[go: up one dir, main page]

JPWO2008078561A1 - 導波路接続構造 - Google Patents

導波路接続構造 Download PDF

Info

Publication number
JPWO2008078561A1
JPWO2008078561A1 JP2008551028A JP2008551028A JPWO2008078561A1 JP WO2008078561 A1 JPWO2008078561 A1 JP WO2008078561A1 JP 2008551028 A JP2008551028 A JP 2008551028A JP 2008551028 A JP2008551028 A JP 2008551028A JP WO2008078561 A1 JPWO2008078561 A1 JP WO2008078561A1
Authority
JP
Japan
Prior art keywords
waveguide
core
connection structure
optical
slot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008551028A
Other languages
English (en)
Other versions
JP5315999B2 (ja
Inventor
淳 牛田
淳 牛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2008551028A priority Critical patent/JP5315999B2/ja
Publication of JPWO2008078561A1 publication Critical patent/JPWO2008078561A1/ja
Application granted granted Critical
Publication of JP5315999B2 publication Critical patent/JP5315999B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12147Coupler

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

1本のコアを備える入力光導波路(201)からの光を等しい光パワーでかつ同じ位相の2つの分岐光に分岐する光分岐素子(111)と、光分岐素子で分岐された分岐光を狭い間隔で並列配置した2本のコアからなるスロット導波路(202)へ出力する1対のアーム導波路(113A,113B)からなる双アーム導波路(113)とを備え、1対のアーム導波路を、基板上のクラッド内に形成されて当該クラッドより高い屈折率を持つコアを有し、分岐光が入力されるコア入力端からスロット導波路へ光を出力するコア出力端にかけて、相互の間隔がスロット導波路のコア間隔と等しい間隔まで徐々に狭くなるよう形成する。

