既存のLTEシステムにおいて、無線基地局は、UEに対して下り制御チャネル(例えば、PDCCH(Physical Downlink Control Channel)、拡張PDCCH(EPDCCH:Enhanced PDCCH)など)を用いて下り制御情報(DCI:Downlink Control Information)を送信する。下り制御情報を送信することは、下り制御チャネルを送信すると読みかえられてもよい。
DCIは、例えばデータをスケジューリングする時間及び周波数リソースを指定する情報やトランスポートブロックサイズを指定する情報、データ変調方式を指定する情報、HARQプロセス識別子を指定する情報、復調用RSに関する情報、などの少なくとも1つを含むスケジューリング情報であってもよい。DLデータ受信及び/又はDL参照信号の測定をスケジューリングするDCIは、DLアサインメントまたはDLグラントと呼ばれてもよいし、ULデータ送信及び/又はULサウンディング(測定用)信号の送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
DLアサインメント及び/またはULグラントには、DLデータに対するHARQ−ACKフィードバックやチャネル測定情報(CSI:Channel State Information)などのUL制御信号(UCI:Uplink Control Information)を送信するチャネルのリソースや系列、送信フォーマットに関する情報が含まれていてもよい。また、UL制御信号(UCI:Uplink Control Information)をスケジューリングするDCIがDLアサインメントおよびULグラントとは別に規定されてもよい。
UEは、所定時間単位(例えば、サブフレーム)において、所定数の下り制御チャネル候補のセットをモニタするように設定される。ここで、モニタとは、例えば、当該セットで、対象となるDCIフォーマットについて各下り制御チャネルの復号を試行することをいう。このような復号は、ブラインド復号(BD:Blind Decoding)、ブラインド検出とも呼ばれる。下り制御チャネル候補は、BD候補、(E)PDCCH候補などとも呼ばれる。
また、下り制御チャネル候補のサーチ領域及びサーチ方法は、サーチスペース(SS:Search Space)として定義される。サーチスペースは、複数のサーチスペースセット(SS set)を含む構成としてもよい。この場合、1又は複数の下り制御チャネル候補は、いずれかのサーチスペースセットにマッピングされる。
また、NRにおいては、物理レイヤ制御信号(例えば、下り制御情報(DCI)を、基地局からUEに送信するために、制御リソースセット(CORESET:COntrol REsource SET)が利用されることが検討されている。
CORESETは、制御チャネル(例えば、PDCCH(Physical Downlink Control Channel))のリソース割り当てに必要なパラメータセットである。UEは、CORESETの設定情報(CORESET設定(CORESET configuration)と呼ばれてもよい)を、基地局から受信してもよい。UEは、少なくともCORESETの設定情報に基づいて、PDCCHをモニタリングを行い、物理レイヤ制御信号を検出する。
CORESET設定は、例えば、上位レイヤシグナリングによって通知されてもよい。ここで、上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
UEは、PDCCHモニタリングを行うサーチスペースの設定情報(サーチスペース設定(search space configuration)と呼ばれてもよい)を、基地局から受信してもよい。サーチスペース設定情報は、UEに設定されるサーチスペースセットに関する情報を含んでいてもよい。また、サーチスペース設定情報は、例えば、上位レイヤシグナリング(RRCシグナリングなど)によってUEに通知されてもよい。サーチスペース設定情報によって設定されるサーチスペースセットは、CORESETに対応づけられて設定されてもよい。すなわちUEは、CORESET設定情報と、サーチスペース設定情報の少なくとも2つに基づいて、PDCCHのモニタリングを行うことができる。
サーチスペース設定情報は、主にPDCCHのモニタリング関連設定及び復号関連設定の情報を含み、例えば以下の少なくとも1つに関する情報を含んでもよい。
・サーチスペースセットの識別子(サーチスペースセットID)
・当該サーチスペースセットが関連するCORESET ID
・当該サーチスペースセットがUEに共通に設定される共通サーチスペース(C−SS:Common SS)かUE毎に設定されるUE固有サーチスペース(UE−SS:UE-specific SS)かを示すフラグ
・アグリゲーションレベルごとのPDCCH候補数
・モニタリング周期
・モニタリングオフセット
・スロット内のモニタリングパターン(例えば14ビットのビットマップ)
