used in the method of the present invention have a shell on their surface consisting of a structure that is harder than the internal structure, and when compared with future cross-linked polyethylene resin foam particles, they have a pearl-like appearance that can be identified at a glance. They differ from conventional crosslinked polyethylene resin foam particles in that they have a surface gloss of . In order for the foamed particles to have such characteristics, as mentioned above, the surface should have a smoothness (S) of 1.05 or less, and the expansion ratio (D) should be in the range of about 20 to 40 times. , and the attenuation coefficient (T) of the air pressure injected into the particles must be in the range of D/1500≧T≧D/2500 (). The smoothness (S) here is a factor that represents the degree of unevenness of each cell on the particle surface, and in the case of an ideal smooth surface with no cell unevenness,
It becomes 1.00. Therefore, when looking at the overall surface condition of a particle, it can be said that the closer the smoothness (S) is to 1.00, the smoother the particle is. This smoothness (S) can be determined as follows. That is, the expanded particles are cut into thin pieces, and a microscopic photograph is taken of the cross section, focusing in particular on the surface contour. Next, as shown in the schematic diagram in Figure 1, connect the points of contact of the contour with adjacent cells with a straight line for each cell, and calculate the length of this straight line for each cell.
Find the ratio B/A of the sum A of a 1 , a 2 , a 3 ... and the sum B of the actual length b 1 , b 2 , b 3 ... of the surface layer of each cell, and smooth this. The degree is S. In order to investigate the correlation between the smoothness obtained in this way and the glossiness, five male adults with normal color sense were asked to visually examine the glossiness of foamed crosslinked polyethylene resin particles with various degrees of smoothness. When the evaluation was carried out, the results shown in Table 1 were obtained. The rating in this table is 4 points if you feel that it has a strong gloss, 3 points if you feel that it is shiny, and 2 points if you feel that it is not shiny.
1 point was given to each item, and 1 point was given to those who felt that the product lacked gloss.
【表】
このように平滑度の数値と、視覚による評価と
は完全に一致することが分る。また、平滑度が
1.05以下のものについては光沢があるとの評価を
全ての者が行つているが、これらはいずれも本発
明の発泡粒子であり、この結果からも本発明の発
泡粒子が従来のものと歴然と区別されることが分
る。
次に本発明においては、さらに発泡粒子の発泡
倍率(D)と粒子内空気圧の減衰係数(T)との間で
以下の関係式を満足することが必要である。
D/1500≧T≧D/2500 ()
(ただし40≧D≧20である。)
すなわち、発泡粒子を発泡能付与工程なしに発
泡成形するには、それ自体で1.3倍以上の膨張能
を有することが実用上必要とされるが、そのため
には上記の要件が満たされなければならない。
第2図は、平滑度(S)が1.05以下の種々の発
泡粒子について、粒子の発泡倍率(D)を、粒子内に
空気を圧入したときの粒子内の空気圧の減衰係数
(T)との関係をグラフとして示したものである。
なお、図中の各符号は、第2表の基準による層
別結果を示す。[Table] As shown above, it can be seen that the numerical value of smoothness and the visual evaluation completely match. Also, the smoothness
All of the people evaluated particles of 1.05 or less as being shiny, but these are all foamed particles of the present invention, and from this result, the foamed particles of the present invention are clearly distinguishable from conventional ones. I know it will happen. Next, in the present invention, it is further necessary that the following relational expression be satisfied between the expansion ratio (D) of the foamed particles and the damping coefficient (T) of the air pressure inside the particles. D/1500≧T≧D/2500 () (However, 40≧D≧20.) In other words, in order to foam-mold the foamed particles without the step of imparting foaming ability, the particles themselves must have an expansion ability of 1.3 times or more. This is a practical necessity, but for this purpose the above requirements must be met. Figure 2 shows the expansion ratio (D) of various expanded particles with a smoothness (S) of 1.05 or less and the attenuation coefficient (T) of the air pressure inside the particles when air is injected into the particles. The relationship is shown as a graph. Note that each code in the figure indicates the stratification results based on the criteria in Table 2.
【表】【table】
【表】
この第2図から、発泡粒子自体が1.3倍以上の
膨張能を有するためには、前記関係式()で示
された要件が満足されなければならないことが分
る。
換言すれば、架橋ポリエチレン樹脂の発泡粒子
が、粒子自体に元の発泡粒子の体積の1.3倍以上
の膨張能を保有するためには、平滑度(S)が
1.05以下の表面を有する発泡倍率(D)が約20〜40倍
の発泡粒子であつても、該粒子内に圧入された空
気圧の減衰係数(T)が上記(D)との関係で点
〔D,T〕で示す座標で表現したときにA〔20,
0.0133〕、B〔20,0,0080〕、C〔40,0.0160〕、
D〔40,0.0267〕を結ぶ直線で囲まれた四辺形の
内部にある発泡粒子でなければならないというこ
とである。
そして、架橋ポリエチレンが気泡群を形成する
材質であり、平滑度(S)が粒子の表面構造に基
づくものであり、上記発泡倍率(D)と空気圧の減衰
係数(T)の関係が、表皮の結晶構造の変質を含
めた、肉厚の分布構造及び粒子内部の気泡構造を
示す総合因子であることを考慮すると、これ等の
組合せは、発泡粒子の構造を示す1つの構造指標
であるということができる。
本発明でいう発泡粒子の膨張能とは、粒子内の
ガス圧が実質上0Kg/cm2(ゲージ圧)又は発泡剤
含量が実質上0重量%の条件下において、110℃
の水蒸気で5秒間加熱した後70℃の恒温室内で5
時間放置したときに、その発泡倍率が最初の発泡
倍率の何倍になつているかを示すものであるか
ら、後で付与された発泡能とは別の粒子自身の性
能ということができる。
かかる膨張能が1.3倍もある発泡粒子は全く新
規なもので、従来の粒子は1.11倍又はそれ以下の
ものにすぎない。そして1.3倍をとりあげる意義
は、少なくとも1.3倍の膨張能を持つ発泡粒子を
用いると発泡能を付与する工程を省略した状態の
まま成形することができる利点があるし、さらに
得られる成形体そのものが、融着性、吸水性、表
面平滑性、ひけ、熱経時的寸法安定性、耐熱クリ
ープ、圧縮クリープ等の特性の総合評価におい
て、非常に優れた成形体になるというおどろくべ
き利点を発揮することにある。
既に述べたように、本発明の架橋ポリエチレン
樹脂発泡粒子は肉眼の観察によつても従来公知の
架橋ポリエチレン樹脂発泡粒子と識別されうるも
のであるが、その断面を顕微鏡で観察すれば、両
者の差はいつそう明確になる。
すなわち、第3図は本発明の発泡粒子(A)と従来
公知の発泡粒子(B)の断面の23倍拡大顕微鏡写真で
あり、第4図は同じものの部分断面の250倍拡大
顕微鏡写真であるが、この両者を比較すれば、そ
の差異は歴然としている。先ず、従来の発泡粒子
(B)は、粒子内部の気泡膜と表面部の気泡膜とがほ
ぼ一様で、気泡の大きさ、形状も全体として揃つ
たものとなつており、表面に露出した気泡はその
本来の形状を維持しているため、粒子表面はその
気泡膜に対応した円弧の連結した凹凸状を形成し
ているのに対し、本発明の発泡粒子(A)は、粒子表
面に露出した気泡の大きさが内部のものに比べて
小さく、かつ平たい形状になつており、粒子を構
成する気泡が全体的に不均一である上に、表面に
露出した気泡膜が他のものに比べて厚くなり、粒
子表面が比較的肉厚の表皮で覆われている。この
ように、粒子表面に表皮がある状態は触覚によつ
ても確かめることができ、従来の発泡粒子を手で
触つた場合には柔かく表面が微かにざらついた感
じがするのに対し、本発明の発泡粒子の場合はや
や硬く弾力性があり滑らかな感じがする。また、
尖端をやや鈍化させた虫ピンを用いて、粒子表面
を刺通した場合、従来のものはなんら抵抗を感じ
ないで入るのに対し、本発明のものは抵抗を示
し、かすかな破裂音を発して入ることからも、後
者においては、内部組織とは異なつた組織の表皮
が形成されていることが推測される。
このような特殊の粒子構造をもつ本発明の発泡
粒子は、ポリエチレン樹脂を架橋して架橋ポリエ
チレン樹脂にする工程、架橋したポリエチレン樹
脂粒子に発泡剤を含浸させたのち、これを段階的
に発泡させて発泡粒子にする工程から成る通常の
発泡粒子の製造方法において、(1)発泡剤を含浸さ
せたのち、樹脂粒子の表層部に存在する発泡剤が
揮散しやすい条件下におくこと、及び(2)低倍率の
架橋ポリエチレン樹脂発泡粒子を高倍率の架橋ポ
リエチレン樹脂発泡粒子にする段階で粒子表層部
に過度の応力を生じない条件を選択することによ