Description

本発明は、微小光回路中での異種導波路間の接続構造に関し、特に細線導波路からスロット導波路への接続構造に関する。
波長多重を利用した光通信システムにおいて,微小光回路の研究開発が盛んに行われている。屈折率差の大きな材料を用いた光導波路を利用した光デバイスを実現すれば,従来型より微小かつ低コストで低消費電力の光通信機器を実現できる。また、そこで培われる光デバイスの要素技術は、LSIチップ上やチップ間の光配線接続にも応用が可能であり、従来の電気配線の伝送容量の増加に伴う様々な技術的困難を回避する手段としても期待される。
高屈折率差の材料を用いた光導波路としては、特開平7−168146号公報に記載されているようなSOI(Silicon on Insulator)基板上のSiを導波路コアとして利用するリッジ導波路、リブ導波路、細線導波路やフォトニック結晶線欠陥導波路が代表的である。また、特開平10−221554号公報に記載されているようなGaAsなどの化合物半導体を用いた光導波路も盛んに研究開発が進められている。
こうした光導波路は、デバイスとして導波路そのものが機能を有する場合もあるし、微小光回路上に集積化された、例えば発光素子、受光素子、光分岐素子、光結合素子、光分波素子、光合波素子、光変調素子、光スイッチング素子、光メモリ素子、光バッファ素子などの機能素子の間をつなぐ光配線素子として使われることも多い。そのような観点から考えると、導波路と各種の機能素子を接続する部分や、材料やサイズの異なる導波路をお互いに接続する部分において、導波路を伝搬する電磁場モードがスムーズに変換されて低損失に接続されることは、光導波路を有するあらゆる光デバイスにおいて極めて重要である。
このような観点から、従来より、2種類の細線導波路同士の接続(光ファイバー接続用スポットサイズ変換器を含む)(例えば、T. Shoji et al., Electronics Letters, vol. 38 (2002). pp. 1669-1670、M. Yanagisawa et al., IEEE Photonics Technology Letters, vol.4 (1993) pp.433-435、特開平7−168146号公報、特開平10−221554号公報、特開2006−146127号公報、特開2005−326876号公報、特開2005−275064号公報や、細線導波路とフォトニック結晶線欠陥導波路の接続など(例えば、A. Gomyo et al., IEICE Trans. Electron., Vol. E87 (2004) pp. 328-335、J. Ushida et al. Phys. Rev. B68, (2003) pp. 155115-1 to 7、国際出願WO2004/081627号公報など参照)が研究開発対象とされて、様々な接続構造が検討や提案がなされてきた。
しかしながら、このような従来技術では、研究開発の対象となる接続構造が、リブ導波路、リッジ導波路、細線導波路、フォトニック結晶線欠陥導波路の接続構造であるため、スロット導波路との接続については適用することができないという問題点があった。
スロット導波路とは、V. R. Almeida et al., Opt. Lett., 29 (2004) pp. 1209-1211.で提案された新しいタイプの導波路構造であり、狭い間隔を置いて並べた2本の導波路の間の電場強度が大きく低屈折率領域に電場が閉じこめられている構造である。したがって、従来の導波路とは、電場成分の分布と電磁波エネルギー分布が大きく異なるため、従来の接続構造をそのままスロット導波路に適用することはできない。
本発明はこのような課題を解決するためのものであり、狭い間隔で並列配置された2本の導波路からなるスロット導波路に対して従来型の光導波路を接続可能できる導波路接続構造を提供することを目的としている。
このような目的を達成するために、本発明にかかる導波路接続構造は、1本のコアを備える入力光導波路からの光を等しい光パワーでかつ同じ位相の2つの分岐光に分岐する光分岐素子と、光分岐素子で分岐された分岐光を狭い間隔で並列配置した2本のコアからなるスロット導波路へ出力する1対のアーム導波路からなる双アーム導波路とを備え、1対のアーム導波路は、基板上のクラッド内に形成されて当該クラッドより高い屈折率を持つコアを有し、分岐光が入力されるコア入力端からスロット導波路へ光を出力するコア出力端にかけて、相互の間隔がスロット導波路のコア間隔と等しい間隔まで徐々に狭くなるよう形成されている。
本発明によれば、双アーム導波路を構成する1対のアーム導波路が、基板上のクラッド内に形成されて当該クラッドより高い屈折率を持つコアを有し、分岐光が入力されるコア入力端からスロット導波路へ光を出力するコア出力端にかけて、相互の間隔がスロット導波路のコア間隔と等しい間隔まで徐々に狭くなるよう形成されている。
このため、各アーム導波路へ導波してくる電磁場は屈折率の高い領域に閉じこめられているが、双アーム導波路によってスロット導波路の屈折率の低い領域へ電磁場モードを徐々に移行させることができ、低損失でスムーズな電磁場モード変換が可能となる。
格別な効果を奏するものである。
図1Aは、従来の導波路を示す断面図である。 図1Bは、従来のスロット導波路を示す断面図である。 図2は、細線導波路とスロット導波路の分散関係を示す特性図である。 図3Aは、細線導波路の0次モードに関する電場分布を示す説明図である。 図3Bは、細線導波路の0次モードに関する電磁場エネルギー分布を示す説明図である。 図4Aは、スロット導波路の0次モードの電場成分の分布を示す説明図である。 図4Bは、スロット導波路の1次モードの電場成分の分布を示す説明図である。 図5Aは、スロット導波路の0次モードの電磁場エネルギー密度分布を示す説明図である。 図5Bは、スロット導波路の1次モードの電磁場エネルギー密度分布を示す説明図である。 図6Aは、本発明の第1の実施形態にかかる導波路接続構造を示す平面図である。 図6Bは、本発明の第1の実施形態にかかる導波路接続構造を示す正面図である。 図7は、本発明の第1の実施形態にかかる接続構造に関する電場の横方向成分の分布を示す説明図である。 図8は、本発明の第1の実施形態にかかる接続構造に関する磁場の紙面垂直方向成分の空間分布を示す説明図である。 図9は、本発明の第1の実施形態にかかる接続構造の透過率を示す計算結果である。 図10Aは、本発明の第2の実施形態にかかる導波路接続構造を示す平面図である。 図10Bは、本発明の第2の実施形態にかかる導波路接続構造を示す正面図である。