UEは、サーチスペース設定情報に基づいて、CORESETをモニタする。また、「CORESETのモニタ」は、「CORESETに対応付けられたサーチスペース(PDCCH候補)のモニタ」、「下り制御チャネル(例えばPDCCH)のモニタ」などで読み替えられてもよい。
UEは、上記サーチスペース設定情報に含まれるサーチスペースセットIDと、CORESET IDに基づいて、サーチスペースセットとCORESETとの対応関係を判断してもよい。1つのCORESETは、1つ又は複数のサーチスペースセットに関連付けられてもよい。1つのCORESETに複数のサーチスペース設定が関連付けられるケースは、例えば当該CORESETにおいてC−SS及びUE−SSの両方が設定されるケースであってもよい。なお、1つのサーチスペース設定が複数のCORESETに関連付けられてもよい。
また、UEがPDCCH候補をモニタするサーチスペースとしては、以下のようなサーチスペースであってもよい。つまり、サーチスペースの種別がC−SSとUE−SSに分類され、さらにC−SSにおいて複数のタイプが設定されてもよいし、下記すべてのタイプのC−SSを分類せず、包括的にC−SSとして取り扱ってもよい。
・タイプ0−PDCCH C−SS
・タイプ0A−PDCCH C−SS
・タイプ1−PDCCH C−SS
・タイプ2−PDCCH C−SS
・タイプ3−PDCCH C−SS
・UE−SS
タイプ0−PDCCH C−SSは、システム情報無線ネットワーク一時識別子(SI−RNTI:System Information Radio Network Temporary Identifier)によって巡回冗長検査(CRC:Cyclic Redundancy Check)マスキング(スクランブル)されるDCIフォーマットのためのSSと呼ばれてもよい。
タイプ0A−PDCCH C−SSは、SI−RNTIによってCRCスクランブルされるDCIフォーマットのためのSSと呼ばれてもよい。なお、タイプ0−PDCCHは、例えばRMSIの通知のために用いられ、タイプ0A−PDCCHは、例えば他のSI(OSI:Other SI)の通知のために用いられてもよい。
タイプ1−PDCCH C−SSは、ランダムアクセスRNTI(RA−RNTI:Random Access RNTI)、一時的セルRNTI(TC−RNTI:Temporary Cell RNTI)又はセルRNTI(C−RNTI:Cell RNTI)によってCRCスクランブルされるDCIフォーマットのためのSSと呼ばれてもよい。
タイプ2−PDCCH C−SSは、ページングRNTI(P−RNTI:Paging RNTI)によってCRCスクランブルされるDCIフォーマットのためのSSと呼ばれてもよい。
タイプ3−PDCCH C−SSは、DLプリエンプション指示用のINT−RNTI(INTerruption RNTI)、スロットフォーマット指示用のSFI−RNTI(Slot Format Indicator RNTI)、PUSCH(Physical Uplink Shared Channel)の送信電力制御(TPC:Transmit Power Control)用のTPC−PUSCH−RNTI、PUCCH(Physical Uplink Control Channel)のTPC用のTPC−PUCCH−RNTI、SRS(Sounding Reference Signal)のTPC用のTPC−SRS−RNTI、C−RNTI又はCS−RNTI(Configured Scheduling RNTI)によってCRCスクランブルされるDCIフォーマットのためのSSと呼ばれてもよい。
UE−SS:C−RNTI又はCS−RNTIによってCRCスクランブルされるDCIフォーマットのためのSSと呼ばれてもよい。UE−SSでは、DCIフォーマット0_0、0_1、1_0、1_1のうち少なくとも1つまたは複数のモニタリングを設定することができる。
サーチスペースのタイプは、モニタするPDCCH候補において送信されるDCIの特徴(フォーマット、RNTIなど)と、サーチスペースを関連付ける情報ともいえる。
ところで、将来の無線通信システム(NR)では、複数のニューメロロジーを適用して通信を制御することが求められている。例えば、NRでは、周波数帯域等に基づいて複数のサブキャリア間隔(SCS)を適用して送受信することが想定されている。適用するサブキャリア間隔としては、15kHz、30kHz、60kHz、120kHz、240kHz等がある。もちろん、適用可能なサブキャリア間隔はこれに限られない。
また、UEの処理負荷の増大等を抑制するために、UEが行う復号(例えば、ブラインド復号)の最大回数があらかじめ設定されることが考えられる。例えば、図1Aに示すように、PDCCHの送信に適用されるサブキャリア間隔毎にブラインド復号(BD)の最大回数が設定されることが考えられる。なお、図1Aに示すBDの最大回数は一例であり、これに限られない。また、BD回数は、UEがモニタするPDCCH候補数と読み替えられてもよい。
