[go: up one dir, main page]

KR100282335B1 - Magneto-optical recording media - Google Patents

Magneto-optical recording media Download PDF

Info

Publication number
KR100282335B1
KR100282335B1 KR1019980042089A KR19980042089A KR100282335B1 KR 100282335 B1 KR100282335 B1 KR 100282335B1 KR 1019980042089 A KR1019980042089 A KR 1019980042089A KR 19980042089 A KR19980042089 A KR 19980042089A KR 100282335 B1 KR100282335 B1 KR 100282335B1
Authority
KR
South Korea
Prior art keywords
layer
magnetic
thin film
recording
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019980042089A
Other languages
Korean (ko)
Other versions
KR20000025143A (en
Inventor
김진홍
Original Assignee
구자홍
엘지전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자주식회사 filed Critical 구자홍
Priority to KR1019980042089A priority Critical patent/KR100282335B1/en
Priority to US09/263,882 priority patent/US6141297A/en
Publication of KR20000025143A publication Critical patent/KR20000025143A/en
Application granted granted Critical
Publication of KR100282335B1 publication Critical patent/KR100282335B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • G11B11/10593Details for improving read-out properties, e.g. polarisation of light
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10584Record carriers characterised by the selection of the material or by the structure or form characterised by the form, e.g. comprising mechanical protection elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • G11B11/10591Details for improving write-in properties, e.g. Curie-point temperature

Abstract

다층 박막의 재생층을 갖는 광자기 기록매체에 관한 것으로, 자기 초해상(MSR) 또는 자구 확대(MAMMOS) 광자기 디스크의 재생층으로 자성층/비자성층 다층 박막을 이용하고, 기록층 방향으로 다층 박막의 비자성층 두께만을 점점 얇게 형성하거나 다층 박막의 자성층 두께만을 점점 두껍게 형성되도록 다층 박막의 자성층과 비자성층의 서브층(sublayer) 두께를 변화시켜 자기적 특성을 변조시킴으로써, 신호의 품질을 향상시켜 해상도를 높일 수 있고 장파장인 레드 영역 뿐만 아니라 단파장인 블루 영역에서도 적용 가능하므로 산업상 이용 분야가 넓으며 고밀도 디스크에 적합하다.A magneto-optical recording medium having a multi-layer thin film reproducing layer, wherein the magnetic layer / non-magnetic layer multi-layer thin film is used as a reproducing layer of a magnetic super-resolution (MSR) or magnetic domain expansion (MAMMOS) magneto-optical disk, and the multi-layer thin film in the recording layer direction. The quality of the signal is improved by modulating the magnetic properties by changing the thickness of the magnetic layer of the multilayer film and the sublayers of the nonmagnetic layer so that only the nonmagnetic layer thickness of the thin film is gradually thinner or the thickness of the multilayer film is thicker. It can be applied to not only the red region of long wavelength but also the blue region of short wavelength.

Description

광자기 기록 매체Magneto-optical recording media

본 발명은 광자기 기록 매체에 관한 것으로, 다층 박막의 재생층을 갖는 광자기 기록매체에 관한 것이다.The present invention relates to a magneto-optical recording medium, and more particularly, to a magneto-optical recording medium having a multi-layer thin film reproducing layer.

최근들어 고밀도 정보기록/재생에 대한 요구가 커지면서 레이저 광을 이용한 고밀도 기록이 큰 관심을 끌고 있다.Recently, as the demand for high-density information recording / reproducing increases, high-density recording using laser light has attracted great attention.

그 중, 광자기 디스크는 정보의 반복기록과 소거가 가능하고 고밀도화를 용이하게 구현할 수 있어 금후 발전이 상당히 기대되는 기록매체이므로 최근 이에 대한 연구가 활발히 진행되고 있다.Among them, the magneto-optical disk is a recording medium that can be repeatedly recorded and erased of information and can be easily implemented with high density. Therefore, research on this has been actively conducted in recent years.