次に、本発明の実施形態について図面を参照して説明する。
[スロット導波路]
まず、図1を参照して、スロット導波路の構造について詳しく説明する。図1は、従来の導波路とスロット導波路を示す断面図である。
図1A は細線導波路、ワイヤ導波路などと呼ばれる従来の導波路を示す断面図である。この導波路は、基板13上に形成されたクラッド12と、このクラッド12内に埋め込まれた、断面矩形あるいは略矩形の1本のコア11とから構成されている。このような構成において、コア11の領域の屈折率をクラッド12の領域の屈折率よりも大きくすることにより、屈折率差による閉じこめによってコア領域に光を閉じこめて紙面に対して垂直方向に実数の波数を持つ伝搬モードで電磁場を伝搬させる。
一方、図1Bはスロット導波路を示す断面図である。スロット導波路は、全体として図1Aの導波路を狭い間隔で2本並列配置した構造をなしており、基板16上に形成されたクラッド15と、このクラッド15内に埋め込まれた、断面矩形あるいは略矩形の2本のコア14とから構成されている。クラッド15としては、比較的屈折率の小さいSiO2(屈折率=1.5程度)の材料を用い、コア14としては、比較的屈折率の大きいSi(屈折率=3.5程度)の材料を用いる。また、基板16としては、ガラスやプラスチックなどの絶縁体材料、あるいはSiやGaAsなどの半導体材料など、光導波路を形成しうる一般的な基板材料を用いればよい。
次に、図2を参照して、スロット導波路の分散関係について説明する。図2は、細線導波路とスロット導波路の分散関係を示す特性図である。図2において、横軸は導波路を伝搬する光の波長[μm]であり、縦軸は導波路を伝搬する光の分散関係を示す理論値である。
断面が図1Aのような構造を持つ細線導波路(SiO2中Si,断面正方形,一辺300nm)の分散関係は、図2中の波線に示す特性21となり、通信波長帯1550nmでシングルモード条件を満たしている。一方、断面が図1Bのような構造を持つスロット導波路の分散関係は、細線導波路を2本並べて結合させているため、その分散関係は図2中の実線で示す特性22となる。
次に、図3〜図5を参照して、スロット導波路に関する電場成分の分布と電磁波エネルギー分布について説明する。図3は、細線導波路の0次モードに関する電場分布と電磁場エネルギー分布を示す説明図である。図4A,図4Bは、スロット導波路の0次および1次モードの電場成分の分布を示す説明図である。図5A,図5Bは、スロット導波路の0次および1次モードの電磁場エネルギー密度分布を示す説明図である。
細線導波路については、先にも述べたように、図3Aの図中矢印方向における電場成分の分布、および図3Bの電磁波エネルギー分布から、電磁場強度の大部分がコア31内にあり電磁場エネルギーもコア31の領域に閉じこめられていることがわかる。
一方、スロット導波路については、図4Aの図中矢印方向における0次モードの電場成分の分布が、図4Bの図中矢印方向における1次モードの電場成分の分布と比較して、2つのコア41の間のスロット部42(低屈折率部分)に強く分布している様子が分かる。また、図5Aの0次モードの電磁波エネルギー分布が、図5Bの1次モードの電磁波エネルギー分布と比較して、2つのコア51の間のスロット部52(低屈折率部分)に強く分布している様子が分かる。
以上のことからわかるように、図1Aに示した従来型の細線導波路中の導波モードの電磁場を、図1Bに示した新型導波路であるスロット導波路へ接続するには、図3のように導波路の高屈折率部分に分布している電磁場を、図4A,4Bや図5A,5Bのような低屈折率部分に分布している電磁場へ変換することがこの発明の鍵となる。
[第1の実施形態]
次に、図6を参照して、本発明の第1の実施形態にかかる導波路接続構造について説明する。図6は、本発明の第1の実施形態にかかる導波路接続構造を示す説明図であり、図6Aは平面図、図6Bは正面図である。
導波路接続構造100は、1本のコアを備える入力光導波路(細線導波路)201と狭い間隔D2で並列配置した2本のコアからなるスロット導波路202とを接続する導波路接続構造である。この導波路接続構造100は、MMI(Multi-mode Interference)素子111、細線導波路112A,112B、および双アーム導波路113から構成されている。
MMI素子111は、入力導波路201を通る電磁場モードを2本の細線導波路112A,112Bへ、50:50の光パワー分岐比率、かつ同じ位相で分岐する機能を有する光素子である。MMI素子111は、基板120上のクラッド121内に形成された、当該クラッド121より高い屈折率を有するコアから形成されている。この際、MMI素子111のコアは断面視矩形をなし、MMI素子111のコア入力端および2つのコア出力端の幅は、それぞれ入力導波路201のコア出力端のコア幅W1に等しい。なお、MMI素子111については、公知の技術を用いて構成すればよい。
細線導波路112A,112Bは、MMI素子111で等しく分岐された2つの分岐光を双アーム導波路113へ導く機能を有する光導波路である。細線導波路112A,112Bは、入力導波路201と等しい屈折率分布n1と導波路インピーダンスZ1をそれぞれ持ち、基板120上のクラッド121内に形成された、当該クラッド121より高い屈折率のコアから形成されている。この際、細線導波路112A,112Bのコアは、断面視矩形をなし、コア入力端からコア出力端まで、一定の高さを有するとともに入力導波路201やMMI素子111のコア出力端と等しい一定のコア幅W1を有している。
双アーム導波路113は、1対のアーム導波路113A,113Bからなり、細線導波路112A,112Bからの光をスロット導波路202へ導く機能を有する光導波路である。アーム導波路113A,113Bは、基板120上のクラッド121内に形成された、当該クラッド121より高い屈折率のコアから形成されている。
