[go: up one dir, main page]

KR100237313B1 - Water treatment agent for heavy metal removal using chitin xanthate or chitosan xanthate and water treatment method - Google Patents

Water treatment agent for heavy metal removal using chitin xanthate or chitosan xanthate and water treatment method Download PDF

Info

Publication number
KR100237313B1
KR100237313B1 KR1019970077602A KR19970077602A KR100237313B1 KR 100237313 B1 KR100237313 B1 KR 100237313B1 KR 1019970077602 A KR1019970077602 A KR 1019970077602A KR 19970077602 A KR19970077602 A KR 19970077602A KR 100237313 B1 KR100237313 B1 KR 100237313B1
Authority
KR
South Korea
Prior art keywords
chitin
chitosan
water treatment
xanthate
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019970077602A
Other languages
Korean (ko)
Other versions
KR19990057544A (en
Inventor
채명윤
김경화
박현규
이은열
Original Assignee
유현식
삼성종합화학주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유현식, 삼성종합화학주식회사 filed Critical 유현식
Priority to KR1019970077602A priority Critical patent/KR100237313B1/en
Publication of KR19990057544A publication Critical patent/KR19990057544A/en
Application granted granted Critical
Publication of KR100237313B1 publication Critical patent/KR100237313B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4825Polysaccharides or cellulose materials, e.g. starch, chitin, sawdust, wood, straw, cotton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

본 발명은 하기 구조식(I)의 키틴 또는 키토산을 0.01∼10N의 염기용액내에서 카본디설파이드(CS2)로 반응시키고, 상기 생성물을 여과하여 분리하고, 상기 분리된 생성물을 증류수로 세척하여 미반응 물질을 제거하고, 그리고, 상기 세척된 생성물을 공기중에서 또는 오븐에서 건조시키는 단계로 이루어지는 중금속 제거용 수처리제의 제조방법 및 상기의 제조방법에 의해 제조되는 중금속에 대한 흡착력이 향상되고 인체에 유용한 미네랄은 제거하지 않는 중금속 제거용 수처리제에 관한 것이다:The present invention reacts chitin or chitosan of the following structural formula (I) with carbon disulfide (CS 2 ) in a 0.01 to 10N base solution, and the product is separated by filtration, and the separated product is washed with distilled water and unreacted. Removing the substance, and drying the washed product in the air or in the oven, and a method for producing a heavy metal removal water treatment agent and the adsorptive power to the heavy metal produced by the above-described method is improved and useful minerals to the human body A water treatment agent for heavy metal removal that does not remove:

Figure kpo00001
Figure kpo00001

상기식에서 R은 COCH3또는 H이며, 상기 COCH3인 경우에는 키틴이고 H인 일때는 키토산이다.Wherein R is COCH 3 or H, chitin for COCH 3 and chitosan for H.

Description

키틴 잔테이트 또는 키토산 잔테이트를 이용한 중금속 제거용 수처리제 및 그 수처리 방법Water treatment agent for heavy metal removal using chitin xanthate or chitosan xanthate and water treatment method

제1도는 본 발명의 실시예에 따른 시간의 변화에 따른 키틴 잔테이트(chitin xanthate)의 납흡착량을 나타낸 그래프이다.1 is a graph showing the amount of lead adsorption of chitin xanthate over time according to an embodiment of the present invention.

제2도는 본 발명의 실시예에 따른 시간의 변화에 따른 키토산 잔테이트(chitosan xanthate)의 납흡착량을 나타낸 그래프이다.2 is a graph showing the amount of lead adsorption of chitosan xanthate over time according to an embodiment of the present invention.

[발명의 분야][Field of Invention]

본 발명은 키틴 잔테이트 또는 키토산 잔테이트를 이용한 중금속 제거용 수처리제 및 그 수처리 방법에 관한 것이다. 보다 구체적으로 본 발명은 기틴 또는 키토산을 염기와 카본디설파이드(CS2)를 사용하여 잔테이션(xanthation)시킨 키틴 잔테이트 또는 키토산 잔테이트를 이용한 중금속 제거용 수처리제 및 이것을 이용한 그 수처리 방법에 관한 것이다.The present invention relates to a water treatment agent for removing heavy metals using chitin xantate or chitosan xantate and a water treatment method thereof. More specifically, the present invention relates to a water treatment agent for removing heavy metals using chitin xanthate or chitosan xantate in which xanthation of chitin or chitosan is performed using a base and carbon disulfide (CS 2 ), and a water treatment method using the same.

[발명의 배경 및 선행기술]Background of the Invention and Prior Art

기존의 하천수, 지하수 및 폐수 속의 중금속을 제거하는 데는 화학적인 침전방법, 이온교환수지 및 분리막을 이용하는 방법이 사용되고 있다. 그러나 화학적인 침전방법은 처리후 발생하는 슬러지가 2차적인 오염원으로 작용할 수 있고, 이온교환수지 및 분리막을 이용한 방법은 처리비용이 비싸고 인체에 유용한 미네랄 금속도 함께 흡착하는 단점이 있다.Conventional methods of chemical precipitation, ion exchange resins and separation membranes have been used to remove heavy metals in river water, groundwater and wastewater. However, in the chemical precipitation method, the sludge generated after the treatment may act as a secondary pollutant, and the method using the ion exchange resin and the membrane has a disadvantage in that the treatment cost is high and the mineral metal useful for the human body is also adsorbed.

최근 이와 같은 기존의 처리기술이 가진 문제점을 해결하기 위해 미생물, 조류, 생물체 유래 고분자와 같은 바이오매스를 이용한 바이오 흡착제의 개발이 진행되고 있다.Recently, in order to solve the problems of the conventional treatment technology, development of biosorbents using biomass such as microorganisms, algae, and organism-derived polymers has been developed.