つて製造することができる。前記(1)の具体的な操
作としては、例えば発泡剤を含浸させた樹脂粒子
をいつたん大気圧下に取り出し、数分間通常は1
〜10分間放置することを挙げることができる。ま
た、前記(2)の具体的な操作としては、例えば二次
発泡に際し、生成する発泡粒子の膨張能がそこな
われない範囲において、昇温速度を緩やかにする
ことを挙げることができる。
このような製造条件の選択により、特殊な粒子
構造をもつ本発明の発泡粒子が得られるのは次の
ような理由によるものと考えられる。
すなわち、樹脂粒子に発泡剤を含浸させたの
ち、大気圧下に置くことにより、粒子表層部の発
泡剤が揮散し、その部分での発泡能が低下する。
次いでこのような樹脂粒子を、いつたん低発泡倍
率で発泡させたのち、さらに高い発泡倍率まで発
泡させる際に徐々に温度を上げることにより、表
層部の発泡しにくい樹脂が、過度の内圧によりそ
こなわれることなく伸張し、かつ内部の気泡の形
成が完了する。このようにして、一見して表皮で
覆われたような構造を有し、しかも優れた特性を
もつ発泡粒子が形成される。
本発明においては、このように調製した膨張能
を持つ発泡粒子に、さらに発泡能力を付与し、す
なわち粒子の元のかさ容積の95〜50%(圧縮率5
〜50%)になるまで圧縮したのち型内に充てん
し、両者を併せた膨張能が低下しないうちに加熱
し、発泡させることが必要である。
圧縮率が5%未満では、肉厚高発泡の成形体を
ひけやしわのない状態で得ることや、成形体内部
をスライスして用いたときの断熱性能の持続性を
保持することができないし、逆に50%を越える高
い圧縮率では、加熱水蒸気の粒子間への流通が妨
げられて内部の加熱が不十分となり内部粒子がざ
くろ状になつてしまう。
第5図は、このようにして得られた成形体
()(密度0.025、発泡倍率約40倍)と、市販発
泡粒子から得られた成形体〔X社製品(密度
0.033、発泡倍率約30倍)、Y社製品′(密度
0.034、発泡倍率約30倍)〕のそれぞれ光沢性を示
すグラフ、第6図は同じものの耐熱クリープ特性
を示すグラフ、第7図は同じものの緩衝特性を示
すグラフであるが、これらのグラフから、本発明
の発泡粒子から得られる成形体が光沢性、耐熱ク
リープ特性、緩衝特性において従来の発泡粒子か
ら得られる成形体よりも著しく優れたものである
ことが分る。
第8図は、本発明の方法で得た肉厚130mmの成
形体と、肉厚50mmの市販の成形体とから、それぞ
れの中央部をスライスして得た肉厚30mm成形体の
断熱性能の持続性を対比したもので、実線は本発
明品、破線は市販品を示す。
第8図から明らかなように本発明の方法は内部
構造も整つた肉厚成形体の製造を可能にしてい
る。
第5図ないし第8図から明らかなように本発明
の方法は、粒子自体の持つ膨張能に外的発泡能を
加成的に作用させて、従来の方法では解決できな
かつた様々な課題を解決し得る。
本発明方法で行われる粒子の圧縮は、例えば発
泡粒子を収容した耐圧容器内に、常温、0.5〜2
Kg/cm2の圧の気体(例えば空気)を3〜10秒間通
気して加圧し、次いで均圧状態に保つた型内に充
てんすることで達成できる。この場合容器内圧力
を検出して、設定圧力との差異を実質上0にする
調整装置を取り付けておくと、圧縮及びその管理
を自在に行いうる利点がある。
本発明方法においては、前記のようにして得ら
れた成形体を、60℃以上の温度で6時間以上熱成
させることにより、さらに優れた特性、すなわち
対型再現性の向上、熱経時的収縮率の低下などの
長所を付与することができる。
例えば第10図と第11図にはそれぞれ対型再
現性、熱経時的収縮率の改善の様子が示されてい
る。
第10図によると、型内成形を終え冷却されて
取出された成形体は金型内法寸法と比較してやや
小型のものとなつているがこれを60℃以上の温度
で6時間以上、好ましくは80℃以上の温度で8時
間以上熟成することによつてこれを金型内法寸法
に近接したものにすることができることが分る。
なお、この熟成処理温度は成形体の融点を越え
ることはあり得ないし、また処理時間の上限は生
産性の面から適宜定められるべきものである。こ
のような熟成を終えた成形体は、以降処理温度近
辺下の環境下においてその寸法に変化をきたすこ
とはない。
第11図に示す市販の成形体(破線)は、90
℃、96時間の経時で約5%の収縮を示すのに対
し、80℃で10時間熟成し金型寸法に近似させた成
形体の同上経時の収縮率は、わずかに0.7%程度
の変化に止まつていることが分る。
このように本発明方法において、特定の発泡粒
子の使用により、優れた特性の成形品が得られる
のは、次のような理由によるものと考えられる。
先ずこの発泡粒子は、その内部に比べ表面部分
の発泡は抑制され、その表面張力で粒子表面気泡
が押えられ平滑な表面の比較的厚肉表皮が形成さ
れている。この表皮は三軸方向に結晶が配向し光
沢をもつと共に剛性を有し、さらに気体の透過率
をも小さくしている。したがつてこの粒子を型内
に充てんするときは、平滑性が幸いして型の隅々
にまで最密充てんに近い状態に均一に充てんさ
れ、加熱を受けた段階では、内部気体の熱膨張を
ほぼそのまま粒子の膨張能として作用させること
になる。一般にほぼ球状をなす発泡粒子は、これ
を最密充てんした場合を仮定すると、その粒子間
に20数%の空隙が存在するといわれているが、本
発明の粒子は、1.3倍以上の膨張能(すなわち30
%以上の空隙を埋める能力)を有しているから、
これら空隙を埋め各粒子間を密に融着させること
ができる。次いで冷却段階で気泡内が減圧状態に
なつても、表皮の剛性がこれを支え、外気を呼び
込む作用が生じてひけやひずみのない成形体を与
えることになるものと推測される。
本発明で素材として用いるポリエチレン樹脂
は、好ましくはエチレンのホモポリマーである
が、本発明の特質を損ねない範囲において、他の
モノマーを含むコポリマーを用いたり、他の樹脂
を含む混合樹脂を用いることもできる。
また、本発明でいう平滑度、空気圧の減衰率及
び膨張能は、必ずしも樹脂の種類に関係するもの
ではないが、得られる成形体の性能からは、密度
が0.925〜0.935、ビカツト軟化点が371〜385〓
(絶対温度)の範囲のポリエチレン樹脂を用いる
のが有利である。
本発明方法によれば、輪出途上の船倉内で、緩
衝性能を失なうことのないコンパクトな緩衝設計
のできる緩衝材を得ることができるし、寸法精度
や寸法安定性と併せて、光沢のある美麗な容器を
得ることができる等各産業分野に有益な利点をも
たらす。
次に本発明を実施例によりさらに詳細に説明す
る。
なお、各例中における特性の測定及び評価は、
以下のようにして行つた。
(1) 粒子の平滑度:発泡粒子を厚さ約20μにスラ
イスカツトし250倍に拡大してその断面写真を
得る(特に輪郭部に焦点を合せる)得られた断
面写真の輪郭部において相隣れるセルとの境界
点を順次直線でつなぎ、この直線によつて構成
された長さをAとする(第1図参照)
上記Aの区間に相当するセルの表層部の長さ
をBとし次の算式により粒子の平滑度(S)と
する。
S=B/A
(2) 圧入空気の減衰係数:発泡粒子を耐圧容器に
収納し23℃10Kg/cm2の条件下に24hr放置した後
これを取出しその量約10gを手早く5個の容器
に分納し、その重量(Wi)を正確に秤量した
のち一端が大気圧下に開放された5本の水柱管
にそれぞれ連結し発泡粒子から逸散するガス量
(VG)を経時的に測定し、次の計算式に従つて
それぞれの値を求めこれをそれぞれの容器ごと
に測定した発泡粒子の内圧とする。
発泡粒子の内圧=VG/VSW/d
ただしdは使用したポリエチレンの密度であ
りVsは同じ母集団より大量に得た試料により
重量と体積の換算係数を求め実測した発泡粒子
の重量より算出した発泡粒子の体積である。
なお、この場合の測定の終点は前後1時間に
おける内圧の差が0.01Kg/cm2未満となつた時点
とする。得られた内圧と経過時間との関係にお
ける終点圧力をP1、測定開始から1時間経過
時の圧力をP2、また、測定開始から1時間経
過する間に逸散したガス量をVG1各容器に分納
した粒子の数をそれぞれnとし次式によりそれ
ぞれの容器ごとの値を求めその平均値をもつて
圧入空気の減衰係数(T)とする。
(3) セル内圧:加圧雰囲気中より取り出した発泡
粒子約10gを手早く5個の容器に分納し、その
重量(W)を正確に秤量した後一端が大気圧下
に開放された5本の水中管にそれぞれ連結し、
発泡粒子から逸散するガス量(VG)を経時的
に測定し、次の計算式に従つてそれぞれの値を
求めその平均値をもつてセル内圧とする。
セル内圧=VG/VS−W/d
ただしdは使用したポリエチレンの密度であ
り、VSは同じ母集団より大量に得た試料によ
り重量と体積の換算係数を求め、実測した発泡
粒子の重量より算出した発泡粒子の体積であ
る。
なおこの場合の測定の終点は前後1時間にお
ける内圧の差が0.01Kg/cm2未満となつた時点と
する。
(4) 成形体の光沢度(反射率):成形体の表面部
を日本電色工業Gioss Meter VG−10型に装着
し照射の角度を20゜、45゜及び75゜に調整しその反
射率を測定する。
(5) 圧縮強さ;成形体試験片(100×100×25mm
t)を12±3mm/minのスピードで圧縮し、25
%の歪を生じた時の圧縮応力値を測定する。
(6) 緩衝特性;剛体面の上に成形体試験片(50mm
立方)をおき下面がたいらな重錘(重量の異る
もの数種)を60cmの高さから垂直落下させる。
そして、この重錘に加速度ピツクアツプをつけ
衝突した瞬間の加速度の大きさを計測し、縦軸
に最大加速度(G)横軸に静的応力を配しグラフ化
する。
(7) 融着性;縦300mm、横300mm、厚さ50mmの成形
体板状試験片に、深さ20mmの切れ目を入れ、折
り曲げながら成形体を引き裂き、引裂部断面当
りに存在する全粒子数に対する割れた粒子数の
百分比を求め、以下の基準により評価する。[Table] From FIG. 2, it can be seen that in order for the foamed particles themselves to have an expansion capacity of 1.3 times or more, the requirements shown in the above relational expression () must be satisfied. In other words, in order for the foamed particles of crosslinked polyethylene resin to have an expansion capacity of 1.3 times or more the volume of the original foamed particles, the smoothness (S) must be
Even if the foamed particles have a surface of 1.05 or less and an expansion ratio (D) of about 20 to 40 times, the attenuation coefficient (T) of the air pressure injected into the particles will be at a certain point in relation to (D) above. A[20,
0.0133], B[20,0,0080], C[40,0.0160],
This means that the foamed particles must be located inside the quadrilateral surrounded by the straight line connecting D[40, 0.0267]. Cross-linked polyethylene is a material that forms cell groups, and the smoothness (S) is based on the surface structure of the particles, and the relationship between the expansion ratio (D) and the air pressure damping coefficient (T) is based on the skin. Considering that it is a comprehensive factor that indicates the wall thickness distribution structure and the cell structure inside the particle, including the alteration of the crystal structure, the combination of these factors is one structural index that indicates the structure of the expanded particle. Can be done. The expansion ability of foamed particles as used in the present invention refers to the expansion ability of foamed particles at 110°C under conditions where the gas pressure inside the particles is substantially 0 Kg/cm 2 (gauge pressure) or the blowing agent content is substantially 0% by weight.