광자기 디스크는 수직자화 박막에 레이저 광과 자기장을 이용하여 자구(magnetic domain)를 형성하여 정보를 기록하고, 자기광학효과를 이용하여 정보를 재생하는 것으로 기록층 재료로는 희토류-천이금속 합금계(RE-TM)를 많이 사용하고 있다.Magneto-optical disk records information by forming magnetic domain using laser light and magnetic field on vertical magnetized thin film and reproduces information by using magneto-optical effect. Rare earth-transition metal alloy system (RE-TM) is used a lot.

여기서, 천이금속은 강자성 원소인 Fe, Co 등이며, 희토류 원소는 Tb, Dy, Gd, Sm, Ho 등이다.Here, the transition metals are Fe, Co, etc., which are ferromagnetic elements, and the rare earth elements are Tb, Dy, Gd, Sm, Ho, and the like.

이러한 광자기 디스크에서 가장 큰 목표중의 하나는 단위 면적안에 보다 많은 정보를 기록하고 오류없이 재생하는 것이다.One of the biggest goals of such magneto-optical discs is to record more information in a unit area and reproduce it without errors.

그러므로 기록밀도를 높이기 위해서는 자구의 크기를 작게할 필요가 있다.Therefore, in order to increase the recording density, it is necessary to reduce the size of the magnetic domain.

그러나, 자구를 작게하기 위해서는 레이저 광의 파장을 더 짧게해야 하고, 자구를 작게 형성하여 기록한 후에도 그 자구를 재생하는 과정에서 신호의 크기가 작아 어려움이 많았다.However, in order to make the magnetic domain smaller, the wavelength of the laser light must be shorter, and even after the formation and recording of the magnetic domain is small, the magnitude of the signal is difficult in the process of reproducing the magnetic domain.

그 이유는 재생빔(스팟)의 직경보다 작은 자구를 재생하는 과정에서 인접한 자구로부터 신호가 유입되어 노이즈가 커져 신호와 잡음의 비(carrier-to-noise ratio)가 상대적으로 감소되는 문제가 생겨 재생 오류를 일으키는 문제가 발생하기 때문이다.The reason for this is that in the process of regenerating magnetic domains smaller than the diameter of the reproduction beam (spot), the signal is introduced from adjacent magnetic domains, and the noise increases, so that the signal-to-noise ratio decreases relatively. This is because a problem occurs that causes an error.

그러므로 이러한 문제들을 해결하기 위해서는 특별한 방법들이 필요하였다.Therefore, special methods were needed to solve these problems.

그 중 첫 번째 방법으로는 먼저 읽을 때, 레이저 빔의 온도가 높은 재생층의 가운데 부분에서만 창(window)을 열어 기록층의 신호를 복제하는 메카니즘(mechanism)을 이용하는 방법이었다.In the first method, a method of using a mechanism of replicating a signal of the recording layer by opening a window only in the center of the reproduction layer having a high temperature of the laser beam is read.

이 방법에서 재생층의 자화방향은 상온에서 수평이다.In this method, the magnetization direction of the regeneration layer is horizontal at room temperature.

두 번째 방법으로는 더욱더 기록 밀도를 높이기 위하여 기록 마크를 작게 했을 때, 읽어내려는 신호의 크기가 작은 문제를 해결하기 위하여 기록층의 기록된 마크를 재생층에서 확대시켜서 재생 신호를 크게하는 방법이었다.The second method is to enlarge the playback signal by enlarging the recorded mark in the recording layer in the reproduction layer in order to solve the problem that the size of the signal to be read is small when the recording mark is made smaller to increase the recording density.

여기서, 첫 번째 방법에서는 재생층으로 수평 자화 용이축을 갖는 GdFeCo 합금을 이용하였고, 두 번째 방법에서는 재생층으로 수직 자화를 갖는 GdFeCo 합금을 이용하였다.Here, in the first method, a GdFeCo alloy having a horizontal easy magnetization axis was used as the regeneration layer, and in the second method, a GdFeCo alloy having vertical magnetization was used as the regeneration layer.