図1Aに示すケース1−1、1−2は、C−RNTI又はCS−RNTIによってCRCスクランブルされるPDCCHのモニタリング周期が14シンボル以上である場合に相当し、ケース2は、C−RNTI又はCS−RNTIによってCRCスクランブルされるPDCCHのモニタリング周期が14シンボル未満の場合に相当する。つまり、ケース1−1、1−2は、C−RNTI又はCS−RNTIによってCRCスクランブルされるPDCCHのモニタリング周期が1スロットあたり1回以下となる場合に相当し、ケース2は、C−RNTI又はCS−RNTIによってCRCスクランブルされるPDCCHのモニタリング周期が1スロットあたり2回以上行う場合に相当する。
また、ケース1−1は、スロットの先頭から所定シンボル(例えば、最大3シンボル目)までPDCCHのモニタリングを行う場合に適用してもよい。ケース1−2は、スロットにおいて連続する所定シンボル(例えば、3シンボル)までのいずれかの区間でPDCCHのモニタリングを行う場合に適用してもよい。なお、ケース1−1および1−2では、当該所定シンボル区間において、複数回のモニタリングが設定される場合も許容される。すなわち、所定シンボル区間内におけるPDCCHのモニタリングは、合わせて1回とカウントすることができる。
図1Aのケース1−1において、サブキャリア間隔(SCS)が15kHzの場合、スロットあたりのPDCCHのBDの最大回数が44回である場合を示している。また、SCSが30kHzの場合のBDの最大回数が36回、SCSが60kHzの場合のBDの最大回数が22回、SCSが120kHzの場合のBDの最大回数が20回である場合を示している。
一般的に、SCSが大きくなるにつれてスロット長が短くなるため、異なるSCSに対して、1スロットあたりそれぞれ同じBD回数を行うとSCSが大きい場合にUEは短い時間でBD処理を行う必要が生じ処理負荷が高くなる。そのため、サブキャリア間隔が大きくなるにつれてBDの最大回数を小さくすることによりUEの受信処理(例えば、ブラインド復号等)の負荷が増加することを抑制できる。
また、CCEのアグリゲーションレベル(AL)毎に候補数(number of candidates)の最大値が設定されることも検討されている。図1Bには、AL=4、8及び16について、それぞれ4、2及び1と規定する場合を示している。なお、図1Bは、所定タイプ(例えば、タイプ0、タイプ0A及びタイプ2の少なくとも一つ)の下り制御チャネルのコモンサーチスペースに利用するALと最大候補数の関係を示している。
また、少なくとも図1Aのケース1−1とケース1−2について、UEは、スケジューリングされたセル毎の所定スロットにおいて、所定のCCE数に対するチャネル推定能力(channel estimation capability)をサポートすることが検討されている。この場合、UEは、所定スロット(例えば、1スロット)において、少なくとも所定のCCE数を利用したチャネル推定(例えば、復調処理)を行う能力を具備する。
例えば、SCS=15kHz及び30kHzについて、UEは、第1のCCE数(例えば、56CCE数)を利用したチャネル推定をサポートする。つまり、UEは、所定スロット(例えば、1スロット)あたり少なくとも第1のCCE数を復調できる。また、SCS=60kHzについて、UEは、第2のCCE数(例えば、48CCE数)を利用したチャネル推定をサポートする。また、SCS=120kHzについて、UEは、第3のCCE数(例えば、32CCE数)を利用したチャネル推定をサポートする。
このように、UEがサポート可能なチャネル推定用のCCE数が設定される場合、ブラインド復号回数、及びチャネル推定用のCCE数の少なくとも一方を考慮して、下り制御チャネルの候補数のマッピング(又は、サーチスペースのモニタ)を制御することが考えられる。
例えば、サーチスペースセットに対する下り制御チャネル候補のマッピングを、所定のブラインド復号回数(例えば、BD最大回数)以下とする第1の条件、及び所定のチャネル推定用のCCE数以下とする第2の条件の一方又は両方を満たすように制御する。例えばUEは、所定のスロット、または所定のPDCCHモニタリング期間において、前記第1または第2の条件のいずれかが満たされない場合には、所定の下り制御チャネル候補のブラインド復号を行わないものとすることができる。
複数のサーチスペースセットが設定される場合、当該複数のサーチスペースセットに対する下り制御チャネル候補のマッピング(又は、割当て)をどのように制御するかが問題となる。BD回数又はチャネル推定用のCCE数の制限により、UEに設定される複数のサーチスペースセットのうち、一部のサーチスペースセットにのみ下り制御チャネル候補のマッピングを行う場合も想定される。すなわち、前記第1または第2の条件のいずれかが満たされない場合に、どのサーチスペースセットのどの下り制御チャネル候補に対してブラインド復号を行うかが問題となる。