After heating with water vapor for 5 seconds, heat in a constant temperature room at 70℃ for 5 seconds.
Since it indicates how many times the foaming ratio has become compared to the initial foaming ratio after being left for a certain period of time, it can be said that this is the performance of the particles themselves, which is different from the foaming ability imparted later. Expanded particles with such an expansion capacity of 1.3 times are completely new, whereas conventional particles have an expansion capacity of only 1.11 times or less. The reason for choosing 1.3 times is that if you use foamed particles with at least 1.3 times the expansion ability, you can mold it without the process of imparting expansion ability, and furthermore, the resulting molded product itself is In comprehensive evaluation of properties such as , fusion adhesion, water absorption, surface smoothness, sink marks, dimensional stability over time, heat resistance creep, compression creep, etc., it exhibits the surprising advantage of being an extremely excellent molded product. It is in. As already mentioned, the cross-linked polyethylene resin foam particles of the present invention can be distinguished from the conventionally known cross-linked polyethylene resin foam particles even when observed with the naked eye, but when the cross-section is observed under a microscope, it is possible to distinguish between the two. When will the difference become so obvious? That is, FIG. 3 is a 23 times enlarged micrograph of the cross section of the foamed particles of the present invention (A) and the conventionally known foamed particles (B), and FIG. 4 is a 250 times enlarged micrograph of a partial cross section of the same. However, if you compare the two, the difference is obvious. First, conventional foam particles
In (B), the bubble film inside the particle and the bubble film on the surface are almost uniform, and the size and shape of the bubbles are uniform as a whole, and the bubbles exposed on the surface have their original shape. As a result, the particle surface forms an uneven shape consisting of connected arcs corresponding to the bubble film, whereas the expanded particle (A) of the present invention The particles are smaller and have a flat shape compared to the inner ones, the bubbles that make up the particles are uneven overall, and the bubble film exposed on the surface is thicker than other ones, making the particles The surface is covered with a relatively thick epidermis. In this way, the presence of an epidermis on the particle surface can also be confirmed by touch; when conventional foamed particles are touched with the hand, the surface feels soft and slightly rough, whereas the surface of the present invention In the case of foamed particles, it feels slightly hard, elastic, and smooth. Also,
When a particle surface is pierced using an insect pin with a slightly blunted tip, the conventional pin penetrates without feeling any resistance, but the pin of the present invention shows resistance and produces a faint popping sound. This suggests that in the latter case, an epidermis with a different tissue from the internal tissue is formed. The foamed particles of the present invention having such a special particle structure can be produced by a step of crosslinking polyethylene resin to make crosslinked polyethylene resin, impregnating the crosslinked polyethylene resin particles with a foaming agent, and then foaming them in stages. In the usual method for producing foamed particles, which consists of the steps of: (1) impregnating the resin particles with a foaming agent, placing them under conditions where the foaming agent present on the surface layer of the resin particles is likely to volatilize; 2) It can be produced by selecting conditions that do not cause excessive stress on the particle surface layer at the stage of converting low-magnification cross-linked polyethylene resin foam particles into high-magnification cross-linked polyethylene resin foam particles. As for the specific operation of (1) above, for example, once the resin particles impregnated with the blowing agent are taken out under atmospheric pressure, they are kept for several minutes, usually 1.
You can leave it for ~10 minutes. Further, as a specific operation for the above (2), for example, during secondary foaming, the rate of temperature increase can be made moderate within a range that does not impair the expansion ability of the foamed particles to be produced. The reason why the foamed particles of the present invention having a special particle structure can be obtained by selecting such manufacturing conditions is considered to be as follows. That is, by impregnating resin particles with a foaming agent and then placing them under atmospheric pressure, the foaming agent on the surface layer of the particles evaporates, reducing the foaming ability in that region.
Next, such resin particles are foamed at a low expansion ratio, and then the temperature is gradually raised when foaming to a higher expansion ratio, so that the hard-to-foam resin in the surface layer is broken there by excessive internal pressure. It stretches without bending, and the formation of internal bubbles is completed. In this way, foamed particles are formed that have a structure that appears to be covered with a skin and have excellent properties. In the present invention, the foamed particles prepared in this way are further given foaming ability, that is, 95 to 50% of the original bulk volume of the particles (compressibility of 5
It is necessary to compress the foam to a temperature of ~50%, then fill it into a mold, heat it, and foam it before the combined expansion capacity of both of them decreases. If the compression rate is less than 5%, it is not possible to obtain a thick, highly foamed molded product without sinkage or wrinkles, or to maintain the sustainability of the insulation performance when the inside of the molded product is sliced and used. On the other hand, if the compression ratio is high, exceeding 50%, the flow of heated steam between the particles will be hindered, resulting in insufficient internal heating and the internal particles will become pomegranate-shaped. Figure 5 shows the molded body () obtained in this manner (density 0.025, expansion ratio approximately 40 times) and the molded body obtained from commercially available expanded particles [company X product (density
0.033, foaming ratio approximately 30 times), Y company product' (density
0.034, foaming ratio of approximately 30 times)], Figure 6 is a graph showing the heat resistant creep properties of the same product, and Figure 7 is a graph showing the buffer properties of the same product. From these graphs, It can be seen that the molded articles obtained from the expanded particles of the present invention are significantly superior in gloss, heat-resistant creep properties, and buffering properties than those obtained from conventional expanded particles. Figure 8 shows the thermal insulation performance of a 30 mm thick molded body obtained by slicing the central part of a 130 mm thick molded body obtained by the method of the present invention and a commercially available molded body with a wall thickness of 50 mm. The durability is compared; the solid line shows the product of the present invention, and the broken line shows the commercially available product. As is clear from FIG. 8, the method of the present invention makes it possible to produce a thick molded body with a well-organized internal structure. As is clear from Figures 5 to 8, the method of the present invention allows the external foaming ability to act additively on the expansion ability of the particles themselves, thereby solving various problems that could not be solved by conventional methods. It can be solved. The compression of particles carried out in the method of the present invention is carried out, for example, in a pressure-resistant container containing expanded particles at room temperature with a pressure of 0.5 to 2.
This can be achieved by pressurizing a gas (for example, air) at a pressure of Kg/cm 2 for 3 to 10 seconds, and then filling the mold with an equal pressure. In this case, it is advantageous to install an adjustment device that detects the pressure inside the container and makes the difference from the set pressure substantially zero, so that compression and its management can be performed freely. In the method of the present invention, the molded product obtained as described above is thermally formed at a temperature of 60°C or higher for 6 hours or more, thereby achieving even more excellent properties, such as improved mold reproducibility and thermal shrinkage over time. Benefits such as lower rates can be provided. For example, FIGS. 10 and 11 show improvements in mold reproducibility and thermal shrinkage rate over time, respectively. According to FIG. 10, the molded product that has been cooled and taken out after molding in the mold is slightly smaller than the internal dimensions of the mold, but it is preferably heated at a temperature of 60°C or higher for 6 hours or more. It can be seen that by aging at a temperature of 80°C or more for 8 hours or more, it is possible to make it close to the internal mold dimensions. Note that the aging treatment temperature cannot exceed the melting point of the molded article, and the upper limit of the treatment time should be determined as appropriate from the viewpoint of productivity. The molded body that has undergone such aging will not change its dimensions in an environment near the processing temperature thereafter. The commercially available molded body (dashed line) shown in Figure 11 is 90
℃, shows approximately 5% shrinkage over 96 hours, whereas the shrinkage rate of the molded product aged at 80℃ for 10 hours to approximate the mold dimensions changes only by about 0.7% over time. I see that it has stopped. The reason why a molded article with excellent properties can be obtained by using specific expanded particles in the method of the present invention is considered to be due to the following reasons. First, the foaming of the surface portion of the foamed particles is suppressed compared to the inside, and the surface tension of the particles suppresses the air bubbles on the particle surface, forming a relatively thick skin with a smooth surface. This skin has crystals oriented in three axes, giving it luster and rigidity, as well as low gas permeability. Therefore, when these particles are filled into a mold, fortunately due to their smoothness, they are uniformly filled into every corner of the mold in a state close to close-packed, and when heated, the thermal expansion of the internal gas will act almost directly as the expansion ability of the particles. In general, it is said that approximately spherical foamed particles have 20% or more voids between the particles, assuming they are packed close-packed, but the particles of the present invention have an expansion capacity of more than 1.3 times ( i.e. 30
% or more of voids).