바이오매스 중 키틴과 분자구조가 유사한 셀룰로오스 및 전분은 오래전부터 여러 방면에서 사용되고 있는 것에 비해, 키틴은 셀룰로오스에 필적하는 생산량을 가지면서도 그 용도개발이 늦었다. 지금까지의 키틴의 용도는 키틴의 탈아세틸화물인 키토산이 수처리제의 응집제로 사용되는 정도이다.Cellulose and starch, which has a similar molecular structure to chitin in biomass, has been used for a long time in comparison with chitin. The use of chitin so far is such that chitosan, a deacetylate of chitin, is used as a flocculant in water treatment agents.

그러나 최근에 키틴과 키토산은 의료재료나 식품소재의 용도로 활발하게 개발되고 있으며, 또한 중금속의 제거를 위한 수처리제로서의 연구도 활발히 진행되고 있다. 미국특허 제4,992,180호에서는 키토산을 이용하여 구리, 카드뮴, 수은 등의 중금속을 제거하는 방법이 기재되어 있다. 그러나 키틴과 키토산은 중금속에 대한 제거율이 높지 않은 단점이 있다.However, recently, chitin and chitosan have been actively developed for the use of medical materials and food materials, and research into water treatment agents for the removal of heavy metals has also been actively conducted. U.S. Patent No. 4,992,180 describes a method for removing heavy metals such as copper, cadmium and mercury using chitosan. However, chitin and chitosan have the disadvantage that the removal rate for heavy metals is not high.

바이오매스에 의한 중금속의 흡착은 생물의 고분자에 존재하고 있는 여러 가지 기능기가 주로 이온교환 및 킬레이팅 리간드 역할을 함으로써 이루어진다. 생물 고분자에 있는 기능기중 흡착능은 약하나 많은 분율로 존재하는 히드록시기를 중금속에 대한 친화력이 큰 다른 기능기로 변형시킴으로써 흡착능을 향상시킬 수 있다.Adsorption of heavy metals by biomass is achieved by the role of various ion-exchanging and chelating ligands in the polymers of living organisms. The adsorption capacity of the functional group in the biological polymer is weak, but the adsorption capacity can be improved by transforming the hydroxy group present in a large fraction into another functional group having a high affinity for heavy metals.

이에 본 발명자들은 생물 고분자 중의 히드록시기를 중금속에 대한 콤플렉스 형성력이 높은 잔테이트기로 치환시킴으로써 응집제의 기능과 중금속 제거의 기능을 하면서 미네랄 금속은 거의 제거하지 않는 중금속 제거용 수처리제 및 이를 이용한 수처리 방법을 개발하기에 이르렀다.Accordingly, the present inventors have developed a water treatment agent for removing heavy metals and a water treatment method using the same by replacing a hydroxy group in a biological polymer with a xanthate group having a high complex-forming ability to heavy metals, and functioning as a coagulant and removing heavy metals. Reached.

[발명의 목적][Purpose of invention]

본 발명의 목적은 키틴 또는 키토산에 잔테이트기를 도입시켜 기존의 응집제로서의 기능과 동시에 중금속을 흡착하여 제거할 수 있는 키틴 잔테이트 또는 키토산 잔테이트를 제공하기 위한 것이다.An object of the present invention is to provide a chitin xanthate or chitosan xanthate capable of adsorbing and removing heavy metals at the same time as a conventional flocculant by introducing a xanthate group into chitin or chitosan.

본 발명의 다른 목적은 키틴 잔테이트 또는 키토산 잔테이트를 이용함으로써 중금속에 대한 흡착력이 향상된 수처리제를 제공하기 위한 것이다.Another object of the present invention is to provide a water treatment agent having improved adsorption capacity to heavy metals by using chitin xantate or chitosan xantate.

본 발명의 또 다른 목적은 키틴 잔테이트 또는 키토산 잔테이트를 수처리제로 이용함으로써 미네랄 금속은 제거하지 않고 중금속 성분만을 선택적으로 제거하는 수처리 방법을 제공하기 위한 것이다.Still another object of the present invention is to provide a water treatment method for selectively removing only heavy metal components without removing mineral metal by using chitin xanthate or chitosan xantate as a water treatment agent.

본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can be achieved by the present invention described below.

[발명의 요약][Summary of invention]

본 발명은 하기 구조식(I)의 키틴 또는 키토산을 0.01∼10N의 염기용액내에서 카본디설파이드(CS2)와 반응시키고, 상기 생성물을 여과하여 분리하고, 상기 분리된 생성물을 증류수로 세척하여 미반응 물질을 제거하고, 그리고, 상기 세척된 생성물을 공기중에서 또는 오븐에서 건조시키는 단계로 이루어지는 중금속 제거용 수처리제의 제조방법 및 상기의 제조방법에 의해 제조되는 중금속에 대한 흡착력이 향상되고 인체에 유용한 미네랄은 제거하지 않는 중금속 제거용 수처리제에 관한 것이다:The present invention reacts chitin or chitosan of the following structural formula (I) with carbon disulfide (CS 2 ) in a 0.01-10 N base solution, and the product is isolated by filtration, and the separated product is washed with distilled water and unreacted. Removing the substance, and drying the washed product in the air or in the oven, and a method for producing a heavy metal removal water treatment agent and the adsorptive power to the heavy metal produced by the above-described method is improved and useful minerals to the human body A water treatment agent for heavy metal removal that does not remove:

Figure kpo00003
Figure kpo00003

상기식에서 R은 COCH3또는 H이며, 상기 R이 COCH3일 경우에는 키틴이고 H일 경우에는 키토산이다.Wherein R is COCH 3 or H, and if R is COCH 3 it is chitin and H is chitosan.