그러나, 이처럼 GdFeCo 합금으로 이루어진 재생층을 갖는 광자기 디스크는 파장이 긴 적외선∼레드(red)영역에서 커 회전각이 0.25∼0.3°이었지만, 파장이 짧은 블루(blue)영역에서는 커 회전각이 0.2°이하로 작아지게 되어 실제적으로 블루 영역에서는 사용할 수 없는 문제가 있었다.However, the magneto-optical disk having the reproducing layer made of the GdFeCo alloy has a large rotation angle of 0.25 to 0.3 ° in the long infrared-red region, but a large rotation angle of 0.2 in the blue region of short wavelength. There was a problem that can not be used in the blue region actually becomes smaller than °.

즉, 기록 밀도를 향상시키기 위해서는 단파장 광원에서 큰 재생 신호를 가져야 하지만, 상기와 같은 광자기 디스크에서는 단파장에서 커 회전각이 작아 큰 재생 신호를 얻을 수 없었다.In other words, in order to improve the recording density, a large reproduction signal must be obtained from a short wavelength light source. However, in the magneto-optical disk as described above, a large reproduction signal cannot be obtained because the rotation angle is small at a large wavelength.

또한, 기록층에 기록된 작은 자구가 재생층에 전사될 때, 전사되는 자구는 약 0.1 ㎛ 이하로 레이저 빔의 크기보다 상당히 작으므로 자구의 경계부분은 레이저 빔의 가우시안 분포곡선의 임계치와 맞물리게 되어 전사가 불명료하게 이루어지므로 신호의 품질이 저하되어 해상도가 낮아지는 문제가 있었다.In addition, when the small magnetic domain recorded in the recording layer is transferred to the reproduction layer, the transferred magnetic domain is about 0.1 μm or less, which is considerably smaller than the size of the laser beam, so that the boundary portion of the magnetic domain is engaged with the threshold of the Gaussian distribution curve of the laser beam. Since the transfer is made indistinctly, there is a problem in that the quality of the signal is lowered and the resolution is lowered.

본 발명은 이와 같은 문제를 해결하기 위한 것으로, 다층 박막으로 이루어진 재생층의 서브층(sublayer) 두께를 변화시켜 재생 신호 품질 및 해상도를 향상시키고 블루(blue) 영역에서도 고밀도화가 가능한 광자기 기록 매체를 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an optical magnetic recording medium capable of improving reproduction signal quality and resolution and increasing density even in a blue region by changing the sublayer thickness of a reproduction layer made of a multilayer thin film is provided. The purpose is to provide.

도 1은 본 발명에 따른 광자기 디스크의 구조 및 재생층의 자화 방향을 보여주는 도면1 is a view showing a structure of a magneto-optical disk and a magnetization direction of a reproduction layer according to the present invention.

도 2은 본 발명에 따른 광자기 디스크의 재생시 재생층의 자화 방향을 보여주는 도면2 is a view showing a magnetization direction of a reproduction layer during reproduction of a magneto-optical disc according to the present invention.

도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings

11 : 기판 12 : 제 1 유전체층11 substrate 12 first dielectric layer

13 : 재생층 14 : 제 2 유전체층13 reproduction layer 14 second dielectric layer

15 : 기록층 16 : 제 3 유전체층15 recording layer 16 third dielectric layer

본 발명에 따른 광자기 기록 매체의 특징은 전사된 정보를 확대시켜 재생신호를 크게하는 재생층과 정보를 기록하고 특정온도에서 기록된 정보를 재생층에 전사하는 기록층을 갖는 광자기 기록매체에서, 재생층은 자성층/비자성층 다층박막으로 이루어지고, 기록층 방향으로 다층 박막의 비자성층 두께만을 점점 얇게 형성하거나 다층 박막의 자성층 두께만을 점점 두껍게 형성하는데 있다.A magneto-optical recording medium according to the present invention is characterized in that a magneto-optical recording medium has a reproduction layer for enlarging the transferred information to enlarge the reproduction signal and a recording layer for recording the information and transferring the information recorded at a specific temperature to the reproduction layer. The reproduction layer is composed of a magnetic layer / nonmagnetic layer multilayer thin film, and gradually forms only the nonmagnetic layer thickness of the multilayer thin film in the recording layer direction, or increases the thickness of the magnetic layer of the multilayer thin film.