These voids can be filled and particles can be closely fused together. It is presumed that even if the pressure inside the bubbles is then reduced in the cooling stage, the rigidity of the skin supports this and brings in outside air, resulting in a molded product without sinkage or distortion. The polyethylene resin used as a material in the present invention is preferably an ethylene homopolymer, but copolymers containing other monomers or mixed resins containing other resins may be used as long as the characteristics of the present invention are not impaired. You can also do it. In addition, the smoothness, air pressure damping rate, and expansion ability referred to in the present invention are not necessarily related to the type of resin, but from the performance of the obtained molded product, the density is 0.925 to 0.935, and the Vikat softening point is 371. ~385〓
It is advantageous to use polyethylene resins in the (absolute temperature) range. According to the method of the present invention, it is possible to obtain a cushioning material with a compact cushioning design that does not lose its cushioning performance in a ship's hold during loading. It brings beneficial advantages to various industrial fields, such as being able to obtain beautiful containers. Next, the present invention will be explained in more detail with reference to Examples. In addition, the measurement and evaluation of the characteristics in each example are as follows:
I did it as follows. (1) Smoothness of particles: Slice the expanded particles to a thickness of approximately 20 μm and enlarge them 250 times to obtain a cross-sectional photograph (focus in particular on the contours). Connect the boundary points with the cells in sequence with straight lines, and let the length formed by these straight lines be A (see Figure 1). Let the length of the surface layer of the cell corresponding to the section A above be B. The smoothness (S) of the particles is determined by the formula: S=B/A (2) Attenuation coefficient of pressurized air: The foamed particles were stored in a pressure-resistant container and left for 24 hours at 23°C and 10Kg/ cm2 , then taken out and quickly divided into 5 containers in an amount of about 10g. After accurately weighing the weight (Wi), each was connected to five water column pipes with one end open to atmospheric pressure, and the amount of gas escaping from the foamed particles (V G ) was measured over time. , calculate each value according to the following calculation formula and use this as the internal pressure of the foamed particles measured for each container. Internal pressure of foamed particles = V G /V S W/d where d is the density of the polyethylene used, and V s is the weight of the foamed particles that was actually measured by calculating the conversion factor between weight and volume using a large number of samples obtained from the same population. This is the volume of expanded particles calculated from The end point of the measurement in this case is the time when the difference in internal pressure between before and after one hour becomes less than 0.01 Kg/cm 2 . P 1 is the end point pressure in the relationship between the obtained internal pressure and elapsed time, P 2 is the pressure after 1 hour has passed from the start of measurement, and V G1 is the amount of gas dissipated during 1 hour from the start of measurement. Assuming that the number of particles distributed in each container is n, the value for each container is calculated using the following formula, and the average value is taken as the attenuation coefficient (T) of the pressurized air. (3) Cell internal pressure: Approximately 10 g of expanded particles taken out from the pressurized atmosphere were quickly divided into 5 containers, their weight (W) was accurately weighed, and then the 5 containers were placed into 5 containers with one end open to atmospheric pressure. Each is connected to an underwater pipe,
The amount of gas (V G ) escaping from the expanded particles is measured over time, each value is determined according to the following calculation formula, and the average value is taken as the cell internal pressure. Cell internal pressure = V G /V S -W/d where d is the density of the polyethylene used, and V S is the weight and volume conversion factor obtained from a large number of samples obtained from the same population. This is the volume of the expanded particles calculated from the weight. In this case, the end point of the measurement is the time when the difference in internal pressure between before and after one hour becomes less than 0.01 Kg/cm 2 . (4) Glossiness (reflectance) of the molded body: The surface of the molded body was mounted on a Nippon Denshoku Gioss Meter VG-10 model, and the irradiation angle was adjusted to 20°, 45°, and 75°, and the reflectance was measured. Measure. (5) Compressive strength; molded product test piece (100×100×25mm
t) at a speed of 12 ± 3 mm/min, 25
Measure the compressive stress value when % strain occurs. (6) Cushioning properties: A molded specimen (50 mm
A weight (of several types with different weights) with a flat bottom is dropped vertically from a height of 60 cm.
Then, attach an acceleration pick-up to this weight and measure the magnitude of the acceleration at the moment of collision, and graph it with maximum acceleration (G) on the vertical axis and static stress on the horizontal axis. (7) Fusion properties: Make a cut with a depth of 20 mm in a plate-shaped test piece of a molded product measuring 300 mm long, 300 mm wide, and 50 mm thick, tear the molded product while bending it, and calculate the total number of particles present per cross section of the torn part. The percentage of the number of cracked particles is determined and evaluated based on the following criteria.
【表】
(8) 吸水率;50mm立方の成形体試験片を作り、そ
の体積(V)及び重量(W)を正確に測定した
のち、約20℃の淡水中の水面下25mmの位置に24
時間浸せきし、取り出したのち表面を手早くふ
き取り、浸せき前後の重量増加分(W)を求
め、以下の式に従つて計算する。
吸水率(容積%)=W×100/V×水の密度[Table] (8) Water absorption rate: After making a 50 mm cubic molded test piece and accurately measuring its volume (V) and weight (W), it was placed at a position 25 mm below the water surface in fresh water at approximately 20°C.
After soaking for a period of time and taking out, the surface is quickly wiped, and the weight increase (W) before and after soaking is determined and calculated according to the following formula. Water absorption rate (volume %) = W x 100/V x water density
【表】
(9) 表面平滑性;水平に置いた成形体表面の任意
の場所に50mm平方の区域を選び、これを枠で囲
んだのち、寒天液を流し込み、冷却し、固化さ
せる。次いでこれを引きはがし、接着面を上側
にして平板上に置き、突出した部分を水平面で
カツトし、切りとられた寒天塊の数を求め、上
記区域内の表面に存在する発泡粒子数との割合
を以下の基準に従つて評価する。
なお、水平面でカツトを行う際の高さは、平
均粒子径の1/5とする。[Table] (9) Surface smoothness: Select a 50 mm square area anywhere on the surface of the molded product placed horizontally, surround it with a frame, then pour in the agar solution, cool, and solidify. Next, tear it off, place it on a flat plate with the adhesive side facing up, cut out the protruding part on the horizontal plane, calculate the number of cut agar blocks, and compare it with the number of foam particles present on the surface in the above area. Evaluate the percentage according to the following criteria: The height when cutting on a horizontal plane is 1/5 of the average particle diameter.
【表】
(10) ひけ;縦300mm、横300mm、厚さ50mmの成形体
板状試験片上面に、対角線方向に水平定規を当
て、この試験片と定規の間に生じた間隙の最大
距離と対角線の長さとの間の百分比を求め、以
下の基準により評価する。[Table] (10) Sink mark: Place a horizontal ruler diagonally on the top surface of a molded plate-shaped test piece measuring 300 mm long, 300 mm wide, and 50 mm thick, and calculate the maximum distance of the gap between this test piece and the ruler. The percentage between the length of the diagonal is determined and evaluated based on the following criteria.
【表】
(11) 熱経時的寸法安定性;50mm立方の成形体試験
片を、90℃に調温した恒温槽内に96時間置き、
取り出したのち1時間放冷し、最初の成形体に
対する寸法変化率(%)を求め、その最大値に
ついて以下の基準により評価する。[Table] (11) Dimensional stability over time: A 50 mm cubic molded specimen was placed in a constant temperature bath controlled at 90°C for 96 hours.
After taking it out, it is left to cool for 1 hour, the dimensional change rate (%) with respect to the initial molded body is determined, and its maximum value is evaluated according to the following criteria.
【表】
(12) 圧縮クリープ性;成形体試験片(50×50×25
mm)に25℃の温度の下で、0.1Kg/cm2の荷重を
掛け、その直後の厚さ(to)と、24時間経過後
の厚さ(t)を測定し、次式に従つて計算す
る。
圧縮クリープ(%)=to−t/to×100[Table] (12) Compression creep property; molded product test piece (50×50×25
Apply a load of 0.1Kg/cm 2 to the 25°C (mm) at a temperature of 25°C, measure the thickness immediately after (to) and the thickness after 24 hours (t), and calculate according to the following formula. calculate. Compression creep (%) = to-t/to×100
【表】
(13) 耐熱クリープ;前項圧縮クリープ性と同様
の操作を80℃の温度の下で行い圧縮クリープを
求め以下の基準に従つて評価する。[Table] (13) Heat resistance creep: Perform the same operation as in the previous section on compression creep property at a temperature of 80°C to determine the compression creep and evaluate it according to the following criteria.