[발명의 구체예에 대한 상세한 설명]Detailed Description of the Invention

본 발명은 하기 구조식(I)의 키틴 또는 키토산을 0.01∼10N의 염기용액내에서 카본디설파이드(CS2)와 반응시키고, 상기 생성물을 여과하여 분리하고, 상기 분리된 생성물을 증류수로 세척하여 미반응 물질을 제거하고, 그리고, 상기 세척된 생성물을 공기중에서 또는 오븐에서 건조시키는 단계로 이루어지는 중금속 제거용 수처리제의 제조방법 및 상기의 제조방법에 의해 제조되는 중금속에 대한 흡착력이 향상되고 인체에 유용한 미네랄은 제거하지 않는 중금속 제거용 수처리제에 관한 것이다:The present invention reacts chitin or chitosan of the following structural formula (I) with carbon disulfide (CS 2 ) in a 0.01-10 N base solution, and the product is isolated by filtration, and the separated product is washed with distilled water and unreacted. Removing the substance, and drying the washed product in the air or in the oven, and a method for producing a heavy metal removal water treatment agent and the adsorptive power to the heavy metal produced by the above-described method is improved and useful minerals to the human body A water treatment agent for heavy metal removal that does not remove:

Figure kpo00004
Figure kpo00004

상기식에서 R은 COCH3또는 H이며, 상기 R이 COCH3일 경우에는 키틴이고 H일 경우에는 키토산이다.Wherein R is COCH 3 or H, and if R is COCH 3 it is chitin and H is chitosan.

본 발명의 수처리제는 상기 구조식(I)의 선형 고분자인 키틴 또는 키토산의 히드록시기를 염기와 카본디설파이드(CS2)를 사용하여 잔테이션시킴으로써 중금속에 대한 흡착력이 증가됨과 동시에 인체에 유용한 미네랄은 제거하지 않는 중금속 제거용 수처리제이다.The water treatment agent of the present invention does not remove minerals useful to the human body while increasing the adsorption power to heavy metals by sequencing the hydroxyl group of chitin or chitosan, which is a linear polymer of the structural formula (I), with a base and carbon disulfide (CS 2 ). Water treatment agent for heavy metal removal.

상기 염기로서는 NaOH, KOH 또는 Ca(OH2)가 사용될 수 있으며, 반응시 염기는 0.01∼10N의 농도로 사용되며 0.1∼3N의 농도로 사용되는 것이 바람직하다.As the base, NaOH, KOH, or Ca (OH 2 ) may be used, and in the reaction, the base is used at a concentration of 0.01-10N and preferably at a concentration of 0.1-3N.

상기 카본디설파이드는 반응용액의 1∼50 부피%로 사용되어 잔테이션반응을 수행하며 5∼20 부피%로 사용되는 것이 바람직하다.The carbon disulfide is used in 1 to 50% by volume of the reaction solution to perform the residual reaction and is preferably used in 5 to 20% by volume.

본 발명의 수처리제는 키틴 또는 키토산을 염기용액에 넣어 상온에서 교반시키고, 상기 교반된 용액에 카본디설파이드 용액을 첨가하여 상온에서 12시간 반응시키거나 60℃에서 3시간 가량 반응시킨다. 반응이 진행됨에 따라 색깔이 오렌지색으로 변한다. 상기 반응에 의해 생성된 반응물을 여과시켜 분리하고, 미반응 첨가물질을 제거하기 위해 여러차례 증류수로 세척한 후 건조하여 키틴-잔테이트 또는 키토산-잔테이트를 얻는다.In the water treatment agent of the present invention, chitin or chitosan is added to a base solution and stirred at room temperature, and the carbon disulfide solution is added to the stirred solution to react at room temperature for 12 hours or at 60 ° C for 3 hours. As the reaction proceeds, the color turns orange. The reactants produced by the reaction are separated by filtration, washed several times with distilled water to remove unreacted additives and then dried to obtain chitin-xanthate or chitosan-xanthate.

본 발명에 따른 키틴 잔테이트 또는 키토산 잔테이트는 기존의 응집제 기능과 중금속 흡착제거 기능을 동시에 수행할 수 있다. 또한 본 발명의 키틴 잔테이트 또는 키토산 잔테이트를 이용한 수처리제는 하수, 폐수 및 상수 처리에서 회분식 공정, 칼럼등의 연속식 공정 및 정수기에도 이용할 수 있다.Chitin xanthate or chitosan xanthate according to the present invention can perform the function of removing the existing flocculant and heavy metal adsorption at the same time. In addition, the water treatment agent using chitin xanthate or chitosan xanthate of the present invention can be used in continuous processes such as batch processes, columns, and water purifiers in sewage, wastewater and water treatment.

본 발명은 하기의 실시예에 의하여 보다 구체화될 것이며 하기의 실시예는 본 발명을 예시하기 위한 목적으로 기재될 뿐이며 본 발명의 보호범위를 한정하고자 하는 것은 아니다.The invention will be further elucidated by the following examples which are set forth only for the purpose of illustrating the invention and are not intended to limit the scope of the invention.

[실시예]EXAMPLE

[실시예 1: 키틴의 잔체이션 반응]Example 1 Reaction of Chitin

20g의 키틴을 1.0N NaOH 용액 200㎖에 넣은 후, 상온에서 1시간 동안 교반시켰다. 20㎖의 CS2용액을 첨가하고 상온에서 12시간 반응시켰다.20 g of chitin was added to 200 mL of a 1.0N NaOH solution, followed by stirring at room temperature for 1 hour. 20 ml of CS 2 solution was added and reacted at room temperature for 12 hours.

반응후 반응물은 여과시켜 분리하고 미반응 첨가물질을 제거하기 위해 여러차례 증류수로 세척한 후, 공기중에서 건조하여 키틴 잔테이트를 얻었다.After the reaction, the reaction product was separated by filtration, washed several times with distilled water to remove unreacted additives, and dried in air to obtain chitin xantate.

[실시예 2: 키토산의 잔테이션 반응]Example 2 Xantation Reaction of Chitosan

20g의 키토산을 1.0N NaOH 용액 200㎖에 넣은 후, 상온에서 1시간 동안 교반시켰다. 20㎖의 CS2용액을 첨가하고 상온에서 12시간 반응시켰다.20 g of chitosan was added to 200 mL of a 1.0N NaOH solution, followed by stirring at room temperature for 1 hour. 20 ml of CS 2 solution was added and reacted at room temperature for 12 hours.