본 발명의 다른 특징은 자성층을 Co, Fe, Ni 중 어느 하나 또는 그들의 합금으로 형성하고, 비자성층은 Pt, Pd, Ag, Au 중 어느 하나 또는 그들의 합금으로 형성하는데 있다.Another feature of the present invention is to form the magnetic layer from any one of Co, Fe, Ni, or alloys thereof, and the nonmagnetic layer from any one of Pt, Pd, Ag, Au, or alloys thereof.

상기와 같은 특징을 갖는 본 발명에 따른 광자기 기록 매체를 첨부된 도면을 참조하여 설명하면 다음과 같다.The magneto-optical recording medium according to the present invention having the above characteristics will be described with reference to the accompanying drawings.

먼저, 본 발명의 개념은 자기 초해상(MSR) 또는 자구 확대(MAMMOS) 광자기 디스크의 재생층으로 자성층/비자성층 다층 박막을 이용하고, 다층 박막의 자성층과 비자성층의 서브층(sublayer) 두께를 변화시켜 자기적 특성을 변조시킴으로써, 해상도를 높이고 장파장 광원에서 뿐만 아니라 단파장 광원에서도 큰 재생 신호를 갖게하는데 있다.First, the concept of the present invention uses a magnetic layer / nonmagnetic layer multilayer thin film as a reproduction layer of a magnetic super-resolution (MSR) or magnetic domain enlargement (MAMMOS) magneto-optical disk, and the thickness of the sublayers of the magnetic layer and the nonmagnetic layer of the multilayer thin film. By modulating the magnetic properties by changing the, it is possible to increase the resolution and to have a large reproduction signal in a short wavelength light source as well as a long wavelength light source.

도 1은 본 발명에 따른 광자기 디스크를 보여주는 도면으로서, 도 1에 도시된 바와 같이, 기판(11)위에 제 1 유전체층(12), 재생층(13), 제 2 유전체층(14), 기록층(15), 제 3 유전체층(16)이 순차적으로 적층된 구조로 이루어진다.FIG. 1 shows a magneto-optical disk according to the present invention. As shown in FIG. 1, a first dielectric layer 12, a reproduction layer 13, a second dielectric layer 14, and a recording layer on a substrate 11 are shown. (15), the third dielectric layer 16 is made of a stacked structure.

여기서, 기록층(15)은 정보를 기록하고 특정온도에서 기록된 정보를 재생층(13)에 전사하는 역할을 수행하며, TbFeCo로 이루어진다.Here, the recording layer 15 records information and transfers the information recorded at a specific temperature to the reproduction layer 13, and is made of TbFeCo.

그리고, 재생층(13)은 자성층과 비자성층이 적층된 초격자 다층박막으로 이루어진다.The regeneration layer 13 is made of a superlattice multilayer thin film in which a magnetic layer and a nonmagnetic layer are laminated.

이때, 초격자 다층박막 중 기록층(15)과 인접한 층은 수평 자기 이방성을 갖는 두께 조성으로 형성하고, 기판(11)과 인접한 층은 수직 자기 이방성을 갖는 두께 조성으로 형성한다.At this time, the layer adjacent to the recording layer 15 of the superlattice multilayer thin film is formed with a thickness composition having horizontal magnetic anisotropy, and the layer adjacent to the substrate 11 is formed with a thickness composition having vertical magnetic anisotropy.

즉, 도 1에 도시된 바와 같이 기록층(15) 방향으로 다층 박막의 비자성층 두께만을 점점 얇게 형성하거나 다층 박막의 자성층 두께만을 점점 두껍게 형성한다.That is, as shown in FIG. 1, only the nonmagnetic layer thickness of the multilayer thin film is gradually made thinner or thicker in the recording layer 15 direction.