アーム導波路113A,113Bは、分岐光が入力されるコア入力端からスロット導波路202へ光を出力するコア出力端にかけて、相互の間隔がスロット導波路202のコア間隔D2と等しい間隔まで徐々に狭くなるよう形成されており、スロット導波路の中心Pに対して平面視対称をなす形状で、それぞれS字状および逆S字状に湾曲して形成されている。
また、アーム導波路113A,113Bのコアは、コア入力端からコア出力端まで一定の高さを有している。また、アーム導波路113A,113Bのコアは、コア入力端で入力導波路201やMMI素子111のコア出力端と等しいコア幅W1を有し、コア出力端でスロット導波路202のコアと等しいコア幅W2を有している。したがって、アーム導波路113A,113Bのコア幅は、コア入力端からコア出力端にかけて、コア幅がコア幅W1からW2まで徐々に変化している。この際、W2はW1の80%以下であることが好適である。なお、コア幅の変化は、アーム導波路113A,113Bのコア入力端からアーム導波路113A,113Bの間隔がスロット導波路202のコア間隔D2と等しくなる部分までの範囲で、コア幅W1からW2まで徐々に変化させてもよい。
したがって、導波路接続構造100では、入力導波路201を通る電磁場モードはMMI素子111を通して、2本の細線導波路112A,112Bへ50:50のパワー分岐比率、同じ位相で分岐される。その後、これら2本の細線導波路112A,112Bの光が双アーム導波路113によってスロット導波路202へと接続される。
前述したように、スロット導波路202は、入力導波路201とは屈折率分布が異なっており、導波路インピーダンスZ2もZ1とは異なる。この際、2本の細線導波路2から導波してくる電磁場は屈折率の高い領域に閉じこめられているが、双アーム導波路113によってスロット導波路202の屈折率の低い領域へ電磁場モードを移行させている。このため、低損失でスムーズな電磁場モード変換が可能となる。
アーム導波路113A,113Bのような細い幅の導波路は、電磁場の低屈折率領域への染みだしが大き過ぎるため伝搬損失が大きく1本の導波路として使われることは実用上ない。しかしながら1本の導波路ではなく、双アーム導波路構造とすることで、低損失化が図れるため新しい機能を有している。したがって、双アーム導波路113は、スポットサイズ変換に用いられるような単一の導波路のテーパー構造とは、本質的にその動作原理および機能が全く異なる。
また、2本の導波路を並べた従来素子としては方向性結合器があるが、方向性結合器の2本の導波路は、個々の導波路単体で動作可能なサイズ領域の導波路を2本組み合わせたり、その2本を等間隔に配置して、摂動論で扱える程度に弱く結合させて使うのが一般的であり、単体では使えない導波路を徐々に間隔や幅を変化させながら機能を発現させる本発明の双アーム導波路113の構造とは、本質的に動作原理と機能が異なる。
次に、図7および図8を参照して、本実施形態にかかる接続構造について、数値計算により電磁場の伝搬をシミュレートした結果について説明する。図7は、本発明の第1の実施形態にかかる接続構造に関する電場の横方向成分の分布を示す説明図である。図8は、本発明の第1の実施形態にかかる接続構造に関する磁場の紙面垂直方向成分の空間分布を示す説明図である。
MMI素子112を通じて2つに分岐された2本の細線導波路112A,112Bを通る伝搬光が座標Z=0(図7中71)からZ>0方向へ伝搬していくとき、電場の横方向成分と磁場の紙面垂直方向成分の空間分布は、図7および図8のような分布になる。
図7から明らかなように、2本の細線導波路112A,112Bからの電磁場モードはZ=1〜4.5(μm)に設置した双アーム導波路113によって徐々に電場分布が屈折率の高いコア領域から、低屈折率の領域(図7中73)に移行していることがわかる。また図8には、その際に磁場分布は全体に広がって分布している様子が示されており、2本の細線導波路112A,112Bからスロット導波路202へスムーズに電磁場モードが移行していることがわかる。
図9は、本発明の第1の実施形態にかかる接続構造の透過率を示す計算結果である。
図7,図8に示すような電磁場分布で伝搬しているとき、図7中71のZ=0を横切る2本の細線導波路112A,112Bを通過する電磁場のエネルギーの総和を1とし、接続した双アーム導波路113に入った電磁場の図7中72の位置での透過率をプロットしてある。これから明らかなように、入射波の入射エネルギー1に対して透過波の透過エネルギーも1であり、入力導波路201からスロット導波路202へ、非常に高効率に接続可能であることがわかる。
[第2の実施形態]
次に、図10を参照して、本発明の第2の実施形態にかかる導波路接続構造について説明する。図10は、本発明の第2の実施形態にかかる導波路接続構造を示す平面図であり、図6と同じまたは同等部分には同一符号を付してある。
第1の実施形態では、入力導波路201からの光をMMI素子112により分岐する場合を例として説明した。本実施形態では、入力導波路201からの光をY光分岐素子115により分岐する場合を例として説明する。
この導波路接続構造101において、Y光分岐素子115は、入力導波路201を通る電磁場モードを、2本の細線導波路112A,112Bへ50:50のパワー分岐比率で、かつ同じ位相で分岐する機能を有する光素子である。Y光分岐素子115は、基板120上のクラッド121内に形成された、当該クラッド121より高い屈折率を有するコアから形成されている。この際、Y光分岐素子115のコアは断面視矩形をなし、Y光分岐素子115のコア入力端および2つのコア出力端の幅は、それぞれ入力導波路201のコア出力端のコア幅W1に等しい。なお、Y光分岐素子115については、公知の技術を用いて構成すればよい。また、細線導波路112A,112Bおよび双アーム導波路113については、第1の実施形態と同様であり、ここでの詳細な説明は省略する。
したがって、導波路接続構造101では、入力導波路201を通る電磁場モードはY光分岐素子115を通して、2本の細線導波路112A,112Bへ50:50のパワー分岐比率、同じ位相で分岐される。その後、これら2本の細線導波路112A,112Bの光が双アーム導波路113によってスロット導波路202へと接続される。
この場合、Y分岐の分岐効率はMMI素子に比べて不利になることが多いが、ある程度の損失を許容した上で簡便に本発明を実施することができる。

