[go: up one dir, main page]

KR0147762B1 - Multichannel Light Source Using Multimode Laser - Google Patents

Multichannel Light Source Using Multimode Laser

Info

Publication number
KR0147762B1
KR0147762B1 KR1019950023946A KR19950023946A KR0147762B1 KR 0147762 B1 KR0147762 B1 KR 0147762B1 KR 1019950023946 A KR1019950023946 A KR 1019950023946A KR 19950023946 A KR19950023946 A KR 19950023946A KR 0147762 B1 KR0147762 B1 KR 0147762B1
Authority
KR
South Korea
Prior art keywords
optical
light source
channel
output
wavelength multiplexing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019950023946A
Other languages
Korean (ko)
Other versions
KR970013894A (en
Inventor
채창준
Original Assignee
이준
한국전기통신공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이준, 한국전기통신공사 filed Critical 이준
Priority to KR1019950023946A priority Critical patent/KR0147762B1/en
Publication of KR970013894A publication Critical patent/KR970013894A/en
Application granted granted Critical
Publication of KR0147762B1 publication Critical patent/KR0147762B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

본 발명은 WDM전송기술에서 광주파수가 규칙적으로 정렬된 광원에 관한 것으로, Fabry-Perot공명기를 채택한 다중모드 레이저(1)를 이용하여 일정한 간격으로 정렬된 다수의 광주파수(7-1~7-5)를 발생시키고, 이들 각 광주파수를 WDM에 의해 분리하여 각 광주파수별로 서로 다른 광증폭을 함으로써, 일정한 광출력과 광주파수가 정렬된 광원을 얻을 수 있는 효과가 있다.The present invention relates to a light source in which the optical frequencies are regularly aligned in the WDM transmission technology, and a plurality of optical frequencies (7-1 to 7-) aligned at regular intervals using a multimode laser (1) employing a Fabry-Perot resonator. 5) and each of these optical frequencies are separated by WDM, and different optical amplifications are performed for each optical frequency, thereby obtaining a light source in which a constant light output and an optical frequency are aligned.

Description

다중모드 레이저를 이용한 다채널 광원Multichannel Light Source Using Multimode Laser

제1도는 본 발명의 제1실시예에 따른 다채널 광원의 구성도.1 is a block diagram of a multi-channel light source according to a first embodiment of the present invention.

제2도는 제1도에 도시된 다중모드 레이저 및 역파장 다중화기의 광주파수 특성을 나타낸 그래프도.FIG. 2 is a graph showing optical frequency characteristics of the multimode laser and reverse wavelength multiplexer shown in FIG.

제3도는 본 발명의 제2실시예에 따른 다채널 광원의 구성도.3 is a block diagram of a multi-channel light source according to a second embodiment of the present invention.

제4도는 본 발명의 제3실시예에 따른 다채널 광원의 구성도.4 is a block diagram of a multi-channel light source according to a third embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1:다중모드 레이저 2:역파장다중화기1: multimode laser 2: reverse wavelength multiplexer

3:파장제어회로 4:광검출기3: Wavelength control circuit 4: Photodetector

5,6-1~6-5,14-1~14-4,15,17,21-1~21-4:광섬유5,6-1 to 6-5,14-1 to 14-4,15,17,21-1 to 21-4: Optical fiber

7:금속선 9:광아이솔레이터7: metal wire 9: optical isolator

10:다채널 광원 13-1~13-4:외부광변조기10: multi-channel light source 13-1 to 13-4: external light modulator

11-1~11-4:광증폭 기능이 있는 광섬유11-1 ~ 11-4: optical fiber with optical amplification

12:광커플러 또는 파장다중화 소자12: optocoupler or wavelength multiplexing element

16:광스타커플러 18:여기광원16: Optical star coupler 18: Here light source

20-1~20-4:반도체 레이저 증폭기/변조기20-1 ~ 20-4: Semiconductor Laser Amplifier / Modulator

본 발명은 파장다중화에 의한 다채널 광통신망의 구성 및 다채널 전송방식에 쓰이는 다채널 광원에 관한 것으로, 특히 광주파수가 일정하게 정렬된 다채널 광원의 설계방식에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-channel light source used in the construction of a multi-channel optical communication network by wavelength multiplexing and a multi-channel transmission method, and more particularly, to a design method of a multi-channel light source in which optical frequencies are uniformly aligned.