예를 들면, 초격자 다층 박막의 자성층 두께를 약 4Å으로 고정시키고, 기록층(15)에 인접한 비자성층의 두께를 약 4Å으로 하고 기판(11)쪽으로 갈수록 두께를 점점 두껍게 변화시켜 기판(11)에 인접한 비자성층의 두께를 약 9Å으로 한다.For example, the thickness of the magnetic layer of the superlattice multilayer thin film is fixed at about 4 GPa, the thickness of the nonmagnetic layer adjacent to the recording layer 15 is about 4 GPa, and the thickness is gradually increased toward the substrate 11 to increase the thickness of the substrate 11. The thickness of the nonmagnetic layer adjacent to is about 9 mm 3.

다른 방법은 초격자 다층 박막의 비자성층 두께를 약 9Å으로 고정시키고, 기판(11)쪽에 인접한 자성층의 두께를 약 4Å으로 하고 기록층(15)쪽으로 갈수록 두께를 점점 두껍게 변화시켜 기록층(15)에 인접한 자성층의 두께를 약 10Å으로 한다.Another method is to fix the thickness of the non-magnetic layer of the superlattice multilayer thin film to about 9 GPa, the thickness of the magnetic layer adjacent to the substrate 11 side to about 4 GPa, and the thickness gradually changes to the recording layer 15 toward the recording layer 15. The thickness of the magnetic layer adjacent to is about 10 mm 3.

이와 같이 재생층(13)을 형성하면, 재생층을 이루는 초격자 다층박막 중 기록층(15)과 인접한 층은 수평 자기 이방성을 가지고, 기판(11)과 인접한 층은 수직 자기 이방성을 가지며, 그 중간층은 중간 형태의 자기 이방성을 갖게 된다.When the reproducing layer 13 is formed as described above, the layer adjacent to the recording layer 15 among the superlattice multilayer thin films forming the reproducing layer has horizontal magnetic anisotropy, and the layer adjacent to the substrate 11 has vertical magnetic anisotropy. The intermediate layer will have an intermediate form of magnetic anisotropy.

이 초격자 다층 박막의 자성층은 Co, Fe, Ni 중 어느 하나 또는 그들의 합금으로 형성하고, 비자성층은 Pt, Pd, Ag, Au 중 어느 하나 또는 그들의 합금으로 형성한다.The magnetic layer of this superlattice multilayer thin film is formed of any one of Co, Fe, Ni, or alloys thereof, and the nonmagnetic layer is formed of any one of Pt, Pd, Ag, Au, or their alloys.

그리고, 제 1, 제 2, 제 3 유전체층(12,14,16)은 일반적으로 Si3N4또는 AlN 으로 이루어진다.The first, second and third dielectric layers 12, 14 and 16 are generally made of Si 3 N 4 or AlN.

여기서, 재생층의 재료로 상기와 같은 물질을 갖는 자성층/비자성층 초격자 다층박막을 사용한 이유는 다음과 같다.Here, the reason for using the magnetic layer / nonmagnetic layer superlattice multilayer thin film having the above-mentioned material as the material of the regeneration layer is as follows.

첫째, 예를 들면 Co/Pt 초격자 다층박막 또는 Co/Pd 초격자 다층박막의 경우는 단파장(약 400nm)인 블루(blue) 영역에서 커 회전각이 약 0.3°정도로 GdFeCo 합금 박막에 비해 약 0.1°이상 더 큰 특징이 있다.First, for example, in the case of Co / Pt superlattice multilayer thin film or Co / Pd superlattice multilayer thin film, the rotation angle is about 0.3 ° in the blue region of short wavelength (about 400 nm), and the rotation angle is about 0.1 ° compared to GdFeCo alloy thin film. There is a bigger feature over °.