Claims (4)

  1. 1本のコアを備える入力光導波路からの光を等しい光パワーでかつ同じ位相の2つの分岐光に分岐する光分岐素子と、
    前記光分岐素子で分岐された分岐光を狭い間隔で並列配置した2本のコアからなるスロット導波路へ出力する1対のアーム導波路からなる双アーム導波路と
    を備え、
    前記1対のアーム導波路は、基板上のクラッド内に形成されて当該クラッドより高い屈折率を持つコアを有し、前記分岐光が入力されるコア入力端から前記スロット導波路へ光を出力するコア出力端にかけて、相互の間隔が前記スロット導波路のコア間隔と等しい間隔まで徐々に狭くなるよう形成されている
    ことを特徴とする導波路接続構造。
  2. 請求項1に記載の導波路接続構造において、
    前記1対のアーム導波路は、前記スロット導波路の中心に対して平面視対称をなす形状で形成されていることを特徴とする導波路接続構造。
  3. 請求項1に記載の導波路接続構造において、
    前記1対のアーム導波路のコアは、高さが一定で、前記コア入力端から前記コア出力端にかけてコア幅が前記入力導波路のコア幅から前記スロット導波路のコア幅まで徐々に変化していることを特徴とする導波路接続構造。
  4. 請求項1に記載の導波路接続構造において、
    前記光分岐素子は、MMI素子およびY分岐素子のいずれか一方からなることを特徴とする導波路接続構造。
JP2008551028A 2006-12-27 2007-12-12 導波路接続構造 Active JP5315999B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008551028A JP5315999B2 (ja) 2006-12-27 2007-12-12 導波路接続構造