【表】
(14) 総合評価;各特性の評価を総合し、商品価
値を判定する。[Table] (14) Comprehensive evaluation: The product value is determined by integrating the evaluation of each characteristic.
【表】
また、各例で使用したポリエチレン樹脂の種類
を、次表に示す。[Table] The types of polyethylene resins used in each example are shown in the table below.
【表】
参考例 1
耐圧容器内で180重量部の水中に炭酸マグネシ
ウム2重量部、ジクミルパーオキシド(架橋剤)
0.5重量部を微細分散させ、これに(G)樹脂(平均
粒径1.2mm)を100重量部加え、容器内を窒素置換
して100℃で2時間、次に135℃で7時間の加熱処
理を行いゲル分率が約60%の架橋ポリエチレン粒
子を作成した。
この架橋ポリエチレン粒子を耐圧容器に収容し
ジクロロジフルオロメタン(発泡剤)液を加え、
90℃に昇温させた後2時間の含浸処理を行い約14
重量%の発泡剤を含む発泡性架橋ポリエチレン粒
子にした。
この発泡性粒子をいつたん大気圧下に3分間曝
した後発泡装置に収容し、0.7Kg/cm2(ゲージ圧)
の水蒸気で加熱発泡させた。この場合の発泡条件
は昇温速度35秒昇温後の加熱5秒で得られた粒子
の発泡倍率は約6倍(一次発泡粒子)であつた。
この一次発泡粒子を80℃、5Kg/cm2の加圧空気
中で24時間処理し、空気(発泡剤ガス)を含む発
泡性粒子とし、0.7Kg/cm2の水蒸気で加熱発泡さ
せた。
この場合の発泡条件は、昇温速度35秒、昇温後
に加熱5秒で得られた粒子の発泡倍率は約17倍
(二次発泡粒子)を得た。
この二次発泡粒子に上記と同じ空気含浸発泡処
理を繰り返し、発泡倍率約30倍の架橋ポリエチレ
ン発泡粒子(No.1)を得た。他方、比較例として
特公昭45−32622号公報に記載の方法に従い、耐
圧容器を用いて粒径2〜6mmのスミカセンG202
ペレツト(住友化学製低密度ポリエチレン)60重
量部をGH―23ポリビニルアルコール(日本合成
化学製ポリビニルアルコール)0.6重量部を溶か
した水300重量部中にかきまぜながら分散懸濁さ
せる。別に架橋剤としてジクミルパーオキシド
0.6重量部をキシレン6重量部に溶かしたものを
上記懸濁系に加えた後、さらにブタン18重量部を
加え窒素ガスで5Kg/cm2に加圧して125〜130℃で
10時間反応する。得られた発泡性粒子の架橋度は
キシレン不溶分(ゲル分率)で43%である。
冷却後懸濁系より分離した粒径3〜6mmの発泡
性粒子を蒸気で100℃に加熱した結果、発泡度25
c.c./g(発泡倍率約25倍)の架橋ポリエチレン樹
脂発泡粒子(No.2)を得た。
上記No.1、2の発泡粒子を比較したところNo.1
(本発明)のものは真珠様の美しい光沢が認めら
れるのに対し、No.2(従来)のものは全く光沢が
なかつた。
No.1、2の粒子内部構造を顕微鏡で観察したと
ころ、No.1のものはその表面に比較的肉厚の表皮
のごときものが認められるのに対し、No.2のもの
にはそれがなかつた。その拡大写真例(約23倍と
250倍)をそれぞれ第3図と第4図に示す。
なお、ここでいう粒子光沢は、半透明な原料樹
脂が発泡されることによつて白濁化したものがそ
の表面にある表皮の如きものの作用で新たに光沢
を生じたもので、原料樹脂の持つ感触とは全く異
なるものである。
参考例 2
参考例1で用いた条件の内、一次発泡粒子にす
る前の発泡性粒子を大気圧下に曝す時間を1分、
4分の2水準にし、その中で各発泡段階での加熱
昇温速度を20秒、50秒の2水準の条件に変更する
ことの他は参考例1の実験を繰り返した。得られ
た4種の粒子と実施例の粒子について平滑度
(S)を評価した。この結果を肉眼による評価と
ともに前記第1表に示した。
第1表の結果によると、合計点から見た光沢順
位は、平滑度(S)の小ささ傾向と一致してい
る。また、平滑度(S)が1.05の値以下の粒子に
対して2点以下の評価をしたものはない。
以上のことから平滑度(S)は、顕微鏡視野で
の構造観察にはすぎないが、光沢があると判断さ
れる発泡粒子の具備すべき要件を端的に表わすも
のであるということがきる。
参考例 3
使用樹脂種(A),(B),(C),(D),(E)の5種類に増や
し、ゲル分率をおのおの約60%に揃うように架橋
条件を選んだこと及び一次発泡粒子にする前の発
泡粒子の曝気時間と各発泡段階での加熱昇温速度
との関連をすべて得られる発泡粒子の平滑度
(S)が1.05以下の値になるようにおのおの調節
しながら、最終的な発泡粒子の倍率をそれぞれ
15,20,25,30,35,40及び45倍を目標にした多
段階発泡にすること以外は参考例1と同じ実験を
繰り返し、得られた粒子について使用樹脂種の順
にNo.7〜41番の一連番号を付した。(No.24がNo.1
の再現に相当)
各試料粒子について、溶融温度、発泡倍率(D)、
平滑度(S)、空気圧の減衰係数(T)、膨張能を
それぞれ評価し、その結果を第3表に示した。[Table] Reference example 1 2 parts by weight of magnesium carbonate and dicumyl peroxide (crosslinking agent) in 180 parts by weight of water in a pressure-resistant container.
Finely disperse 0.5 parts by weight, add 100 parts by weight of (G) resin (average particle size 1.2 mm), replace the inside of the container with nitrogen, and heat treat at 100°C for 2 hours, then at 135°C for 7 hours. This was done to create crosslinked polyethylene particles with a gel fraction of approximately 60%. The cross-linked polyethylene particles are placed in a pressure-resistant container, dichlorodifluoromethane (foaming agent) solution is added,
After raising the temperature to 90℃, impregnation treatment is performed for 2 hours, and the
Expandable crosslinked polyethylene particles containing % blowing agent by weight. The expandable particles were exposed to atmospheric pressure for 3 minutes and then placed in a foaming device to yield 0.7Kg/cm 2 (gauge pressure).
was heated and foamed with water vapor. The foaming conditions in this case were that the temperature was raised for 35 seconds and then heated for 5 seconds, and the foaming ratio of the particles obtained was approximately 6 times (primary foamed particles). The primary foamed particles were treated at 80° C. for 24 hours in pressurized air at 5 kg/cm 2 to form expandable particles containing air (blowing agent gas), and heated and foamed with water vapor at 0.7 kg/cm 2 . The foaming conditions in this case were such that the heating rate was 35 seconds, and the foaming ratio of the particles obtained was approximately 17 times (secondary foamed particles) by heating for 5 seconds after heating. The same air impregnation foaming treatment as above was repeated on these secondary foamed particles to obtain crosslinked polyethylene foamed particles (No. 1) with an expansion ratio of about 30 times. On the other hand, as a comparative example, Sumikasen G202 with a particle size of 2 to 6 mm was prepared using a pressure container according to the method described in Japanese Patent Publication No. 45-32622.
60 parts by weight of pellets (low-density polyethylene manufactured by Sumitomo Chemical) are dispersed and suspended in 300 parts by weight of water in which 0.6 parts by weight of GH-23 polyvinyl alcohol (polyvinyl alcohol manufactured by Nippon Gosei Chemical) is dissolved while stirring. Separately dicumyl peroxide as a crosslinking agent
After adding 0.6 parts by weight dissolved in 6 parts by weight of xylene to the above suspension system, 18 parts by weight of butane was further added, pressurized to 5 kg/cm 2 with nitrogen gas, and heated at 125 to 130°C.
React for 10 hours. The crosslinking degree of the obtained expandable particles was 43% in terms of xylene insoluble content (gel fraction). As a result of heating the expandable particles with a particle size of 3 to 6 mm separated from the suspension system after cooling to 100℃ with steam, the foaming degree was 25.
cc/g (expansion ratio of about 25 times) crosslinked polyethylene resin foam particles (No. 2) were obtained. Comparing the foamed particles No. 1 and 2 above, No. 1
The product (of the present invention) had a beautiful pearl-like luster, whereas the product of No. 2 (conventional) had no luster at all. When the internal structures of particles No. 1 and 2 were observed under a microscope, it was found that No. 1 had a relatively thick skin-like substance on its surface, whereas No. 2 had a relatively thick skin on its surface. Nakatsuta. An example of an enlarged photo (approx. 23x)
250x) are shown in Figures 3 and 4, respectively. Note that the particle luster referred to here refers to a translucent raw material resin that has become cloudy due to foaming, but has newly developed luster due to the action of something like an epidermis on its surface. The feeling you get is completely different. Reference Example 2 Among the conditions used in Reference Example 1, the time of exposing the expandable particles to atmospheric pressure before forming them into primary expanded particles was 1 minute,
The experiment of Reference Example 1 was repeated, except that the temperature was changed to 2/4 level, and the heating temperature increase rate at each foaming stage was changed to two levels, 20 seconds and 50 seconds. The smoothness (S) of the four types of particles obtained and the particles of Examples were evaluated. The results are shown in Table 1 above along with visual evaluation. According to the results in Table 1, the gloss ranking based on the total score matches the tendency for the smoothness (S) to be small. In addition, there is no evaluation of particles with a smoothness (S) of 1.05 or less of 2 points or less. From the above, it can be said that smoothness (S), although only a structural observation under a microscope, clearly represents the requirements that foamed particles should have to be judged to be glossy. Reference example 3 The number of resin types used was increased to five (A), (B), (C), (D), and (E), and the crosslinking conditions were selected so that the gel fraction was uniform at approximately 60% for each type. While adjusting each of the relationships between the aeration time of the foamed particles before making them into primary foamed particles and the heating temperature increase rate at each foaming stage so that the smoothness (S) of the foamed particles obtained is a value of 1.05 or less. , the magnification of the final foamed particles, respectively.