かかる場合、当該下り制御チャネル候補をマッピングするサーチスペースセットをどのように決定するかが問題となる。下り制御チャネル候補がマッピングされるサーチスペースセットを適切に設定できないと、UEが不要なサーチスペースセットをモニタするおそれがある。この場合、通信スループットが低下し通信品質が劣化するおそれがある。
また、複数のセル(又は、コンポーネントキャリア(CC))を利用するCAにおいて、各セルにサーチスペースセットがそれぞれ設定されることも想定される。かかる場合、各セルのサーチスペースセットに対して、下り制御チャネル候補のマッピングをどのように制御するかが問題となる。
本発明者等は、サーチスペースセットが複数設定される場合、複数のサーチスペースセット間でサーチスペースセットの種別、セルのインデックス及びサーチスペースセットのインデックスの少なくとも一つが異なる点に着目し、サーチスペースセットの種別、セルのインデックス及びサーチスペースセットのインデックスの少なくとも一つに基づいて下り制御チャネル候補のマッピングを制御することを着想した。
以下、本発明に係る実施形態について、図面を参照して詳細に説明する。以下の各態様は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
(第1の態様)
第1の態様では、キャリアアグリゲーションを適用しない場合(non−CA)の下り制御チャネル候補のマッピング制御の一例を示す。例えば、1以上のサーチスペースセットに対する下り制御チャネル候補のマッピングを所定条件に基づいて制御する。
サーチスペースセットに対する下り制御チャネル候補のマッピングは、所定の復号回数(例えば、BDの最大回数)以下とする第1の条件、及び所定のチャネル推定用CCE数以下とする第2の条件の一方又は両方を満たすように制御する。例えば、SCS=15kHzの場合、第1の条件となる所定のBD回数(例えば、44回)以下と、第2の条件となる所定のチャネル推定用CCE数(例えば、56CCE)以下の一方又は両方を満たすように下り制御チャネル候補のマッピングが制御される。
また、第1の条件及び第2の条件の一方又は両方を満たすように、サーチスペース種別、サーチスペースタイプ、サーチスペースセットID、及びアグリゲーションレベルの少なくとも一つに基づいて、下り制御チャネル候補のマッピング(例えば、マッピングするサーチスペースセット)を制御する。
以下に、下り制御チャネル候補のマッピング制御の例(オプション1−3)を示す。以下の説明では、サーチスペース種別(CSSであるかUSSであるか)について例を挙げるが、サーチスペース種別に加えて、サーチスペースタイプ(CSSがいずれのタイプであるか)に基づいて下り制御チャネル候補のマッピングを制御してもよい。
<オプション1>
サーチスペース種別及びサーチスペースタイプの少なくとも一つに基づいてサーチスペースセットに対する下り制御チャネル候補のマッピングを制御する。例えば、CSSに対応するサーチスペースセットをUSSに対応するサーチスペースセットより優先する。一例として、USSに対応するサーチスペースセットより前に、CSSに対応するサーチスペースセットに対して下り制御チャネル候補のマッピングを行う。
これにより、複数のUEに共通に設定するDCIを優先して割当てることができるため、通信全体の品質が劣化することを抑制できる。
UEは、第1の条件及び第2の条件の一方又は両方を満たす範囲において、受信処理(例えば、モニタリング又はBD処理)を行う。UEは、サーチスペース種別に基づいてモニタリングを行うサーチスペースセットを決定してもよい。また、UEは、サーチスペース種別に基づいてモニタするサーチスペースセットの順序(モニタリング順)を決定してもよい。
例えば、UEは、USSに対応するサーチスペースセットよりCSSに対応するサーチスペースセットを先行してモニタしてもよい。あるいは、UEは、モニタリングを行うサーチスペースセットをサーチスペース種別に基づいて決定した上で、モニタする順序はサーチスペース種別に関わらず制御してもよい。
<オプション2>
オプション2では、サーチスペース種別及びサーチスペースタイプの少なくとも一つに加えて、サーチスペースセットインデックス(サーチスペースセットID、サーチスペースIDとも呼ぶ)も考慮して下り制御チャネル候補のマッピングを制御する。例えば、サーチスペース種別が同一のサーチスペースセットに対して、サーチスペースIDの順番に基づいて下り制御チャネル候補のマッピングを制御する。
例えば、USSに対応するサーチスペースセットが複数設定される場合、サーチスペースIDが小さいサーチスペースセットに対して下り制御チャネル候補を優先的にマッピングする。あるいは、サーチスペースIDが大きいサーチスペースセットに対して下り制御チャネル候補を優先的にマッピングしてもよい。