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006351587 2006-12-27
JP2006351587 2006-12-27
PCT/JP2007/073941 WO2008078561A1 (ja) 2006-12-27 2007-12-12 導波路接続構造
JP2008551028A JP5315999B2 (ja) 2006-12-27 2007-12-12 導波路接続構造

Publications (2)

Publication Number Publication Date
JPWO2008078561A1 true JPWO2008078561A1 (ja) 2010-04-22
JP5315999B2 JP5315999B2 (ja) 2013-10-16

Family

ID=39562354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008551028A Active JP5315999B2 (ja) 2006-12-27 2007-12-12 導波路接続構造

Country Status (3)

Country Link
US (1) US8078021B2 (ja)
JP (1) JP5315999B2 (ja)
WO (1) WO2008078561A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010878A1 (ja) * 2008-07-25 2010-01-28 日本電気株式会社 導波路接続構造
US9251819B2 (en) 2013-11-12 2016-02-02 Seagate Technology Llc Mode converter coupling energy at a high-order transverse electric mode to a plasmonic transducer
US9322997B2 (en) 2014-03-25 2016-04-26 Seagate Technology Llc Branched waveguide configuration
US9558770B2 (en) 2015-03-30 2017-01-31 Seagate Technology Llc Slot waveguide that couples energy to a near-field transducer
US10281646B2 (en) 2016-09-20 2019-05-07 Honeywell International Inc. Etchless acoustic waveguiding in integrated acousto-optic waveguides
US10254481B2 (en) 2016-09-20 2019-04-09 Honeywell International Inc. Integrated waveguide with reduced brillouin gain and a corresponding reduction in the magnitude of an induced stokes wave
US10429677B2 (en) 2016-09-20 2019-10-01 Honeywell International Inc. Optical waveguide having a wide brillouin bandwidth
WO2018163076A1 (en) * 2017-03-07 2018-09-13 Indian Institute Of Science System and method for coupling light into a slot waveguide
US10312658B2 (en) 2017-06-22 2019-06-04 Honeywell International Inc. Brillouin gain spectral position control of claddings for tuning acousto-optic waveguides
CN109581586B (zh) * 2019-01-10 2021-03-23 上海理工大学 一种结构紧凑型氮化硅波分复用光子芯片
CN111786067A (zh) * 2020-06-23 2020-10-16 深圳市信维通信股份有限公司 适用于射频前端的宽带定向耦合电路结构