일반적으로 파장다중화에 의한 광통신망의 구성 또는 파장다중화에 의한 광전송계통을 완성하기 위해서는 파장간격 또는 광주파수 간격이 일정한 광채널 집합이 필요하다. 광채널용 광원으로서느 현재 DFB(distributed feedback), DBR(distributed Bragg reflector)구조를 갖는 반도체 레이저가 현재 널리 쓰이고 있다. 이런 종류의 레이저는 단일 광주파수의 빛을 발생시킬 수 있고 고속변조가 가능하다.In general, in order to construct an optical communication network by wavelength multiplexing or to complete an optical transmission system by wavelength multiplexing, an optical channel set having a constant wavelength or optical frequency interval is required. As a light source for an optical channel, a semiconductor laser having a distributed feedback (DFB) and a distributed bragg reflector (DBR) structure is currently widely used. This type of laser can generate light at a single optical frequency and can be modulated at high speeds.

한 집합의 광주파수를 구성하는 방법은 크게 두 가지로 구별된다.There are two main ways to construct a set of optical frequencies.

그 하나는 반도체 레이저의 제작과정에서 여러 시험을 거쳐 미리 정한 광주파수를 발생시키는 것만 골라 내는 것이고, 다른 하나는 일정한 범위내에서 광주파수 변동이 가능한 가변파장 레이저의 광주파수를 가변시켜 주어진 광주파수 집합을 구성하는 것이다.One is to select only to generate a predetermined optical frequency through several tests in the manufacturing process of the semiconductor laser, and the other is to set a given optical frequency by varying the optical frequency of the tunable laser which can change the optical frequency within a certain range. To construct.

첫번째 방법은 반도체 레이저의 제조특성상 확률적으로 매우 어렵고, 이런 상황은 광주파수 수가 많을 수록 심각해진다. 이 결과, 다채널 광원의 가격은 매우 높아지게 된다.The first method is probabilistically difficult due to the manufacturing characteristics of the semiconductor laser, and this situation becomes more severe as the number of optical frequencies increases. As a result, the price of the multichannel light source becomes very high.

두번째 방법은 각 광채널마다 단일 광주파수를 유지하기 위해 파장제어회로를 설치해야 하고, 출력광의 광주파수 간격이 일정한지를 항상 감시하고 조정할 필요가 있다. 그리고 광채널 수만큼의 파장제어회로가 필요하게 되어 부피도 그 만큼 증가하기 때문에 유지보수 및 가격면에서 개선이 요구되고 있다.The second method requires the installation of a wavelength control circuit in order to maintain a single optical frequency in each optical channel, and needs to constantly monitor and adjust whether the optical frequency interval of the output light is constant. In addition, as the number of wavelength control circuits are needed as the number of optical channels, the volume is increased by that amount, and improvement in maintenance and cost is required.