반응후 반응물은 여과시켜 분리하고 미반응 첨가물질을 제거하기 위해 여러차례 증류수로 세척한 후, 공기중에서 건조하여 키토산 잔테이트를 얻었다.After the reaction, the reaction product was separated by filtration, washed several times with distilled water to remove unreacted additives, and dried in air to obtain chitosan xantate.

[잔테이션 반응의 확인 시험][Confirmation test of residual reaction]

잔테이션 반응을 확인하기 위해 상기 실시예 1에서 반응물질로 사용한 키틴, 상기 실시예 2에서 반응물질로 사용한 키토산, 상기 실시예 1에서 생성된 키틴 잔테이트 및 상기 실시예 2에서 생성된 키토산 잔테이트를 원소분석하여 황(S)의 함량을 조사하였다. 분석 결과는 하기 표 1에 나타내었다.Chitin used as a reactant in Example 1, chitosan used as a reactant in Example 2, chitin xantate produced in Example 1 and chitosan xantate produced in Example 2 to confirm the xantion reaction Elemental analysis of the content of sulfur (S) was investigated. The analytical results are shown in Table 1 below.

[표 1]TABLE 1

Figure kpo00005
Figure kpo00005

주)N.D : Non-Detectable, 황원소의 검출한계는 0.1%임.Note) N.D: Detection limit of non-detectable sulfur element is 0.1%.

[납 흡착시험][Lead adsorption test]

초기 납 농도가 200ppm인 용액 100㎖가 담긴 각각의 삼각 플라스크에 키틴 또는 키토산, 및 실시예 1에서 생성된 키틴 잔테이트 또는 실시예 2에서 생성된 키토산 잔테이트를 100mg씩을 넣고, 25℃의 교반기에 250rpm으로 교반해주면서 납 흡착실험을 하였다. 흡착평형에 도달한 상태에서 1㎖의 샘플을 취하고, 이를 원심분리하여 그 상등액을 취하였다. 잔존 납 농도는 상기 상등액을 20배로 희석하여 원자흡광분석기를 이용하여 측정하였다.In each Erlenmeyer flask containing 100 ml of an initial lead concentration of 200 ppm, 100 mg of chitin or chitosan and chitin xanthate produced in Example 1 or chitosan xanthate produced in Example 2 were added, and the mixture was stirred at 25 ° C. The lead adsorption experiment was carried out while stirring at 250 rpm. 1 ml of sample was taken from the state of adsorption equilibrium, and the supernatant was taken by centrifugation. The residual lead concentration was measured by using an atomic absorption spectrometer by diluting the supernatant by 20 times.

납 흡착량을 측정한 결과는 키틴은 20mg/g, 키틴 잔테이트는 64mg/g, 키토산은 20mg/g, 그리고 키토산 잔테이트는 190mg/g이었다.As a result of measuring lead adsorption, chitin was 20 mg / g, chitin xanthate was 64 mg / g, chitosan was 20 mg / g, and chitosan xantate was 190 mg / g.

[실시예 3: 0.1 N NaOH에서 키틴 잔테이트의 제조]Example 3: Preparation of Chitin Xantate in 0.1 N NaOH

0.1 N의 NaOH에서 실시예 1과 동일한 방법으로 키틴 잔테이트를 제조하였다. 상기에서 제시한 방법으로 납 흡착시험을 실시하고, 10분, 30분, 1시간 및 3시간 후에 샘플링 하였다. 납 흡착능 평가 실험을 한 결과는 제1도에 나타내었다.Chitin xantate was prepared in the same manner as in Example 1 in 0.1 N NaOH. The lead adsorption test was conducted by the method presented above, and sampled after 10 minutes, 30 minutes, 1 hour and 3 hours. The results of the lead adsorption capacity evaluation experiment are shown in FIG.

[실시예 4: 0.5 N NaOH에서 키틴 잔테이트의 제조]Example 4 Preparation of Chitin Xanthate in 0.5 N NaOH

0.5 N의 NaOH에서 실시예 1과 동일한 방법으로 키틴 잔테이트를 제조하였다. 상기에서 제시한 방법으로 납 흡착시험을 실시하고, 10분, 30분, 1시간 및 3시간 후에 샘플링 하였다. 납 흡착능 평가 실험을 한 결과는 제1도에 나타내었다.Chitin xantate was prepared in the same manner as in Example 1 in 0.5 N NaOH. The lead adsorption test was conducted by the method presented above, and sampled after 10 minutes, 30 minutes, 1 hour and 3 hours. The results of the lead adsorption capacity evaluation experiment are shown in FIG.

[실시예 5: 1.0 N NaOH에서 키틴 잔테이트의 제조]Example 5 Preparation of Chitin Xanthate in 1.0 N NaOH

1.0 N의 NaOH에서 실시예 1과 동일한 방법으로 키틴 잔테이트를 제조하였다. 상기에서 제시한 방법으로 납 흡착시험을 실시하고, 10분, 30분, 1시간 및 3시간 후에 샘플링 하였다. 납 흡착능 평가 실험을 한 결과는 제1도에 나타내었다.Chitin xantate was prepared in the same manner as in Example 1 in 1.0 N of NaOH. The lead adsorption test was conducted by the method presented above, and sampled after 10 minutes, 30 minutes, 1 hour and 3 hours. The results of the lead adsorption capacity evaluation experiment are shown in FIG.

[실시예 6: 2.0 N NaOH에서 키틴 잔테이트의 제조]Example 6 Preparation of Chitin Xanthate in 2.0 N NaOH

2.0 N의 NaOH에서 실시예 1과 동일한 방법으로 키틴 잔테이트를 제조하였다. 상기에서 제시한 방법으로 납 흡착시험을 실시하고, 10분, 30분, 1시간 및 3시간 후에 샘플링 하였다. 납 흡착능 평가 실험을 한 결과는 제1도에 나타내었다.Chitin xantate was prepared in the same manner as in Example 1 in 2.0 N of NaOH. The lead adsorption test was conducted by the method presented above, and sampled after 10 minutes, 30 minutes, 1 hour and 3 hours. The results of the lead adsorption capacity evaluation experiment are shown in FIG.