또한, 장파장인 레드(red)영역에서도 Co/Pt 초격자 다층박막 또는 Co/Pd 초격자 다층박막은 GdFeCo 합금 박막과 비슷한 크기인 약 0.25°정도의 커 회전각을 가지므로 본 발명에서는 단파장인 블루 영역에서부터 장파장인 레드 영역까지 확대 적용할 수 있는 장점이 있다.In addition, even in the red region having a long wavelength, the Co / Pt superlattice multilayer thin film or the Co / Pd superlattice multilayer thin film has a large rotation angle of about 0.25 °, which is similar to that of the GdFeCo alloy thin film. There is an advantage that can be extended to the red region of the long wavelength range.

둘째, 상기의 초격자 다층박막은 산화에 강한 특성을 갖기 때문에 제 1 유전체층(12) 및 제 2 유전체층(14)을 산화물계로 사용할 수도 있다.Second, since the superlattice multilayer thin film has a strong resistance to oxidation, the first dielectric layer 12 and the second dielectric layer 14 may be used as oxides.

도 2를 참조하여 상기와 같은 구조를 갖는 본 발명의 재생방법을 설명하면 다음과 같다.Referring to Figure 2 describes the regeneration method of the present invention having the above structure as follows.

먼저, 재생층(13)에 레이저 빔을 조사하면 기록층(15)에 인접한 재생층(13)의 서브층에서는 온도가 올라가면서 기록층(15)의 리크 필드(leak field)에 의해 기록층(15)의 기록 비트의 자화 방향과 같은 방향으로 된다.First, when the laser beam is irradiated to the reproduction layer 13, the temperature of the sub layer of the reproduction layer 13 adjacent to the recording layer 15 increases and the recording layer (leak field) of the recording layer 15 is leaked. It becomes the same direction as the magnetization direction of the recording bit of 15).

즉, 수평 자화를 갖는 서브층은 기록층(15)의 기록 비트와 같이 수직 자화 방향으로 변하게 된다.In other words, the sublayer having the horizontal magnetization is changed in the vertical magnetization direction like the recording bits of the recording layer 15.

이 기록 비트는 재생층(13)의 중간 부분을 거쳐 기판(11)쪽의 서브층으로 전사되는데, 중간 서브층에서는 기록층(15)에 인접한 서브층보다는 수직 자화 성분이 크므로 기록 비트의 전사 영역이 커지고, 기판(11)쪽에 가까운 서브층에서는 수직 자화 성분이 제일 크므로 기록 비트의 전사 영역이 최대가 되어 해상도가 좋아진다.This recording bit is transferred to the sublayer toward the substrate 11 via the middle portion of the reproduction layer 13, which transfers the recording bit because the vertical magnetization component is larger than the sublayer adjacent to the recording layer 15 in the intermediate sublayer. The area becomes large, and the vertical magnetization component is the largest in the sublayer close to the substrate 11 side, so that the transfer area of the recording bit is maximized and the resolution is improved.

즉, 레이저 빔의 직경보다도 작게 기록된 자구는 동일한 크기로 기록층(15)에 인접한 재생층(13)의 서브층에서 재생된 후, 재생층(13)의 중간 서브층에서 확대되어 큰 신호로 나타나고 기판(11)에 인접한 재생층(13)의 서브층에서 가장 큰 신호로 나타나게 된다.That is, the magnetic domain recorded smaller than the diameter of the laser beam is reproduced in the sublayer of the reproduction layer 13 adjacent to the recording layer 15 with the same size, and then enlarged in the intermediate sublayer of the reproduction layer 13 to a large signal. And the largest signal in the sublayer of the reproduction layer 13 adjacent to the substrate 11.

그러므로, 종래와 같이 재생층에 재생된 재생신호의 바깥 부분에서 발생하는 불명료한 전사부분은 제거되어 신호의 품질이 향상된다.Therefore, the opaque transfer portion generated in the outer portion of the reproduced signal reproduced in the reproduced layer as in the prior art is eliminated to improve the signal quality.

이때, 자구 확대 현상을 얻기 위하여 외부 자기장을 인가하면 그 기록 비트의 재생 신호는 더욱 확대되어 해상도는 극대화된다.At this time, when an external magnetic field is applied to obtain the magnification, the reproduction signal of the recording bit is further enlarged, thereby maximizing the resolution.