위에서 서술한 종래기술은 고가의 고정밀 DFB 또는 DBR 반도체 레이저를 여러개 사용하기 때문에 근본적으로 비용이 많이 들 수 밖에 없다는 단점이 있다. 또한, 광주파수 간격이 일정한 광원의 집합을 구성하는 점에 있어서, 구성 자체가 어렵거나 주변 환경변화 및 레이저 자체의 특성변화에 대하여 일정한 광주파수 간격의 유지가 어렵다는 단점이 있다. 이러한 단점들은 특히 광가입자망에서와 같이 비교적 저속전송이 요구되고 동작환경이 열악한 경우에는 가입자당 비용이 크게 증가하기 때문에 거의 적용이 불가능하다.The above-described prior art has a disadvantage in that it is inherently expensive because many expensive high-precision DFB or DBR semiconductor lasers are used. In addition, in terms of constituting a set of light sources having a constant optical frequency interval, there is a disadvantage that the configuration itself is difficult or it is difficult to maintain a constant optical frequency interval with respect to changes in the surrounding environment and characteristics of the laser itself. These shortcomings are hardly applicable because the cost per subscriber increases significantly, especially when low speed transmission is required and the operating environment is poor, such as in an optical subscriber network.

따라서 본 발명에서는 광주파수 간격에 관한 특성을 개선하여, 보다 적은 비용으로 보다 용이하게 광파장 다중화 통신에 적합한 다채널 광원을 제공하는 데에 그 목적이 있다.Accordingly, an object of the present invention is to provide a multi-channel light source suitable for optical wavelength multiplexing communication at a lower cost by improving the characteristics of the optical frequency interval.

상기 목적을 달성하기 위하여, 본 발명의 다채널 광원에서는 다수의 광주파수를 포함하는 빛을 발생시키기 위한 다중모드 레이저 수단과,In order to achieve the above object, in the multi-channel light source of the present invention, multi-mode laser means for generating light including a plurality of optical frequencies,

상기 다중모드 레이저 수단으로 부터의 출력을 입력하여 레이저 밖에서 발생한 반사파가 레이저 종모드 특성에 영향을 주지 못하도록 하면서 역파장 다중화 수단으로 전송시키기 위한 광아이솔레이터 수단과,An optical isolator means for inputting the output from the multimode laser means to transmit the reflected wave generated outside the laser to the reverse wavelength multiplexing means without affecting the laser longitudinal mode characteristics;

상기 광아이솔레이터 수단으로 부터 출력된 빛을 입력받아 일정한 주파수 간격으로 베치된 광주파수만을 차례로 분리하여 n개로 구성된 광섬유로 출력하는 역파장 다중화 수단과,A reverse wavelength multiplexing means for receiving the light output from the optical isolator means and sequentially separating only the optical frequencies placed at regular frequency intervals and outputting the optical fiber composed of n pieces;

상기 n 개의 광섬유중 하나가 연결되고 여기에 전달된 광주파수를 검출하기 위한 광검출수단과,Light detecting means for detecting an optical frequency connected to one of the n optical fibers and transmitted thereto;

상기 광검출수단으로 부터의 출력을 입력으로 하여 상기 다중모드 레이저 수단으로 파장 조정을 위한 전기적 제어신호를 출력하는 파장제어 수단을 구현하였다.A wavelength control means for outputting an electrical control signal for wavelength adjustment to the multi-mode laser means by inputting the output from the light detection means.

이하, 본 발명의 실시예가 첨부된 도면을 참조하여 더 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

제1도는 본 발명의 제1실시예에 따른 다채널 광원의 구성도로서, FP(Fabry-Perot)공명기 구조를 갖는 다중모드 레이저(1)와,1 is a block diagram of a multi-channel light source according to a first embodiment of the present invention, a multi-mode laser (1) having a FP (Fabry-Perot) resonator structure,

상기 다중모드 레이저(1)의 출력이 광아이솔레이터(9)를 경유하여 입력단에 광섬유(5)에 의해 연결된 역파장 다중화기(2)와,An inverse multiplexer 2 whose output of the multimode laser 1 is connected by an optical fiber 5 to an input terminal via an optical isolator 9,

상기 역파장 다중화기(2)의 각 출력단에 연결된 다수 개의 광섬유 (6-1~6-5)와,A plurality of optical fibers 6-1 to 6-5 connected to each output terminal of the reverse wavelength multiplexer 2,

상기 다수 개의 광섬유중 하나가 연결된 광검출기(4)와,A photodetector 4 connected with one of the plurality of optical fibers,

상기 광검출기(4)의 출력이 금속선(7)에 의해 연결된 파장제어회로(3)와,A wavelength control circuit 3 to which an output of the photodetector 4 is connected by a metal line 7;

상기 파장제어회로(3)의 전기적 출력단이 금속선(7)에 의해 연결된 상기 다중모드 레이저(1)를 구비하였다.An electrical output terminal of the wavelength control circuit 3 was provided with the multimode laser 1 connected by a metal line 7.