これにより、サーチスペース種別が同じサーチスペースセットが複数設定される場合であっても、下り制御チャネル候補を所定のサーチスペースセットにマッピングすることができる。UEは、第1の条件及び第2の条件の一方又は両方を満たす範囲において、サーチスペース種別とサーチスペースIDに基づいてモニタリングを行うサーチスペースセットを決定することにより、下り制御チャネルのモニタを適切に行うことができる。これにより、通信スループットの低下を抑止し通信品質を向上することができる。
<オプション3>
オプション3では、サーチスペース種別、サーチスペースタイプ、及びサーチスペースIDの少なくとも一つに加えて、アグリゲーションレベルも考慮して下り制御チャネル候補のマッピングを制御する。例えば、サーチスペース種別及びサーチスペースIDが同一のサーチスペースセットに対して、アグリゲーションレベルの順序に基づいて下り制御チャネル候補のマッピングを制御する。
アグリゲーションレベルは、1つのサーチスペースセットに対して複数設定されてもよく、サーチスペースセット毎にそれぞれ異なる1以上のアグリゲーションレベルが設定されてもよい。
例えば、あるサーチスペースセットに対して複数のアグリゲーションレベル(AL=4、8、16)が設定される場合、アグリゲーションレベルが大きいリソース(例えば、CCE)に対して下り制御チャネル候補を優先的にマッピングする。あるいは、アグリゲーションレベルが小さいリソースに対して下り制御チャネル候補を優先的にマッピングしてもよい。
これにより、あるサーチスペースセットに複数のアグリゲーションレベルが設定される場合であっても、下り制御チャネル候補を所定のサーチスペースセットのアグリゲーションレベルにマッピングすることができる。UEは、第1の条件及び第2の条件の一方又は両方を満たす範囲において、サーチスペース種別とサーチスペースIDとアグリゲーションレベルに基づいてモニタリングを行うサーチスペースセットを決定することにより、下り制御チャネルのモニタを適切に行うことができる。
(第2の態様)
第2の態様では、キャリアアグリゲーションを適用する場合(CA)の下り制御チャネル候補のマッピング制御の一例を示す。例えば、複数のCC(又は、セル)にそれぞれ設定される1以上のサーチスペースセットに対する下り制御チャネル候補のマッピングを所定条件に基づいて制御する。本態様におけるキャリアアグリゲーションを適用する場合(CA)とは、あるCCにおいて複数CC分のPDCCHモニタリングを行うクロスキャリアスケジューリングの場合であってもよいし、各CCでそれぞれPDCCHモニタリングを行う場合であってもよいし、それら両方の場合であってもよい。
サーチスペースセットに対する下り制御チャネル候補のマッピングは、所定の復号回数(例えば、BDの最大回数)以下とする第1の条件、及び所定のチャネル推定用CCE数以下とする第2の条件の一方又は両方を満たすように制御する。
なお、第1の条件及び第2の条件の少なくとも一方は、CC数に基づいて変更されてもよい。あるいは、所定のCC数までは第1の条件及び第2の条件の少なくとも一方を変更し、所定のCC数より多い場合には第1の条件及び第2の条件の少なくとも一方の条件は変更しない構成としてもよい。
また、第1の条件及び第2の条件の一方又は両方を満たすように、サーチスペース種別、サーチスペースタイプ、サーチスペースID、CC(又は、セル)種別、セルID及びアグリゲーションレベルの少なくとも一つに基づいて、下り制御チャネル候補のマッピングを制御する。
以下に、下り制御チャネル候補のマッピング制御の例(オプション1−3)を示す。なお、以下の説明では、3個のCC(CC#0−CC#2)が設定され、当該CC#0−CC#2にそれぞれ複数のサーチスペースセット(SSセット)が設定される場合(図2参照)を例に挙げて説明する。
図2では、CC#0においてCSSに対応するSSセット#0、#1と、USSに対応するSSセット#2、#3が設定され、CC#1においてCSSに対応するサーチスペースセットSSセット#0と、USSに対応するSSセット#1、#2が設定され、CC#2においてUSSに対応するSSセット#0−#3が設定される場合を示している。もちろん設定されるCC数、SSセット数等はこれに限られない。
<オプション1>
サーチスペース種別及びサーチスペースタイプの少なくとも一つに基づいてサーチスペースセットに対する下り制御チャネル候補のマッピングを制御する。例えば、CSSに対応するサーチスペースセットをUSSに対応するサーチスペースセットより優先する。一例として、USSに対応するサーチスペースセットより前に、CSSに対応するサーチスペースセットに対して下り制御チャネル候補のマッピングを行う。
この場合、プライマリセル(PCell)であるかセカンダリセル(SCell)であるかに関わらず、USSに対応するサーチスペースセットよりCSSに対応するサーチスペースセットに対して優先的に下り制御チャネル候補をマッピングしてもよい。例えば、図2において、CSSに対応するCC#0のSSセット#0、#1と、CC#1のSSセット#0に対して優先的に下り制御チャネル候補のマッピングを行う。なお、プライマリセルは、PUCCHを送信するPUCCH SCell、又はPSCellに置き換えてもよい。