[실시예 7: 0.1 N NaOH에서 키토산 잔테이트의 제조]Example 7 Preparation of Chitosan Xantate in 0.1 N NaOH

0.1 N의 NaOH에서 실시예 1과 동일한 방법으로 키틴산 잔테이트를 제조하였다. 상기에 제시한 방법으로 납 흡착시험을 실시하고, 10분, 30분, 1시간 및 3시간 후에 샘플링 하였다. 납 흡착능 평가 실험을 한 결과는 제2도에 나타내었다.Chitinic acid xanthate was prepared in the same manner as in Example 1 in 0.1 N NaOH. The lead adsorption test was conducted by the method presented above, and sampled after 10 minutes, 30 minutes, 1 hour and 3 hours. The results of the lead adsorption capacity evaluation experiment are shown in FIG.

[실시예 8: 0.5 N NaOH에서 키토산 잔테이트의 제조]Example 8 Preparation of Chitosan Xantate in 0.5 N NaOH

0.5 N의 NaOH에서 실시예 1과 동일한 방법으로 키틴산 잔테이트를 제조하였다. 상기에서 제시한 방법으로 납 흡착시험을 실시하고, 10분, 30분, 1시간 및 3시간 후에 샘플링 하였다. 납 흡착능 평가 실험을 한 결과는 제2도에 나타내었다.Chitinic acid xanthate was prepared in the same manner as in Example 1 in 0.5 N NaOH. The lead adsorption test was conducted by the method presented above, and sampled after 10 minutes, 30 minutes, 1 hour and 3 hours. The results of the lead adsorption capacity evaluation experiment are shown in FIG.

[실시예 9: 1.0 N NaOH에서 키토산 잔테이트의 제조]Example 9 Preparation of Chitosan Xantate in 1.0 N NaOH

1.0 N의 NaOH에서 실시예 2와 동일한 방법으로 키토산 잔테이트를 제조하였다. 상기에 제시한 방법으로 납 흡착시험을 실시하고, 10분, 30분, 1시간 및 3시간 후에 샘플링 하였다. 납 흡착능 평가 실험을 한 결과는 제2도에 나타내었다.Chitosan xantate was prepared in the same manner as in Example 2 in 1.0 N of NaOH. The lead adsorption test was conducted by the method presented above, and sampled after 10 minutes, 30 minutes, 1 hour and 3 hours. The results of the lead adsorption capacity evaluation experiment are shown in FIG.

실시예 1 및 실시예 3∼6에 있어서 잔테이션처리 되지 않은 키틴의 경우 초기 납 농도 200ppm에서 최대 55ppm(흡착량: 55mg/g)의 납이 제거된 반면, 0.5 N NaOH 이상의 농도에서 반응시켜 얻은 키틴 잔테이트는 103ppm 이상의 납이 흡착 제거 되었다. 제1도에 나타난 바와 같이 흡착 평형에서의 흡착량은 0.5N NaOH에서 얻은 키틴 잔테이트는 123ppm(흡착량: 123mg/g)의 납이 제거되어 납 흡착량이 2배 증가하였고, 2.0 N NaOH에서 얻은 키틴 잔테이트는 144ppm(흡착량: 144mg/g mg)의 납이 제거되어 납 흡착량이 2.6배 향상되었다. 흡착속도를 알아 보기 위해 10분 후의 납흡착제거량을 측정한 결과, 키틴의 경우에는 최종 대비 80%인 반면, 키틴 잔테이트의 경우에는 71%에서 최고 81%로 초기 흡착속도가 유사한 결과를 나타내었다.In Example 1 and Examples 3 to 6, the chitin that was not shunted was obtained by reacting at a concentration of 0.5 N NaOH or higher while the maximum lead concentration of 200 ppm to 55 ppm (adsorbed amount: 55 mg / g) was removed. Chitin xantate was adsorbed and removed over 103ppm of lead. As shown in FIG. 1, the adsorption amount in the adsorption equilibrium was about 123 ppm (adsorption amount: 123 mg / g) of lead removed from chitin xanthate obtained from 0.5 N NaOH, and the amount of lead adsorption increased by 2 times. Chitin xanthate was 144 ppm (adsorbed amount: 144 mg / g mg) lead was removed, the lead adsorption amount was 2.6 times improved. As a result of measuring the adsorption rate after 10 minutes to determine the adsorption rate, the initial adsorption rate was similar to 80% for chitin, whereas 71% to 81% for chitin xantate showed similar results. .

실시예 7∼10에 있어서 0.1, 0.5, 1.0 및 2.0 N NaOH 농도에서 얻은 키토산 잔테이트로 납 흡착능 평가실험을 한 결과는 제2도에 나타난 바와 같다.The results of the lead adsorption performance evaluation experiment with chitosan xanthate obtained at the concentrations of 0.1, 0.5, 1.0 and 2.0 N NaOH in Examples 7 to 10 are as shown in FIG.

실시예 2에서 키토산은 흡착 평형상태에서 45ppm의 납을 흡착 제거한 것에 비해, 실시예 6의 0.5 N NaOH에서 얻은 키토산 잔테이트는 174ppm 정도의 납을 흡착 제거함을 보여 흡착량이 3.9배 증가하는 결과를 보였다. 납의 흡착제거 속도는 10분 후에 키토산이 58%인데 비해, 키토산 잔테이트도 60∼80%로 약간 증가하는 결과를 얻었다.In Example 2, chitosan was absorbed and removed by 45 ppm of lead at adsorption equilibrium, whereas chitosan xanthate obtained in 0.5 N NaOH of Example 6 was found to adsorb and remove about 174 ppm of lead. . The lead adsorption removal rate was 58% in chitosan after 10 minutes, while chitosan xantate was slightly increased to 60-80%.