상기 FP 공명기는 두 개의 평면거울이 평행하게 놓인 것으로서, 제2도의 (b)에 보인 바와 같이 공명주파수(8-1~8-5)가 주기적으로 배치되어 있다.In the FP resonator, two plane mirrors are placed in parallel, and resonant frequencies 8-1 to 8-5 are periodically arranged as shown in FIG.

여기서 인접한 두 공명주파수의 주파수 간격(△f)은 다음과 같이 표시된다.Here, the frequency interval Δf of two adjacent resonance frequencies is expressed as follows.

여기서, c는 자유공간에서의 빛의 속도이고, L은 두 평면거울의 간격이며, n은 공명기내 물질의 굴절율이다.Where c is the speed of light in free space, L is the spacing of two planar mirrors, and n is the refractive index of the material in the resonator.

공명기내에 광이득(optical gain)을 발생시킬 수 있는 물질이 존재하면 FP 레이저(1)로 동작하며, 각 공명주파수는 유한 선폭(Linewidth)을 갖는 FP레이저의 종모드에 대응된다. 광이득 물질의 광주파수에 따른 광이득 분포가 대략 포물선 모양이면, 제2도의 (a)와 같인 광주파수 특성이 나타난다. 여기서는 편의상 5개의 종모드(7-1~7-5)를 보였다.If a material capable of generating optical gain exists in the resonator, it operates with the FP laser 1, and each resonance frequency corresponds to the longitudinal mode of the FP laser having a finite linewidth. If the light gain distribution according to the optical frequency of the light gain material is substantially parabolic, the optical frequency characteristics as shown in FIG. For simplicity, five longitudinal modes (7-1 to 7-5) were shown.

본 발명에서 채택한 역파장다중화기(2)는 간섭형으로서, 다수의 광주파수를 포함한 빛을 입력받아, 일정한 주파수 간격으로 배치된 광주파수만을 차례로 분리하여 각 출력단에 내놓는다. 만약 제2도의 (b)와 같은 광주파수 특성을 갖는 빛이 입력된다면 광섬유(6-1)에는 광주파수(8-1)의 빛이 전파되고, 광섬유(6-2)에는 광주파수(8-2)의 빛이 전파하는 식으로 역파장다중화기(2)의 각 출력단에 접속된 광섬유에는 오직 한 개 광주파수의 빛만이 전파한다. 역파장다중화기(2)의 주파수 간격은 다중모드 레이저의 종모드간 주파수 간격과 일치하도록 설계되어 있고, 온도, 습도등의 외부 환경에 크게 영향받지 않거나 다중모드 레이저(1)와 같은 모양으로 영향을 받도록 설계되어 있다.The reverse wavelength multiplexer 2 adopted in the present invention is an interference type, and receives light including a plurality of optical frequencies, and sequentially separates only the optical frequencies arranged at regular frequency intervals and presents them to each output terminal. If light having an optical frequency characteristic as shown in FIG. 2 (b) is input, light of the optical frequency 8-1 is propagated to the optical fiber 6-1, and the optical frequency 8- is transmitted to the optical fiber 6-2. Only one light frequency propagates in the optical fiber connected to each output terminal of the reverse wavelength multiplexer 2 in such a manner that the light of 2) propagates. The frequency spacing of the reverse wavelength multiplexer (2) is designed to match the frequency spacing between the longitudinal modes of the multimode laser, and is not affected by the external environment such as temperature, humidity, or influenced in the same shape as the multimode laser (1). It is designed to receive.