The same experiment as in Reference Example 1 was repeated except for multi-stage foaming aiming at 15, 20, 25, 30, 35, 40 and 45 times, and the obtained particles were No. 7 to 41 in the order of the resin used. A serial number is attached. (No.24 is No.1
) For each sample particle, the melting temperature, expansion ratio (D),
The smoothness (S), the air pressure damping coefficient (T), and the expansion ability were evaluated, and the results are shown in Table 3.
【表】【table】
【表】
分の条件で測定
第3表の結果によると、(A)樹脂(E)樹脂を使用し
たものからは1.3倍以上の膨張能を有する発泡粒
子が得られていないことが分る。
また、(B),(C),(D)樹脂から得た平滑度(S)が
1.05以上の粒子でも、膨張能の評価では1.3倍未
満、1.3倍以上のものが混在してしまうことが分
る。
前記第2図は第3表の結果を発泡倍率(D)と空気
圧の減衰係数(T)との関係図としてプロツトし
たものである。また、図中の記号(◎〇●×□
等)は樹脂の種類と膨張能を組合せ記号にして層
別したものである。
第2図の結果によると平滑度(S)が1.05以下
のものであつても、その全体的な表面構造すなわ
ち、各発泡倍率(D)と空気圧減衰係数(T)が式
D/1500≧T≧D/2500
(ただしDは20〜40)
の関係を満すものでなければ、1.3倍以上の膨張
能をもつことができないことが分る。
すなわち、この範囲は、点〔発泡倍率、空気圧
の減衰係数〕で示す座標で、A〔20,0.0133〕B
〔20,0.0080〕C〔40,0.0160〕D〔40,0.0267〕を
直線で結ぶ四辺形内になければならない。
参考例 4
第3表に掲げたNo.10,17,18,24,32及び39で
示される発泡粒子を用い(内圧実質0、発泡剤含
有0、確認ずみ)これを小孔を有する閉鎖金型
(内寸法300×300×50mm)にそのまま充てんし、
1.2〜2.0Kg/cm2の水蒸気圧下で20〜30秒加熱し、
粒子を発泡融着させ、20℃の水で冷却後成形体を
取り出した。
このようにして得た成形体の融着性、吸水率、
表面平滑性、ひけ、熱経時寸法安定性、圧縮クリ
ープ、耐熱クリープを測定評価し結果を第4表に
示した。[Table] According to the results in Table 3, it can be seen that foamed particles having an expansion capacity of 1.3 times or more were not obtained from those using (A) resin (E) resin. In addition, the smoothness (S) obtained from resins (B), (C), and (D)
Even if the particle size is 1.05 or more, it can be seen that in the evaluation of the expansion ability, there are particles less than 1.3 times and particles larger than 1.3 times. The results of Table 3 are plotted in FIG. 2 as a relationship diagram between expansion ratio (D) and air pressure damping coefficient (T). Also, the symbols in the diagram (◎〇●×□
etc.) are stratified based on the combination of resin type and expansion capacity. According to the results in Figure 2, even if the smoothness (S) is 1.05 or less, the overall surface structure, that is, each expansion ratio (D) and air pressure damping coefficient (T), is determined by the formula D/1500≧T. It can be seen that unless the relationship of ≧D/2500 (where D is 20 to 40) is satisfied, it cannot have an expansion capacity of 1.3 times or more. In other words, this range is the coordinates indicated by the point [expansion ratio, air pressure damping coefficient], A[20, 0.0133]B
It must be within the quadrilateral connecting [20, 0.0080] C [40, 0.0160] D [40, 0.0267] with a straight line. Reference Example 4 Using expanded particles shown in Nos. 10, 17, 18, 24, 32, and 39 listed in Table 3 (substantially 0 internal pressure, 0 foaming agent content, confirmed), they were used as a closure metal with small holes. Fill the mold (inner dimensions 300 x 300 x 50 mm) as it is,
Heating for 20-30 seconds under water vapor pressure of 1.2-2.0Kg/ cm2 ,
The particles were foamed and fused, and after cooling with water at 20°C, the molded body was taken out. The fusion properties, water absorption rate,
Surface smoothness, sink marks, thermal aging dimensional stability, compression creep, and heat resistance creep were measured and evaluated, and the results are shown in Table 4.
【表】
この結果から明らかなように、発泡粒子の膨張
能が1.3に満たないものでは良好な成形体になり
得なかつた。
すなわち、本結果により良い性能をもつた成形
体は、平滑度(S)が1.05以下でかつ発泡倍率(D)
と空気圧の減衰係数(T)との関係が
D/1500≧T≧D/2500
(ただしDは20〜40)
の発泡粒子を用いる場合に得られることが分る。
また、この発泡粒子は、従来の発泡粒子のよう
に発泡能を付与しなくても、より良好な性能をも
つた成形体になる従来にない粒子であることも分
る。
比較のために参考例1のNo.2の発泡粒子(膨張
能で1.06)を小孔を有する閉鎖金型(内寸法300
×300×50mm)に充てんし105〜115℃の蒸気で10
〜30秒間加熱し得られた成形体の密度、融着性、
表面平滑性、ひけ等を評価したが良好な成形体を
得ることはできなかつた。成形体の評価結果を第
5表に示す(特公昭45−32622号公報の追試)。[Table] As is clear from the results, if the expansion capacity of the expanded particles was less than 1.3, a good molded product could not be obtained. In other words, a molded product with good performance according to this result has a smoothness (S) of 1.05 or less and a foaming ratio (D) of 1.05 or less.
It can be seen that the relationship between and the damping coefficient (T) of air pressure is obtained when using expanded particles of D/1500≧T≧D/2500 (where D is 20 to 40). It can also be seen that these foamed particles are unprecedented particles that can yield molded products with better performance even without being imparted with foaming ability unlike conventional foamed particles. For comparison, foamed particles No. 2 of Reference Example 1 (expansion capacity: 1.06) were placed in a closed mold with small holes (inner dimension: 300 mm).
×300×50mm) and steam at 105 to 115℃ for 10 minutes.
The density, fusion properties, and
Although surface smoothness, sink marks, etc. were evaluated, it was not possible to obtain a good molded product. The evaluation results of the molded bodies are shown in Table 5 (additional test to Japanese Patent Publication No. 45-32622).
【表】【table】
【表】
以上のような状態でありいかようにしても融着
性が良い。表面の平担なしかもひけのない成形体
を得ることは不可能であつた。
実施例 1
参考例の第3表に示される試料No.25の発泡粒子
を用い、これを密閉容器中に詰め、常温0.5〜2
Kg/cm2の空気で約3秒間処理し、元のかさ容積の
97,95,80,50及び55%まで圧縮して、圧縮粒子
試料No.42,No.43,No.44,No.45及びNo.46を製造し
た。
次に、この粒子をたて300mm、よこ300mm深さ
130mmの内法寸法をもち、小孔を備えた閉鎖金型
に充てんし、1.2〜2.0Kg/cm2(ゲージ圧)の水蒸
気で20〜30秒の加熱条件で加熱処理し、粒子を発
泡膨張し、相互に融着させて成形したのち、20℃
の水で冷却後成形体を取り出した。
得られた成形体のおのおのについて、密度、融
着性、ひけ、表面平滑性、光沢、断熱性能の経時
的持続性を調べた。その結果を第6表に示す。
また、比較のため、特公昭45−32622号公報の
方法に従い、試料No.2の発泡粒子を用い、これを
密閉容器中で10Kg/cm280℃の条件下30分〜5時間
放置しセル内圧0.05又は1.5Kg/cm2(ゲージ圧)
の発泡性追添粒子No.47,48を調製し上記と同様
300mm×300mm×130mmの金型内で加熱成形し冷却
後取出した成形体について同様の評価をし、その
結果を第6表に付記する。[Table] Under the above conditions, no matter what you do, the fusion properties are good. It was impossible to obtain molded bodies without flattened surfaces or without sink marks. Example 1 Using expanded particles of sample No. 25 shown in Table 3 of Reference Examples, this was packed in a sealed container and kept at room temperature 0.5 to 2.
Treat with Kg/ cm2 air for about 3 seconds to reduce the original bulk volume.
Compressed particle samples No. 42, No. 43, No. 44, No. 45 and No. 46 were produced by compressing to 97, 95, 80, 50 and 55%. Next, add this particle to a depth of 300mm vertically and 300mm horizontally.
The particles are filled into a closed mold with an internal dimension of 130 mm and equipped with small holes, and heated with steam at 1.2 to 2.0 Kg/cm 2 (gauge pressure) for 20 to 30 seconds to foam and expand the particles. After being fused together and molded, it was heated to 20°C.