[실시예 10: 2.0 N NaOH에서 키토산 잔테이트의 제조]Example 10 Preparation of Chitosan Xantate in 2.0 N NaOH

2.0 N의 NaOH에서 실시예 2와 동일한 방법으로 키틴산 잔테이트를 제조하였다. 상기에서 제시한 방법으로 납 흡착시험을 실시하고, 10분, 30분, 1시간 및 3시간 후에 샘플링 하였다. 납 흡착능 평가 실험을 한 결과는 제2도에 나타내었다.Chitinic acid xanthate was prepared in the same manner as in Example 2 in 2.0 N of NaOH. The lead adsorption test was conducted by the method presented above, and sampled after 10 minutes, 30 minutes, 1 hour and 3 hours. The results of the lead adsorption capacity evaluation experiment are shown in FIG.

실시예 1 및 실시예 3∼6에 있어서 잔테이션 처리되지 않은 키틴의 경우 초기 납 농도 200ppm에서 최대 55ppm(흡착량: 55mg/g의 키틴)의 납이 제거된 반면 0.5N 이상의 농도의 NaOH에서 반응시켜 얻은 키틴 잔테이트는 103ppm 이상의 납이 흡착 제거되었다. 제1도에서 흡착 평형에서의 흡착량은 0.5 N NaOH에서 얻은 키틴 잔테이트는 123ppm(흡착량: 123mg/g의 키틴 잔테이트)의 납이 제거되어 납 흡착량이 2배 증가하였고, 2.0 N NaOH에서 얻은 키틴 잔테이트는 144ppm(흡착량: 144mg/g의 키틴 잔테이트)의 납이 제거되어 납 흡착량이 2.6배 향상되었다. 흡착 속도를 알아 보기 위한 10분후의 납흡착 제거량은 키틴의 경우에는 최종 대비 80%인 반면, 키틴 잔테이트의 경우에는 71%에서 최고 81%로 초기 흡착 속도와 유사한 결과를 나타내었다.In the case of chitin which was not treated in Examples 1 and 3 to 6, up to 55 ppm (adsorption amount: 55 mg / g chitin) of lead was removed from the initial lead concentration of 200 ppm while reacting in NaOH of 0.5 N or more concentration. The chitin xanthate obtained by the adsorption was adsorbed and removed at 103 ppm or more. In FIG. 1, the adsorption amount at the adsorption equilibrium showed that the chitin xanthate obtained from 0.5 N NaOH was 123 ppm (adsorption amount: 123 mg / g chitin xanthate), and lead adsorption amount was doubled. At 2.0 N NaOH As for the obtained chitin xantate, the lead of 144 ppm (adsorbed amount: 144 mg / g chitin xantate) was removed, and the lead adsorption amount improved 2.6 times. Lead adsorption removal after 10 minutes to determine the adsorption rate was 80% compared to the final in the case of chitin, while 71% to 81% in the case of chitin xanthate showed similar results to the initial adsorption rate.

실시예 7∼10에 있어서, 0.1, 0.5, 1.0 및 2.0 N 농도의 NaOH에서 얻은 키토산 잔테이트로 납 흡착능 평가실험을 한 결과는 제2도에 나타나 있다. 실시예 2의 키토산은 초기 납 농도 200ppm에서 흡착 평형 상태에서 45ppm(흡착량: 45mg/g)의 납을 흡착 제거한 것에 비하여, 실시예 6의 0.5 N NaOH에서 얻은 키토산 잔테이트는 174ppm(흡착량: 174mg/g)정도의 납을 흡착 제거하였으며 이는 납 흡착량이 3.9배 증가한 것이다. 납의 흡착 제거 속도는 10분 후에 키토산이 58% 증가하였고 키토산 잔테이트도 60∼80%로 약간 증가하였다.In Examples 7 to 10, the results of the lead adsorption capacity evaluation experiment with chitosan xantate obtained in NaOH at 0.1, 0.5, 1.0 and 2.0 N concentrations are shown in FIG. The chitosan of Example 2 was 174 ppm of adsorption xanthate obtained from 0.5 N NaOH of Example 6, compared to 45 ppm (adsorption amount: 45 mg / g) of lead at an adsorption equilibrium at an initial lead concentration of 200 ppm. 174mg / g) of lead was removed by adsorption, which is a 3.9-fold increase in lead adsorption. After 10 minutes, the adsorption removal rate of lead increased chitosan by 58% and chitosan xantate slightly increased to 60 ~ 80%.

[실시예 11∼15: pH에 따른 키틴 잔테이트의 납흡착 시험][Examples 11-15: Lead adsorption test of chitin xanthate according to pH]

키틴 잔테이트의 납 흡착시 pH의 효과를 알아보기 위하여, 이들을 증류수가 담긴 삼각 플라스크에 각각 넣은 후 1.0N HCl 용액으로 원하는 pH로 조정하였다. 각각의 플라스크에 고농도의 납 용액을 주입하여 최종 납 농도를 200ppm으로 하고, 25℃ 교반기에서, 250rpm으로 교반하였다. 납 흡착실험은 상기에서 제시한 방법으로 행하였고 그 결과를 표 2에 나타내었다.In order to determine the effect of pH on the lead adsorption of chitin xanthate, each of them was placed in a Erlenmeyer flask containing distilled water and adjusted to a desired pH with 1.0 N HCl solution. A high concentration of lead solution was injected into each flask to make a final lead concentration of 200 ppm, and stirred at 250 rpm in a 25 ° C stirrer. Lead adsorption experiment was carried out by the method described above and the results are shown in Table 2.

[실시예 16∼20: pH에 따른 키토산 잔테이트의 납흡착 시험][Examples 16-20: Lead adsorption test of chitosan xantate according to pH]

키토산 잔테이트를 사용한 것을 제외하고는 상기 실시예 11∼15와 동일한 방법으로 납흡착 시험을 실시하고 그 결과를 표 2에 나타내었다.A lead adsorption test was conducted in the same manner as in Examples 11 to 15 except that chitosan xantate was used, and the results are shown in Table 2.