따라서, 제2도(a)와 (b)의 정렬오차가 0이 되면, 역파자다중화기(2)의 각 출력단에는 다중모드 레이저(1)의 각 종모드가 분리되어 나타나게 된다. 각 출력단의 종모드는 파장다중 전송을 위한 광채널로서 사용되며, 이때 외부변조방식이 적용된다.Therefore, when the alignment error of Figs. 2 (a) and 2 (b) becomes zero, each longitudinal mode of the multi-mode laser 1 appears separately at each output terminal of the inverse wave multiplexer 2. The vertical mode of each output stage is used as an optical channel for wavelength multiplexing, and an external modulation scheme is applied.

다중모드 레이저(1)의 절대적인 종모드 위치는 온도, 전압 또는 전류같은 전기적 신호, 여기광의 세기에 의해 변하므로 이를 이용하여 정렬 오차를 조정한다. 정렬오차가 0일때 역파장다중화기(2)의 출력단(6-5)에는 광출력이 최대로 나타나고, 정렬오차가 0이 아닐 때는 최소가 되므로 광검출기(4)의 출력을 입력으로 받아, 파장 조정을 위한 전기적 제어신호를 발생시킨다. 이 제어 신호는 다중모드 레이저(1)의 내부회로에 의해 각 종모드의 절대적 위치를 변화시킬 수 있는 파라메터로 바뀐다. 이와 같이 동작되어 정렬 오차는 항상 0으로 유지된다. 광아이솔레이터(9)는 레이저 밖에서 발생된 반사파가 레이저 종모드 특성에 영향을 주지 못하도록 격리시키는 역할을 한다.The absolute longitudinal mode position of the multimode laser 1 varies with the strength of the excitation light and electrical signals, such as temperature, voltage or current, so that the alignment error is adjusted. When the alignment error is 0, the output power 6-5 of the reverse wavelength multiplexer 2 shows the maximum light output. When the alignment error is not 0, the light output becomes the minimum. Therefore, the output of the photodetector 4 is received as an input. Generate an electrical control signal for adjustment. This control signal is converted into a parameter capable of changing the absolute position of each longitudinal mode by the internal circuit of the multimode laser 1. In this way, the alignment error always remains zero. The optical isolator 9 serves to isolate the reflected wave generated outside the laser from affecting the laser longitudinal mode characteristic.

제3도는 다중모드 레이저(1)의 각 종모드에 포함된 광전력이 서로 다를 때, 광섬유 광증폭(11-1~11-4)를 이용하여 그 크기를 일정하게 유지하고 외부변조하는 방식을 나타내고 있다. 광섬유 광증폭기의 증폭율은 여기광의 세기에 의존하므로 광섬유의 길이 또는 광커플러(Optical Coupler; 12)의 결합비율로 조정한다. 광커플러(12) 대신 파장다중화소자(Wavelength Division Multiplexer)가 사용될 수도 있다.FIG. 3 illustrates a method of maintaining a constant size and external modulation using optical fiber optical amplifications 11-1 to 11-4 when optical powers included in the various modes of the multimode laser 1 are different. It is shown. Since the amplification rate of the optical fiber optical amplifier depends on the intensity of the excitation light, it is adjusted by the length of the optical fiber or the coupling ratio of the optical coupler 12. A wavelength division multiplexer may be used instead of the optical coupler 12.

제4도는 반도체 레이저 증폭기/변조기(20-1~20-4)를 이용하여 광증폭과 변조를 동시에 수행하는 예를 나타내고 있다.4 shows an example of simultaneously performing optical amplification and modulation using semiconductor laser amplifiers / modulators 20-1 to 20-4.