これにより、複数のUEに共通に設定するDCIを優先して割当てることができるため、通信全体の品質が劣化することを抑制できる。
また、CSSに対応するサーチスペースセットにおいて、セカンダリセルよりプライマリセルのサーチスペースセットを優先して下り制御チャネル候補のマッピングを行ってもよい。例えば、プライマリセル(例えば、図2のCC#0)のCSSに対応するサーチスペースセット、セカンダリセル(例えば、図2のCC#1)のCSSに対応するサーチスペースセット、USSに対応するサーチスペースセットの順に下り制御チャネル候補のマッピングを行う。
なお、USSに対応するサーチスペースセットについて、セカンダリセルよりプライマリセルのサーチスペースセットを優先して下り制御チャネル候補のマッピングを行ってもよい。
UEは、第1の条件及び第2の条件の一方又は両方を満たす範囲において、受信処理(例えば、モニタ処理又はBD処理)を行う。この場合、UEは、サーチスペース種別(例えば、SCCであるかUCCであるか)及びセル種別(例えば、PCellであるかSCellであるか)の少なくとも一つに基づいてモニタリングを行うサーチスペースセットを決定してもよい。また、UEは、サーチスペース種別及びセル種別の少なくとも一つに基づいてモニタするサーチスペースセットの順序を決定してもよい。
例えば、UEは、USSに対応するサーチスペースセットよりCSSに対応するサーチスペースセットを先行してモニタしてもよい。さらに、サーチスペース種別が同じサーチスペースセットにおいてSCellよりPCellを先行してモニタしてもよい。あるいは、UEは、モニタリングを行うサーチスペースセットをサーチスペース種別及びセル種別に基づいて決定した上で、モニタする順序はサーチスペース種別及びセル種別に関わらず制御してもよい。
<オプション2>
オプション2では、サーチスペース種別及びサーチスペースタイプの少なくとも一つに加えて、セルインデックス(セルID、CC番号、CCインデックスとも呼ぶ)及びサーチスペースIDの一方又は両方を考慮して下り制御チャネル候補のマッピングを制御する。
例えば、サーチスペース種別が同一のサーチスペースセットに対して、セルIDとサーチスペースIDに基づいて下り制御チャネル候補のマッピングを制御する。図3は、サーチスペース種別が同一のサーチスペースセットにおいて、セルIDがより小さいサーチスペースセットに対して下り制御チャネル候補を優先的にマッピングする。その後、同じセルIDに対応するサーチスペースセットにおいて、サーチスペースIDがより小さいサーチスペースセットに対して下り制御チャネル候補を優先的にマッピングする場合を示している。
つまり、サーチスペース種別(例えば、CSS)、セルID(例えば、より小さいセルID)、サーチスペースID(例えば、より小さいサーチスペースID)の順に下り制御チャネル候補をマッピングするサーチスペースセットの順番を決定する。このように、セルIDをサーチスペースIDより優先してPDCCH候補のマッピング順序を制御することにより、所定のセル(例えば、セルIDが小さいセル)に下り制御チャネル候補を局所的にマッピングできる。これにより、例えば品質の良いセルに下り制御チャネルを集中してスケジューリングした場合に、適切に下り制御チャネルをモニタリングさせるようにすることができる。
あるいは、サーチスペース種別(例えば、CSS)、サーチスペースID(例えば、より小さいサーチスペースID)、セルID(例えば、より小さいセルID)の順に下り制御チャネル候補をマッピングするサーチスペースセットの順番を決定してもよい(図4参照)。
図4は、サーチスペース種別が同一のサーチスペースセットにおいて、サーチスペースIDがより小さいサーチスペースセットに対して下り制御チャネル候補を優先的にマッピングする。さらに、同じサーチスペースIDに対応するサーチスペースセットにおいて、セルIDがより小さいサーチスペースセットに対して下り制御チャネル候補を優先的にマッピングする場合を示している。このように、サーチスペースIDをセルIDより優先してPDCCH候補のマッピング順序を制御することにより、複数のセルに下り制御チャネル候補を分散してマッピングできる。これにより、制御チャネルのオーバーヘッドが所定のセルに集中するようなケースを回避できる。
なお、図3、図4では、セルIDとサーチスペースIDについて、インデックスがより小さいサーチスペースセットを優先する場合を示したが、インデックスがより大きいサーチスペースセットを優先してもよい。
複数のCCにサーチスペースセットがそれぞれ設定される場合であっても、サーチスペース種別及びサーチスペースタイプの少なくとも一方に加えて、セルID、及びサーチスペースIDを考慮してマッピングを行うことにより、下り制御チャネル候補を所定のサーチスペースセットにマッピングすることができる。UEは、第1の条件及び第2の条件の一方又は両方を満たす範囲において、サーチスペース種別、セルID及びサーチスペースIDに基づいてモニタリングを行うサーチスペースセットを決定することにより、下り制御チャネルのモニタを適切に行うことができる。