[표 2]TABLE 2

Figure kpo00006
Figure kpo00006

[실시예 21: 고농도 미네랄 금속 존재 하에서의 키토산 잔테이트의 납흡착 시험]Example 21 Lead Adsorption Test of Chitosan Xantate in the Presence of Highly Concentrated Mineral Metals

키틴 잔테이트를 사용하여 흡착제거시, 초기납 농도는 200ppm이고 미네랄 금속인 Na+및 Mg2+이온이 각각에서 1,000ppm일 경우 납 흡착에 미치는 영향을 살펴보았다. 납흡착은 상기와 같은 방법으로 행하였다. 그 결과 3시간 흡착 경과 후 남아있는 납의 농도는 각각 141 ppm 및 130ppm으로 미네랄 금속이 존재하지 않는 경우의 152ppm과 비슷하게 나타났다.When the adsorption was removed using chitin xantate, the initial lead concentration was 200ppm and the effect of lead adsorption on the mineral metal Na + and Mg2 + ion of 1,000ppm was investigated. Lead adsorption was carried out in the same manner as above. As a result, the concentration of lead remaining after 3 hours of adsorption was 141 ppm and 130 ppm, respectively, similar to 152 ppm in the absence of mineral metal.

[실시예 22: 고농도 미네랄 금속 존재 하에서의 키토산 잔테이트의 납흡착 시험]Example 22 Lead Adsorption Test of Chitosan Xantate in the Presence of Highly Concentrated Mineral Metals

키토산 잔테이트를 사용하여 흡착제거시, 초기납 농도는 200ppm이고 미네랄 금속인 Na+및 Mg2+이온이 각각에서 1,000ppm일 경우 납 흡착에 미치는 영향을 살펴보았다. 납흡착은 상기와 같은 방법으로 행하였다. 그 결과 3시간 흡착 경과 후 남아있는 납의 농도는 미네랄 금속이 없는 경우의 납농도 25ppm과 비교하여 Na+및 Mg2+이 존재하는 경우도 3시간 후 남아있는 납의 농도가 각각 20ppm 및 34ppm이었다.When adsorption was removed using chitosan xantate, the initial lead concentration was 200ppm and the effect of lead adsorption on the mineral metal Na + and Mg2 + ions at 1,000ppm was examined. Lead adsorption was carried out in the same manner as above. As a result, the concentration of lead remaining after 3 hours of adsorption was 20 ppm and 34 ppm of lead remaining after 3 hours, even when Na + and Mg 2+ were present, compared to 25 ppm of lead without mineral metal.

따라서 고농도의 Na+및 Mg2+이온의 존재하에서도 납에 대한 키틴 잔테이트 또는 키토산 잔테이트의 흡착능 및 선택성이 유지됨을 알 수 있다.Therefore, it can be seen that the adsorption capacity and selectivity of chitin xanthate or chitosan xanthate to lead are maintained even in the presence of high concentrations of Na + and Mg 2+ ions.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 속하는 것으로 볼 수 있다.Simple modifications and variations of the present invention can be readily made by those skilled in the art, and all such variations or modifications can be regarded as belonging to the scope of the present invention.

Claims (6)

하기 구조식(I)의 키틴 또는 키토산에 잔테이트기를 도입하여 제조된 키틴 잔테이트 또는 키토산 잔테이트로 이루어지는 것을 특징으로 하는 중금속 제거용 수처리제:A water treatment agent for removing heavy metals, comprising a chitin xantate or chitosan xantate prepared by introducing a xanthate group into chitin or chitosan of the following structural formula (I):
Figure kpo00007
Figure kpo00007
상기식에서 R은 COCH3또는 H이고, R이 COCH3인 경우에는 키틴이고 R이 H인 경우에는 키토산임.Wherein R is COCH 3 or H, chitin if R is COCH 3 and chitosan if R is H.
하기 구조식(I)의 키틴 또는 키토산을 0.01∼10N의 염기용액내에서 카본디설파이드(CS2)로 반응시키고; 상기 생성물을 여과하여 분리하고; 상기 분리된 생성물을 증류수로 세척하여 미반응물질을 제거하고; 그리고 상기 세척된 생성물을 공기중에서 또는 오븐에서 건조시키는; 단계로 이루어지는 것을 특징으로 하는 중금속 제거용 수처리제의 제조방법:Reacting chitin or chitosan of the following structural formula (I) with carbon disulfide (CS 2 ) in a base solution of 0.01-10 N; Filtering off the product; Washing the separated product with distilled water to remove unreacted material; And drying the washed product in air or in an oven; Method for producing a water treatment agent for removing heavy metals, characterized in that consisting of:
Figure kpo00008
Figure kpo00008
상기식에서 R은 COCH3또는 H이고, R이 COCH3인 경우에는 키틴이고 R이 H인 경우에는 키토산임.Wherein R is COCH 3 or H, chitin if R is COCH 3 and chitosan if R is H.
제2항에 있어서, 상기 염기는 NaOH, KOH 또는 Ca(OH)2인 것을 특징으로 하는 중금속 제거용 수처리제의 제조방법.The method of claim 2, wherein the base is NaOH, KOH, or Ca (OH) 2 . 제2항에 있어서, 상기 카본디설파이드(CS2)는 반응용액의 1∼50 부피%로 사용되는 것을 특징으로 하는 중금속 제거용 수처리제의 제조방법.The method of claim 2, wherein the carbon disulfide (CS 2 ) is used in an amount of 1 to 50% by volume of the reaction solution. 제1항의 수처리제가 회분식 또는 연속식 수처리 공정의 수처리제로 사용되는 것을 특징으로 하는 중금속을 제거하기 위한 수처리 방법.The water treatment method for removing heavy metals according to claim 1, wherein the water treatment agent is used as a water treatment agent in a batch or continuous water treatment process. 제1항의 수처리제가 정수기의 필터 충진제로 사용되는 것을 특징으로 하는 중금속을 제거하기 위한 수처리 방법.The water treatment method for removing heavy metals according to claim 1, wherein the water treatment agent is used as a filter filler of a water purifier.
KR1019970077602A 1997-12-30 1997-12-30 Water treatment agent for heavy metal removal using chitin xanthate or chitosan xanthate and water treatment method Expired - Fee Related KR100237313B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970077602A KR100237313B1 (en) 1997-12-30 1997-12-30 Water treatment agent for heavy metal removal using chitin xanthate or chitosan xanthate and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970077602A KR100237313B1 (en) 1997-12-30 1997-12-30 Water treatment agent for heavy metal removal using chitin xanthate or chitosan xanthate and water treatment method