상술한 바와 같이, 본 발명의 다중모드 레이저를 이용하여 다채널 광원을 사용하게 되면 다음과 같은 효과가 있다.As described above, using a multi-channel light source using the multi-mode laser of the present invention has the following effects.

상기 다채널 광원의 각 채널은 광주파수가 일정한 간격으로 정렬되어 있기 때문에 기존의 방식과는 달리 광주파수 정렬의 필요성이 없다. 따라서 광주파수 정렬에 따르는 제어회로가 불필요하게 되고, 불완전한 정렬에서 기인할 수 있는 전송특성열화도 감소시킬 수 있다.Since each channel of the multi-channel light source is aligned at regular intervals, there is no need for optical frequency alignment unlike conventional methods. Therefore, a control circuit conforming to the optical frequency alignment becomes unnecessary, and the transmission characteristic deterioration which may be caused by incomplete alignment can be reduced.

그리고, 본 발명에 따른 광원의 출력을 다단 분기하고 광증폭하여 사용할 경우, 광주파수 집합을 중복사용할 수 있으므로 각 채널당 비용을 현격하게 감소시킬 수 있는 효과가 있다.In addition, when the output of the light source according to the present invention is multi-stage diverged and optically amplified, the optical frequency set can be used in duplicate, thereby reducing the cost per channel significantly.

Claims (11)