<オプション3>
オプション3では、サーチスペース種別、サーチスペースタイプ、セルID及びサーチスペースIDの少なくとも一つに加えて、アグリゲーションレベルも考慮して下り制御チャネル候補のマッピングを制御する。例えば、サーチスペース種別、セルID及びサーチスペースIDが同一のサーチスペースセットに対して、アグリゲーションレベルの順序に基づいて下り制御チャネル候補のマッピングを制御する。
アグリゲーションレベルは、1つのサーチスペースセットに対して複数設定されてもよく、サーチスペースセット毎にそれぞれ異なる1以上のアグリゲーションレベルが設定されてもよい。
例えば、あるサーチスペースセットに対して複数のアグリゲーションレベルが設定される場合、アグリゲーションレベルが大きいリソースに対して下り制御チャネル候補を優先的にマッピングする。あるいは、アグリゲーションレベルが小さいリソースに対して下り制御チャネル候補を優先的にマッピングしてもよい。
これにより、あるサーチスペースセットに複数のアグリゲーションレベルが設定される場合であっても、下り制御チャネル候補を所定のサーチスペースセットのアグリゲーションレベルにマッピングすることができる。UEは、第1の条件及び第2の条件の一方又は両方を満たす範囲において、サーチスペース種別、セルID、サーチスペースID及びアグリゲーションレベルに基づいてモニタリングを行うサーチスペースセットを決定することにより、下り制御チャネルのモニタを適切に行うことができる。
<変形例>
なお、上記説明では、下り制御チャネル候補のマッピング順序として、CSSに対応するサーチスペースセットをUSSに対応するサーチスペースセットより優先する場合を示したが、これに限られない。例えば、複数のCCにそれぞれ含まれるサーチスペースセットにおいて、サーチスペース種別以外の他の条件(例えば、サーチスペースID)を優先して下り制御チャネル候補のマッピング順序を決定してもよい。
図5は、複数のCCにそれぞれ含まれるサーチスペースセットについて、サーチスペースIDがより小さいサーチスペースセットに対して下り制御チャネル候補を優先的にマッピングする。なお、ここでは、同じサーチスペースIDに対応するサーチスペースセットについて、セルIDがより小さいサーチスペースセットに優先的に下り制御チャネル候補をマッピングする場合を示している。
このように、サーチスペース種別よりサーチスペースID及びセルIDの少なくとも一方を優先して下り制御チャネル候補のマッピングを制御することにより、サーチスペース種別に基づくイレギュラーな優先順序を排し、これらのIDによる容易な制御チャネル候補設定が可能となる。
(無線通信システム)
以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図6は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE−A(LTE-Advanced)、LTE−B(LTE-Beyond)、SUPER 3G、IMT−Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New−RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a−12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、又は6個以上のCC)を用いてCA又はDCを適用してもよい。
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
各ユーザ端末20は、LTE、LTE−Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア−周波数分割多元接続(SC−FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC−FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ−ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI−RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
図7は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
送受信部103は、1以上のセルに設定される複数のサーチスペースセットに割当てられる下り制御情報をPDCCHを利用して送信する。送受信部103は、各セル(又は、CC)に設定されるサーチスペースに関する情報(サーチスペースセット等)を送信してもよい。また、送受信部103は、所定の下り制御チャネルに対してサブキャリア間隔毎にそれぞれ定義される下り制御チャネル候補数に基づいて、下り制御チャネルの送信を制御してもよい。