After cooling with water, the molded body was taken out. Each of the obtained molded bodies was examined for density, fusion adhesion, sink marks, surface smoothness, gloss, and sustainability of thermal insulation performance over time. The results are shown in Table 6. For comparison, we used the foamed particles of sample No. 2 according to the method of Japanese Patent Publication No. 45-32622, and left them in a closed container at 10 kg/cm 2 at 80°C for 30 minutes to 5 hours. Internal pressure 0.05 or 1.5Kg/cm 2 (gauge pressure)
Prepare expandable additive particles No. 47 and 48 and use the same method as above.
The same evaluation was performed on a molded product that was hot-formed in a mold of 300 mm x 300 mm x 130 mm and taken out after cooling, and the results are added to Table 6.
【表】
性能の経時持続性を示す。
第6表の結果から明らかなように発泡粒子内圧
が0.05以上に高められ発泡能が加算されるに従つ
て該成形体の認度は小さくなりひけの程度は軽減
されるが、セル内圧が3.5Kg/cm2(ゲージ圧)に
も達すると成形加熱時にその表面の膨張融着が急
速に進行するために内部加熱が不十分となり融着
性の悪い成形体となつてしまい使用に耐えない。
セル内圧3.0Kg/cm2(ゲージ圧)の場合は若干上
記の傾向も見られるが、実用上大きな問題はなく
本発明の上限と解される。
また、比較例の場合は、いずれも良好な結果は
得られなかつた。
上記の結果から本発明の方法は従来では得るこ
とのできなかつた。肉厚高発泡(肉厚低密度)の
成形体が得られることが分る。
実施例 2
実施例1で得た試料No.44の成形体、X社製緩衝
材用ボード及びY社製緩衝材用ボードとについ
て、圧縮強さを測定し、その結果を第7表に示
す。[Table] Shows the sustainability of performance over time.
As is clear from the results in Table 6, as the internal pressure of the foamed particles is increased to 0.05 or more and the foaming capacity is added, the visibility of the molded body becomes smaller and the degree of sinkage is reduced, but when the internal pressure of the cell is 3.5 When the pressure reaches Kg/cm 2 (gauge pressure), expansion and fusion of the surface rapidly progresses during molding and heating, resulting in insufficient internal heating and a molded product with poor fusion properties, making it unusable.
In the case of a cell internal pressure of 3.0 Kg/cm 2 (gauge pressure), the above tendency is somewhat observed, but there is no practical problem and this is considered to be the upper limit of the present invention. Moreover, in the case of the comparative examples, good results were not obtained in any case. From the above results, the method of the present invention could not be obtained conventionally. It can be seen that a molded article with a high wall thickness and high foaming (thickness and low density) can be obtained. Example 2 Compressive strength was measured for the molded product of sample No. 44 obtained in Example 1, the cushioning material board manufactured by Company X, and the cushioning material board manufactured by Company Y, and the results are shown in Table 7. .
【表】
この表によると密度差が大きいにもかかわらず
ほぼ同等の圧縮強さをもつ成形体が得られること
が分る。
また、これらの成形体の光沢性(反射率)、耐
熱クリープ特性、緩衝特性、中央部の断熱性能の
経時的持続性について調べ、その結果を第5図な
いし第8図にグラフとして示した。
これらのグラフから、本発明により得られる成
形体はどの市販品よりも密度も低く光沢がありし
かも、耐熱クリープに優れた状態で緩衝性能に優
れた成形体となつていることが分る。
また、第8図によると本発明の方法によれば、
内部構造的にも整つた肉厚成形体が得られること
が分る。ここで、中央部の断熱性能の経時持続性
の測定は次のようにして行つた。
すなわち、成形体の厚さ方向の中心部よりそれ
ぞれ上下に1.5mmに相当する個所をスライスし、
厚さ30mmの板状体を得、たて、よこ、厚さがそれ
ぞれ200mm,200mm,30mmの大きさの試料片を3枚
切り出し第9図に示す装置において断熱材2が施
こされ温度調節機3を有する容器1に50℃の温湯
4を入れ該容器の開口部側を用意した1つの試験
片5で塞ぐ、この場合の密封はパツキン6で十分
に行われる。また試験片の下面と容器内温湯面と
の間には約30mmの空間があるようにする。さら
に、試験片の上面は循環口7,8から循環される
冷却水によつてその表面が3℃に冷却されている
冷却板9の面と密着させておき、この状態をそれ
ぞれ10日、20日、30日間維持し断熱性能測定用の
試料とする。
上記の試験片の表面をガーゼを用いて軽く拭き
取りASTM C 518に定める方法で各試料の熱
伝導率λ′を測定し、あらかじめ試験前に同じ条件
下で測定しておいた熱伝導率λとの変化の状態を
λ′/λで計算し「断熱性能の経時持続性」として
評価した。
実施例 3
実施例2で得た試料No.44の発泡性追添粒子を用
い、たて、よこ、高さがいずれも50mmの成形体21
個を製作し、それらについて型から取り出した時
点で以下のそれぞれ異なる処理を行つた。
(1) 無処理
(2) 50℃に調温した恒温室内に4,6,8,10又
は12時間滞留させる。
(3) 60℃に調温した恒温室内に4,6,8,10又
は12時間滞留させる。
(4) 70℃に調温した恒温室内に4,6,8,10又
は12時間滞留させる。
(5) 80℃に調温した恒温室内に4,6,8,10又
は12時間滞留させる。
この結果を、滞留時間と対金型寸法比との関係
を示すグラフとして第10図に示す。
なお、この金型寸法比は、(1)については金型か
ら取り出した時点、その他はいずれも所定滞留時
間経過時点に成形体を恒温室より取り出し、これ
を常温、常圧下で4時間放冷したのち、その寸法
を測定して求めた。
このグラフから明らかなように、対金型寸法比
を1.0に接近させるためには、成形後に熱処理す
ることが必要であり、またその際の加熱条件は60
℃以上の温度で6時間以上、望ましくは80℃以上
の温度で8時間以上である。
実施例 4
実施例7で得た80℃で10時間熱処理した成形体
より、50mm立方の試験片を4個製作し、90℃に調
温した恒温室内に滞留させ、それぞれ3,5,10
又は96時間後に試料を取り出し、常温常圧下に1
時間放冷し、その寸法変化を測定した。この結果
を滞留時間と滞留前の成形体を基準とした寸法変
化率の関係を示すグラフとして実線で第11図に
示す。
このグラフから明らかなように、本発明により
得られる成形体は非常に寸法変化率が少なく、96
時間もの滞留によつてもわずか0.7%の変化に止
つた。
比較のために、X社製緩衝材用架橋ポリエチレ
ン樹脂成形体(密度0.033)について実験した結
果を破線で示した。このものは寸法変化率が大き
く、96時間滞留した場合には5%も収縮した。[Table] According to this table, it can be seen that molded bodies having almost the same compressive strength can be obtained despite the large density difference. In addition, the glossiness (reflectance), heat-resistant creep characteristics, buffering characteristics, and sustainability of the heat insulation performance of the central portion over time of these molded bodies were investigated, and the results are shown in graphs in FIGS. 5 to 8. From these graphs, it can be seen that the molded product obtained by the present invention has a lower density and gloss than any commercially available product, and is also a molded product with excellent heat resistance creep and excellent buffering performance. Also, according to FIG. 8, according to the method of the present invention,
It can be seen that a thick-walled molded body with a well-organized internal structure can be obtained. Here, the sustainability of the thermal insulation performance of the central portion over time was measured as follows. In other words, slice parts corresponding to 1.5 mm above and below the center of the molded body in the thickness direction, and
A plate-shaped body with a thickness of 30 mm was obtained, and three sample pieces with vertical, horizontal, and thickness sizes of 200 mm, 200 mm, and 30 mm were cut out, and a heat insulating material 2 was applied in the apparatus shown in Fig. 9, and the temperature was adjusted. Hot water 4 at 50° C. is poured into a container 1 having a machine 3, and the opening side of the container is closed with a prepared test piece 5. In this case, sealing is sufficiently performed with a packing 6. Also, there should be a space of approximately 30 mm between the bottom surface of the test piece and the surface of the hot water in the container. Furthermore, the upper surface of the test piece was kept in close contact with the surface of the cooling plate 9, whose surface was cooled to 3°C by the cooling water circulated from the circulation ports 7 and 8, and this condition was maintained for 10 days and 20 days, respectively. The sample was maintained for 30 days and used as a sample for measuring insulation performance. The surface of the above test piece was gently wiped with gauze and the thermal conductivity λ' of each sample was measured using the method specified in ASTM C 518. The state of change was calculated as λ'/λ and evaluated as "sustainability of insulation performance over time." Example 3 Using the expandable additive particles of sample No. 44 obtained in Example 2, a molded article 21 with a length, width, and height of 50 mm was made.