광주파수가 일정하게 정렬된 다채널 광원에 있어서, 다수의 광주파수를 포함하는 빛을 발생시키기 위한 다중모드 레이저 수단과, 상기 다중모드 레이저 수단으로 부터의 출력을 입력하여 레이저 밖에서 발생한 반사파가 레이저 종모드 특성에 영향을 주지 못 하도록 역파장 다중화 수단으로 전송시키기 위한 광아이솔레이터 수단과, 상기 광아이솔레이터 수단으로 부터 출력된 빛을 입력받아 일정한 주파수 간격으로 배치된 광주파수만을 차례로 분리하여 n개로 구성된 광섬유로 출력하는 역파장 다중화 수단과, 상기 n개의 광섬유중 하나가 연결되고 여기에 전달된 광주파수를 검출하기 위한 광검출수단과, 상기 광검출수단으로 부터의 출력을 입력으로 하여 상기 다중모드 레이저 수단으로 파장 조정을 위한 전기적 제어신호를 출력하는 파장제어 수단을 구비하는 것을 특징으로 하는 다채널 광원.In a multi-channel light source with a constant optical frequency, a multimode laser means for generating light including a plurality of optical frequencies, and a reflected wave generated outside the laser by inputting output from the multimode laser means Optical isolator means for transmitting to the reverse wavelength multiplexing means so as not to affect the mode characteristics, and the light is output from the optical isolator means in order to separate only the optical frequencies arranged at regular frequency intervals to n optical fibers A reverse wavelength multiplexing means for outputting, a light detecting means for detecting an optical frequency connected to one of the n optical fibers, and an output from the light detecting means as an input to the multimode laser means Wavelength control number to output electrical control signal for wavelength adjustment The multi-channel light source, comprising a step of having a. 제1항에 있어서, 상기 다중모드 레이저 수단과 광아이솔레이터 수단이 서로 광섬유에 의해 연결된 것을 특징으로 하는 다채널 광원.The multi-channel light source according to claim 1, wherein the multimode laser means and the optical isolator means are connected to each other by an optical fiber. 제1항에 있어서, 상기 광아이솔레이터 수단과 역파장 다중화 수단이 서로 광섬유에 의해 연결된 것을 특징으로 하는 다채널 광원.The multi-channel light source according to claim 1, wherein the optical isolator means and the reverse wavelength multiplexing means are connected to each other by an optical fiber. 제1항에 있어서, 상기 광검출수단과 상기 파장제어수단이 서로 금속선에 의해 연결된 것을 특징으로 하는 다채널 광원.The multi-channel light source of claim 1, wherein the light detecting means and the wavelength control means are connected to each other by a metal line. 제1항에 있어서, 상기 파장제어수단과 상기 다중모드 레이저 수단이 서로 금속선에 의해 연결된 것을 특징으로 하는 다채널 광원.The multi-channel light source of claim 1, wherein the wavelength control means and the multi-mode laser means are connected to each other by a metal line. 제1항에 있어서, 상기 역파장 다중화 수단의 각 출력단에 접속된 광섬유에는 오직 한 개의 광주파수의 빛만이 전파되는 것을 특징으로 하는 다채널 광원.The multi-channel light source according to claim 1, wherein only one optical frequency of light propagates in the optical fiber connected to each output terminal of the reverse wavelength multiplexing means. 제1항에 있어서, 상기 역파장 다중화 수단은, 상기 광섬유로 출력되는 광주파수의 간격이 상기 다중모드 레이저 수단의 종모드간 주파수의 간격과 일치하는 것을 특징으로 하는 다채널 광원.The multi-channel light source according to claim 1, wherein the reverse wavelength multiplexing means has an interval of optical frequencies output to the optical fiber coinciding with an interval between longitudinal modes of the multimode laser means. 제1항에 있어서, 상기 광검출수단에 연결된 광섬유는, 정렬오차가 0일때 광출력이 최대가 되고, 정렬오차가 0이 아닐 때는 광출력이 최소가 되는 것을 특징으로 하는 다채널 광원.The multi-channel light source according to claim 1, wherein the optical fiber connected to the light detecting means has a maximum light output when the alignment error is zero and a minimum light output when the alignment error is not zero. 제1항에 있어서, 상기 역파장 다중화 수단은, 상기 각 채널(종모드)의 광전력을 일정하게 하기위해 채널별로 증폭률이 다르게 광증폭하는 것을 특징으로 하는 다채널 광원.The multi-channel light source according to claim 1, wherein the reverse wavelength multiplexing means optically amplifies different amplification rates for each channel in order to make the optical power of each channel (long mode) constant. 제1항에 있어서, 상기 역파장 다중화 수단으로 부터 출력된 각 채널(종모드)의 광전력이 서로 다를 때, 광증폭 기능이 있는 광섬유를 이용하여 그 크기를 일정하게 유지시켜 외부변조하는 것을 특징으로 하는 다채널 광원.The method of claim 1, wherein when the optical power of each channel (long mode) output from the reverse wavelength multiplexing means is different from each other, an external modulation is maintained by maintaining a constant size using an optical fiber having an optical amplification function. Multichannel light source. 제1항에 있어서, 상기 역파장 다중화 수단으로 부터 출력된 각 채널(종모드)의 광전력을 반도체 레이저를 이용하여 광증폭 및 변조를 동시에 수행하는 것을 특징으로 하는 다채널 광원.The multi-channel light source according to claim 1, wherein the optical amplification and modulation of the optical power of each channel (vertical mode) output from the reverse wavelength multiplexing means are performed simultaneously using a semiconductor laser.
KR1019950023946A 1995-08-03 1995-08-03 Multichannel Light Source Using Multimode Laser Expired - Fee Related KR0147762B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950023946A KR0147762B1 (en) 1995-08-03 1995-08-03 Multichannel Light Source Using Multimode Laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950023946A KR0147762B1 (en) 1995-08-03 1995-08-03 Multichannel Light Source Using Multimode Laser

Publications (2)

Publication Number Publication Date
KR970013894A KR970013894A (en) 1997-03-29
KR0147762B1 true KR0147762B1 (en) 1998-08-17

Family

ID=19422751

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950023946A Expired - Fee Related KR0147762B1 (en) 1995-08-03 1995-08-03 Multichannel Light Source Using Multimode Laser

Country Status (1)

Country Link
KR (1) KR0147762B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469736B1 (en) * 2002-11-21 2005-02-02 삼성전자주식회사 Wavelength locked fabry perot laser device with multi wavelength lasing source and optical transmitter using the same