図8は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI−RS、DMRS)などのスケジューリングの制御を行う。
また、制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
制御部301は、所定の下り制御チャネルに対してサブキャリア間隔毎にそれぞれ定義される下り制御チャネル候補数に基づいて、所定の下り制御チャネルの送信を制御する。また、制御部301は、サーチスペースセットの種別、セルのインデックス及びサーチスペースセットのインデックスの少なくとも一つに基づいて、複数のサーチスペースセットに対する下り制御チャネル候補のマッピングを制御する。
制御部301は、所定の復号回数以下及び所定の制御チャネル要素以下の少なくとも一つを満たすように複数のサーチスペースセットに対する下り制御チャネル候補のマッピングを制御してもよい。また、制御部301は、UE固有サーチスペースよりコモンサーチスペースを優先して下り制御チャネル候補のマッピングを制御してもよい。
また、制御部301は、セルのインデックスとサーチスペースセットのインデックスのいずれかを優先して下り制御チャネル候補のマッピングを制御してもよい。また、制御部301は、アグリゲーションレベルに基づいて下り制御チャネル候補のマッピングを制御してもよい。
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ−ACKを含むPUCCHを受信した場合、HARQ−ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
図9は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
送受信部203は、1以上のセルに設定される複数のサーチスペースセットをモニタして下り制御チャネル(又は、下り制御情報)を受信する。送受信部203は、各セル(又は、CC)に設定されるサーチスペースに関する情報(サーチスペースセット等)を受信してもよい。また、送受信部203は、所定の下り制御チャネルに対してサブキャリア間隔毎にそれぞれ定義される下り制御チャネル候補数に基づいて、下り制御チャネルの受信を制御してもよい。
図10は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
制御部401は、サーチスペースセットの種別、セルのインデックス及びサーチスペースセットのインデックスの少なくとも一つに基づいて下り制御チャネル候補がマッピングされた複数のサーチスペースセットのモニタを制御する。また、制御部401は、所定の下り制御チャネルに対してサブキャリア間隔毎にそれぞれ定義される下り制御チャネル候補数に基づいて、所定の下り制御チャネルの受信処理を制御してもよい。
制御部401は、所定の復号回数以下及び所定の制御チャネル要素以下の少なくとも一つを満たすように複数のサーチスペースセットに対する下り制御チャネル候補のモニタを制御してもよい。また、制御部301は、UE固有サーチスペースよりコモンサーチスペースを優先して下り制御チャネル候補のモニタを制御してもよい。
また、制御部401は、セルのインデックスとサーチスペースセットのインデックスのいずれかを優先して下り制御チャネル候補のモニタを制御してもよい。また、制御部401は、アグリゲーションレベルに基づいて下り制御チャネル候補のモニタを制御してもよい。
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD−ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu−ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC−FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1−13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8−12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S−GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE−A(LTE-Advanced)、LTE−B(LTE-Beyond)、SUPER 3G、IMT−Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New−RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi−Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。