The pieces were produced, and when they were taken out of the mold, they were subjected to the following different treatments. (1) No treatment (2) Remain in a constant temperature room controlled at 50℃ for 4, 6, 8, 10 or 12 hours. (3) Remain in a constant temperature room controlled at 60℃ for 4, 6, 8, 10 or 12 hours. (4) Remain in a constant temperature room controlled at 70℃ for 4, 6, 8, 10, or 12 hours. (5) Remain in a constant temperature room controlled at 80℃ for 4, 6, 8, 10 or 12 hours. The results are shown in FIG. 10 as a graph showing the relationship between residence time and mold size ratio. In addition, this mold size ratio is determined by taking the molded product out of the thermostatic chamber at the time of taking it out from the mold for (1), and after the predetermined residence time has elapsed for all other cases, and letting it cool for 4 hours at room temperature and normal pressure. Afterwards, its dimensions were determined. As is clear from this graph, heat treatment is required after molding in order to bring the mold-to-mold size ratio close to 1.0, and the heating conditions at that time are 60
℃ or higher for 6 hours or more, preferably 80℃ or higher for 8 hours or more. Example 4 Four 50 mm cubic test pieces were made from the molded product obtained in Example 7 that had been heat-treated at 80°C for 10 hours, and they were kept in a thermostatic chamber controlled at 90°C to give 3, 5, and 10 test pieces, respectively.
Or take out the sample after 96 hours and store it at room temperature and pressure for 1 hour.
The sample was left to cool for a while and its dimensional change was measured. The results are shown in FIG. 11 as a solid line as a graph showing the relationship between residence time and dimensional change rate based on the molded product before residence. As is clear from this graph, the molded product obtained according to the present invention has a very small dimensional change rate, with 96
The change was only 0.7% even after the residence time. For comparison, the results of an experiment conducted on a crosslinked polyethylene resin molded body for cushioning material manufactured by Company X (density 0.033) are shown by a broken line. This material had a large dimensional change rate, and shrank by 5% after being retained for 96 hours.
第1図は発泡粒子断面表層部の模式図、第2図
は各種発泡粒子の発泡倍率と減衰係数との関係を
示すグラフ、第3図は本発明発泡粒子と従来の発
泡粒子の23倍拡大断面顕微鏡写真、第4図は同じ
ものの250倍拡大顕微鏡写真、第5図は本発明発
泡粒子から得られる成形体と市販品との光沢性を
示すグラフ、第6図は同じく耐熱クリープ特性を
示すグラフ、第7図は同じく緩衝特性を示すグラ
フ、第8図は吸水時間と断熱性能の経時持続性と
の関係を示すグラフ、第9図は断熱性能の経時持
続性を測定する装置の断面図、第10図は成形後
の加熱処理時間と対金型寸法比との関係を示すグ
ラフ、第11図は経時的寸法変化を示すグラフで
ある。
図中符号は次のとおりである。1……容器、2
……断熱材、3……温度調節機、5……試験片、
6……パツキン、9……冷却板。
Figure 1 is a schematic diagram of the cross-sectional surface layer of foamed beads, Figure 2 is a graph showing the relationship between expansion ratio and damping coefficient of various foamed beads, and Figure 3 is a 23-fold enlargement of the foamed beads of the present invention and conventional foamed beads. A cross-sectional micrograph, Figure 4 is a 250x magnification micrograph of the same thing, Figure 5 is a graph showing the glossiness of a molded product obtained from the expanded particles of the present invention and a commercially available product, and Figure 6 also shows the heat-resistant creep properties. Graph, Figure 7 is a graph showing the same buffering properties, Figure 8 is a graph showing the relationship between water absorption time and the sustainability of insulation performance over time, and Figure 9 is a cross-sectional view of the device that measures the sustainability of insulation performance over time. , FIG. 10 is a graph showing the relationship between the heat treatment time after molding and the size ratio to the mold, and FIG. 11 is a graph showing the dimensional change over time. The symbols in the figure are as follows. 1... Container, 2
...Insulation material, 3...Temperature controller, 5...Test piece,
6...Putskin, 9...Cooling plate.
Claims (1)
平滑度(S)が1.05以下の表面を有し、発泡倍率
約20〜40倍、かつその中に圧入された空気圧の減
衰係数(T)が(1/1500〜1/2500)・Dの範囲内
にある球状発泡粒子を調整し、次いでこれを発泡
粒子の元のかさ容積の約95〜50%になるまで圧縮
したのち、型内に充てんし、膨張能が低下しない
うちに加熱し、発泡させることを特徴とするポリ
エチレン樹脂発泡成形体の製造方法。 2 架橋ポリエチレン樹脂を素材として用いて、
平滑度(S)が1.05以下の表面を有し、発泡倍率
約20〜40倍、かつその中に圧入された空気圧の減
衰係数(T)が(1/1500〜1/2500)Dの範囲内に
ある球状発泡粒子を調整し、次いでこれを発泡粒
子の元のかさ容積の約95〜50%になるまで圧縮し
たのち、型内に充てんし、膨張能が低下しないう
ちに加熱発泡させ、さらにこのようにして得られ
た成形体を60℃以上の温度で6時間以上熟成させ
ることを特徴とするポリエチレン樹脂発泡成形体
の製造方法。[Claims] 1. Using crosslinked polyethylene resin as a material,
It has a surface with a smoothness (S) of 1.05 or less, a foaming ratio of about 20 to 40 times, and an attenuation coefficient (T) of the air pressure injected into the surface in the range of (1/1500 to 1/2500)/D. The spherical foamed particles inside are adjusted, and then compressed to about 95-50% of the original bulk volume of the foamed particles, filled into a mold, heated before the expansion ability decreases, and foamed. A method for producing a polyethylene resin foam molded article, the method comprising: 2 Using cross-linked polyethylene resin as a material,
It has a surface with a smoothness (S) of 1.05 or less, a foaming ratio of approximately 20 to 40 times, and an attenuation coefficient (T) of the air pressure injected into the surface within the range of (1/1500 to 1/2500)D. The spherical foamed particles are adjusted, and then compressed to about 95-50% of the original bulk volume of the foamed particles, filled into a mold, heated and foamed before the expansion ability decreases, and then A method for producing a polyethylene resin foam molded product, which comprises aging the molded product thus obtained at a temperature of 60° C. or higher for 6 hours or more.
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP55088613A JPS5746878A (en) | 1980-06-30 | 1980-06-30 | Production of expansion molded article of polystyrene resin |
| CA000366174A CA1147100A (en) | 1979-12-10 | 1980-12-04 | Expanded cross-linked polyethylene particle, a molded product thereof and the methods thereof |
| KR1019800004639A KR830002656B1 (en) | 1980-06-30 | 1980-12-05 | Expended cross-linked pelyethylene particls a molded product there-of and the methodes thereof |
| US06/213,643 US4366263A (en) | 1979-12-10 | 1980-12-05 | Expanded cross-linked polyethylene particle, a molded product thereof and the methods thereof |
| EP80107757A EP0032557B1 (en) | 1979-12-10 | 1980-12-09 | An expanded cross-linked polyethylene particle and methods to produce molded products thereof |
| DE8080107757T DE3072109D1 (en) | 1979-12-10 | 1980-12-09 | An expanded cross-linked polyethylene particle and methods to produce molded products thereof |
| HK284/89A HK28489A (en) | 1979-12-10 | 1989-04-06 | An expanded cross-linked polyethylene particle and methods to produce molded products thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP55088613A JPS5746878A (en) | 1980-06-30 | 1980-06-30 | Production of expansion molded article of polystyrene resin |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS5746878A JPS5746878A (en) | 1982-03-17 |
| JPS639974B2 true JPS639974B2 (en) | 1988-03-03 |
Family
ID=13947653
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP55088613A Granted JPS5746878A (en) | 1979-12-10 | 1980-06-30 | Production of expansion molded article of polystyrene resin |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5746878A (en) |
-
1980
- 1980-06-30 JP JP55088613A patent/JPS5746878A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS5746878A (en) | 1982-03-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7664860B2 (en) | Polypropylene resin expanded beads and polypropylene resin expanded beads molded body | |
| EP0032557B1 (en) | An expanded cross-linked polyethylene particle and methods to produce molded products thereof | |
| WO2023063258A1 (en) | Polypropylene resin foam particles | |
| EP4310137A1 (en) | Polyethylene resin foamed particle, and method for producing same | |
| JP4144781B2 (en) | Method for producing molded polypropylene resin foam particles | |
| JPS639974B2 (en) | ||
| JP7664786B2 (en) | Polypropylene resin expanded particles and method for producing same | |
| JPS6245819B2 (en) | ||
| JPS629255B2 (en) | ||
| JPS6333451B2 (en) | ||
| JP7329639B1 (en) | Expanded polypropylene resin particles, method for producing expanded polypropylene resin particles, and cushioning material for distribution | |
| JPS6311975B2 (en) | ||
| KR860001742B1 (en) | Method for producing foamed particles and molded foam of ethylene resin | |
| JPS6311974B2 (en) | ||
| JP2005325179A (en) | Method for producing molded polypropylene resin foam particles | |
| JP7311672B1 (en) | Method for producing expanded beads and expanded beads | |
| JPS59187035A (en) | Particles for linear polyethylene resin foaming | |
| JP7728202B2 (en) | A method for producing expanded beads and a method for producing a foamed bead molded article. | |
| EP4400538A1 (en) | Polyethylene resin foam particles, and method for producing same | |
| JP2019044143A (en) | Bead expanded body, resin composite having the same, and manufacturing method of bead expanded body | |
| JP2005264121A (en) | Polystyrene resin expanded particles, method for producing the same, and expanded molded article | |
| WO2023189114A1 (en) | Expanded beads, and expanded bead molded body | |
| WO2023189115A1 (en) | Expanded bead production method, and expanded beads | |
| KR830002656B1 (en) | Expended cross-linked pelyethylene particls a molded product there-of and the methodes thereof | |
| JP2023176570A (en) | Foamed particle |