Publications (2)

Publication Number Publication Date
KR19990057544A KR19990057544A (en) 1999-07-15
KR100237313B1 true KR100237313B1 (en) 2000-01-15

Family

ID=19529595

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970077602A Expired - Fee Related KR100237313B1 (en) 1997-12-30 1997-12-30 Water treatment agent for heavy metal removal using chitin xanthate or chitosan xanthate and water treatment method

Country Status (1)

Country Link
KR (1) KR100237313B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954539B1 (en) * 2009-09-15 2010-04-22 한밭대학교 산학협력단 The sorbent composition which contains chitosan for water treatment and a method of preparing thereof
CN103861232A (en) * 2014-03-21 2014-06-18 南京市环境保护科学研究院 Stabilization chemical agent and processing method for processing nickel-containing dead catalyst
CN105061796A (en) * 2015-08-27 2015-11-18 中国科学院东北地理与农业生态研究所 Method for preparing modified chitosan sponge structure material and appliance

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456506B1 (en) * 2002-01-16 2004-11-09 주식회사 자광 Manufacturing method of Water soluble chitosan blendmer for heavy metal binding agent and itself produced using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100954539B1 (en) * 2009-09-15 2010-04-22 한밭대학교 산학협력단 The sorbent composition which contains chitosan for water treatment and a method of preparing thereof
WO2011034327A3 (en) * 2009-09-15 2011-10-27 한밭대학교 산학협력단 Absorbent containing chitosan for treating water and method for manufacturing same
CN103861232A (en) * 2014-03-21 2014-06-18 南京市环境保护科学研究院 Stabilization chemical agent and processing method for processing nickel-containing dead catalyst
CN105061796A (en) * 2015-08-27 2015-11-18 中国科学院东北地理与农业生态研究所 Method for preparing modified chitosan sponge structure material and appliance

Also Published As

Publication number Publication date
KR19990057544A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
Sankararamakrishnan et al. Removal of hexavalent chromium using a novel cross linked xanthated chitosan
Cheng et al. Heavy metals uptake by activated sludge
Rojas et al. Adsorption of chromium onto cross-linked chitosan
CN103359816B (en) Method for synthesizing modified sodium alginate flocculating agent and application of flocculating agent
Fu et al. Application of a novel strategy—coordination polymerization precipitation to the treatment of Cu2+-containing wastewaters
Niu et al. Characteristics of gold biosorption from cyanide solution
Mahmoud et al. Solid–solid crosslinking of carboxymethyl cellulose nanolayer on titanium oxide nanoparticles as a novel biocomposite for efficient removal of toxic heavy metals from water
Gode et al. Sorption of Cr (III) onto chelating b-DAEG–sporopollenin and CEP–sporopollenin resins
US4752398A (en) Method for removing mercury and other related metals from a liquid medium
AU755730B2 (en) A novel agropolymer used for purification of polluted water or contaminated water containing metal or ions and a method of producing the agropolymer
Sun et al. Adsorption properties of Cu (II) ions onto N-succinyl-chitosan and crosslinked N-succinyl-chitosan template resin
KR100237313B1 (en) Water treatment agent for heavy metal removal using chitin xanthate or chitosan xanthate and water treatment method
CN112569905A (en) Chitosan grafted triethylene tetramine dithiocarbamate adsorbing material
Behbahani et al. Separation/enrichment of copper and silver using titanium dioxide nanoparticles coated with poly-thiophene and their analysis by flame atomic absorption spectrophotometry
Mondal et al. Biodegradable surfactant from natural starch for the reduction of environmental pollution and safety for water living organism
Olugbemi et al. Assessment of the Adsorption Potential of Synthesized Chitosan-Pyrrole-2-Carboxaldehyde Schiff Base for Cr²⁺ and Pb²⁺ Ions from Dumpsite Leachate
WO2012103582A1 (en) Cellulose phosphate powder product and process for manufacture thereof, and application to removal of contaminants from aqueous solutions
Campanella et al. Mercury removal from petrochemical wastes
Hassan et al. Removal of boron from industrial wastewater by chitosan via chemical precipitation
M Mohamed et al. Removal of cadmium from aqueous solution using modified magnetic glycine modified cross-linked chitosan resin
RU2689576C1 (en) Method of purifying high-arsenic-containing waste water
CN113477232B (en) Water purifying agent for coking wastewater treatment and preparation method thereof
Bobirica et al. NEW MATERIALS FOR REMOVING NITRATE, MANGANESE AND IRON FROM GROUNDWATER
Kano Carboxymethyl-Chitosan Cross-Linked 3-Aminopropyltriethoxysilane Membrane for Speciation
Ahmady-Asbchin et al. Cadmium biosorption from aqueous solutions by Fucus vesiculosus L.: Sorption mechanisms

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20021008

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

P14-X000 Amendment of ip right document requested

St.27 status event code: A-5-5-P10-P14-nap-X000

P16-X000 Ip right document amended

St.27 status event code: A-5-5-P10-P16-nap-X000

Q16-X000 A copy of ip right certificate issued

St.27 status event code: A-4-4-Q10-Q16-nap-X000

P15-X000 Request for amendment of ip right document rejected

St.27 status event code: A-5-5-P10-P15-nap-X000

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20021008

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000