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1007485A3 (nl) 1993-09-08 1995-07-11 Philips Electronics Nv Schakelbaar cholesterisch filter en verlichtingsarmatuur voorzien van een filter.
JPH10221554A (ja) 1997-02-06 1998-08-21 Hitachi Ltd 導波路型半導体光素子および光通信システム
US6049644A (en) 1997-05-13 2000-04-11 Lucent Technologies Inc. Optical routing device having a substantially flat passband
JP2000221345A (ja) * 1999-01-28 2000-08-11 Nippon Telegr & Teleph Corp <Ntt> マルチモード干渉光素子
JPWO2004081627A1 (ja) 2003-03-14 2006-06-15 日本電気株式会社 フォトニック結晶光導波路への光入射方法およびその構造
JP2005275064A (ja) 2004-03-25 2005-10-06 Nec Corp 白色光パルス生成方法、光パルス波長変換方法、非線形光学素子、白色パルス光源、波長可変パルス光源
JP4313772B2 (ja) 2004-10-21 2009-08-12 日本電信電話株式会社 光導波路の製造方法
US7519257B2 (en) * 2004-11-24 2009-04-14 Cornell Research Foundation, Inc. Waveguide structure for guiding light in low-index material
JP2006329680A (ja) 2005-05-23 2006-12-07 Nippon Telegr & Teleph Corp <Ntt> 光センサヘッド
JP2005326876A (ja) 2005-07-04 2005-11-24 Nec Corp 光導波路

Also Published As

Publication number Publication date
US20100092132A1 (en) 2010-04-15
WO2008078561A1 (ja) 2008-07-03
US8078021B2 (en) 2011-12-13
JP5315999B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5315999B2 (ja) 導波路接続構造
JP5966021B2 (ja) 偏波変換素子
US9557482B2 (en) High-order polarization conversion device, optical waveguide device, and DP-QPSK modulator
JP5747004B2 (ja) 光導波路素子
CN113777708B (zh) 模变换器
CN100406937C (zh) 波导型光分支元件
JP6356254B2 (ja) 基板型光導波路素子及び基板型光導波路素子の製造方法
US9835798B2 (en) Planar optical waveguide device, polarization multiplexing 4-value phase modulator, coherent receiver, and polarization diversity
JP2017504830A (ja) 導波路偏光スプリッタ兼偏光回転子
CN115016062B (zh) 平面光波电路光分路器/混频器
JP2017090575A (ja) 光合分波素子及び光変調器
WO2014030576A1 (ja) 光導波路素子
JP6643437B1 (ja) 光導波路素子
JP5370690B2 (ja) 導波路接続構造
JP2023040871A (ja) 光導波路素子および光集積回路
JP2006284791A (ja) マルチモード干渉光カプラ
WO2018014365A1 (en) Multi-material waveguide for photonic integrated circuit
JP5504476B2 (ja) 光導波路交差構造
JP7123769B2 (ja) 光スイッチ
WO2014156959A1 (ja) 端面光結合型シリコン光集積回路
US20250116817A1 (en) Multi-waveguide optical edge coupler having sub-wavelength structures
Watanabe et al. Si wire waveguide devices
JP2025059453A (ja) モード回転子及びモード合分波器
JP2004138785A (ja) 光合分波回路
Okayama et al. Sub-micron Si waveguide design for polarization independent Mach-Zehnder filter

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130624

R150 Certificate of patent or registration of utility model

Ref document number: 5315999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150