Also Published As

Publication number Publication date
KR970013894A (en) 1997-03-29

Similar Documents

Publication Publication Date Title
US5448390A (en) Wavelength division multiplex bothway optical communication system
US6782017B1 (en) Wavelength locker and wavelength discriminating apparatus
US5173794A (en) Wavelength division multiplexing using a tunable acousto-optic filter
US5915052A (en) Loop status monitor for determining the amplitude of the signal components of a multi-wavelength optical beam
JPH11264943A (en) Wavelength tracking in adjustable optical system
US5598491A (en) Optical fiber amplifier and optical fiber transmission apparatus
US6424774B1 (en) Tunable wavelength four light wave mixer
US6633430B1 (en) Booster amplifier with spectral control for optical communications systems
JPH10112686A (en) Signal light channel counter and optical amplifier using it
US20020131104A1 (en) Optical channel monitor with continuous gas cell calibration
US6577789B1 (en) Double-pass optical amplifiers and optical network equipment
KR100283866B1 (en) Gain Control Device and Method of Fiber Optic Amplifier
JP2014079013A (en) Communication system comprising tunable laser
US6704137B2 (en) Optical amplifier, method for optical amplification and optical transmission system
KR20090110565A (en) Wavelength Stabilization Method for Line Termination Device of Wavelength Division Multiplexing Passive Optical Subscriber Network
KR0147762B1 (en) Multichannel Light Source Using Multimode Laser
US7146077B2 (en) Optical coupler type filter and wavelength stabilizing apparatus of light source using the same
KR101748876B1 (en) Stable milimeter wave source for broadband wireless signal transmission using optical fibre
JP4234065B2 (en) Multi-channel optical transmitter
KR100236832B1 (en) Transmission apparatus and implementation method having wavelength stabilizer in wavelength division multiplexing
US20040070819A1 (en) Broadband tunable optical amplifier
KR100377199B1 (en) The Apparatus for Widely Tunable Optical Add-Drop Filtering
US6151156A (en) Optical fibre amplifier and transmission system with optical fibre-amplifier
JP2024163959A (en) Optical module, optical transceiver, and method for controlling light intensity
KR100480269B1 (en) Multi-wavelength light source

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

Fee payment year number: 1

St.27 status event code: A-2-2-U10-U11-oth-PR1002

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

St.27 status event code: A-5-5-R10-R13-asn-PN2301

PR1001 Payment of annual fee

Fee payment year number: 4

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 5

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

St.27 status event code: A-5-5-R10-R13-asn-PN2301

PR1001 Payment of annual fee

Fee payment year number: 6

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 7

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 8

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 9

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 10

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 11

St.27 status event code: A-4-4-U10-U11-oth-PR1001

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

L13-X000 Limitation or reissue of ip right requested

St.27 status event code: A-2-3-L10-L13-lim-X000

U15-X000 Partial renewal or maintenance fee paid modifying the ip right scope

St.27 status event code: A-4-4-U10-U15-oth-X000

PR1001 Payment of annual fee

Fee payment year number: 12

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

St.27 status event code: A-5-5-R10-R13-asn-PN2301

PR1001 Payment of annual fee

Fee payment year number: 13

St.27 status event code: A-4-4-U10-U11-oth-PR1001

PR1001 Payment of annual fee

Fee payment year number: 14

St.27 status event code: A-4-4-U10-U11-oth-PR1001

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R14-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

FPAY Annual fee payment

Payment date: 20120619

Year of fee payment: 15

PR1001 Payment of annual fee

Fee payment year number: 15

St.27 status event code: A-4-4-U10-U11-oth-PR1001

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

Not in force date: 20130520

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

St.27 status event code: A-4-4-U10-U13-oth-PC1903

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PC1903 Unpaid annual fee

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20130520

St.27 status event code: N-4-6-H10-H13-oth-PC1903

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000