이어, 이렇게 외부 자장을 이용하여 재생된 재생신호를 판독한 경우는 반대 방향으로 외부 자장을 가하여 재생층을 소거한 다음, 기록층의 다음 영역을 상기와 같은 방법으로 재생한다.Subsequently, when the reproduction signal reproduced using the external magnetic field is read out, the reproduction layer is erased by applying an external magnetic field in the opposite direction, and then the next area of the recording layer is reproduced in the above manner.

본 발명에 따른 광자기 기록 매체에 있어서는 다음과 같은 효과가 있다.The magneto-optical recording medium according to the present invention has the following effects.

본 발명은 자성층/비자성층 다층 박막으로 이루어진 재생층의 서브층들의 두께를 변화시켜 재생층에 재생되는 재생신호의 바깥 부분에서 발생하는 불명료한 전사부분을 제거함으로써, 신호의 품질을 향상시켜 해상도를 높일 수 있다.The present invention improves the resolution by improving the signal quality by changing the thickness of the sublayers of the reproduction layer made of the magnetic / nonmagnetic layer multilayer thin film, thereby eliminating the opaque transfer portion generated in the outer portion of the reproduction signal reproduced in the reproduction layer. It can increase.

또한, 장파장인 레드 영역 뿐만 아니라 단파장인 블루 영역에서도 적용 가능하므로 산업상 이용 분야가 넓으며 고밀도 디스크에 적합하다.In addition, since it can be applied not only to the long red region but also to the short wavelength blue region, it is widely used in industrial fields and is suitable for high density disks.

Claims (3)

전사된 정보를 확대시켜 재생신호를 크게하는 재생층과 정보를 기록하고 특정온도에서 기록된 정보를 상기 재생층에 전사하는 기록층을 갖는 광자기 기록매체에서,In a magneto-optical recording medium having a reproduction layer for enlarging the transferred information to enlarge a reproduction signal and a recording layer for recording information and transferring the information recorded at a specific temperature to the reproduction layer, 상기 재생층은 자성층/비자성층 다층박막으로 이루어지고, 상기 기록층 방향으로 상기 다층 박막의 비자성층 두께만을 점점 얇게 형성하거나 상기 다층 박막의 자성층 두께만을 점점 두껍게 형성하는 것을 특징으로 하는 광자기 기록 매체.The reproduction layer is made of a magnetic layer / non-magnetic layer multilayer thin film, and the magneto-optical recording medium characterized in that the thickness of the non-magnetic layer of the multilayer thin film is gradually made thinner or only the thickness of the magnetic layer of the multilayer thin film is made thicker in the direction of the recording layer. . 제 1항에 있어서,The method of claim 1, 상기 자성층은 Co, Fe, Ni 중 어느 하나 또는 그들의 합금이고, 비자성층은 Pt, Pd, Ag, Au 중 어느 하나 또는 그들의 합금인 것을 특징으로 하는 광자기 기록 매체.The magnetic layer is any one of Co, Fe, Ni, or an alloy thereof, and the nonmagnetic layer is any one of Pt, Pd, Ag, Au, or an alloy thereof. 제 1항에 있어서,The method of claim 1, 상기 재생층의 다층 박막 중 상기 기록층에 가까운 층은 수평 자기 이방성을 가지며, 상기 기록층에서 먼 층은 수직 자기 이방성을 갖는 것을 특징으로 하는 광자기 기록 매체.A layer close to the recording layer of the multilayer thin films of the reproduction layer has horizontal magnetic anisotropy, and a layer far from the recording layer has vertical magnetic anisotropy.
KR1019980042089A 1998-03-11 1998-10-08 Magneto-optical recording media Expired - Fee Related KR100282335B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019980042089A KR100282335B1 (en) 1998-10-08 1998-10-08 Magneto-optical recording media
US09/263,882 US6141297A (en) 1998-03-11 1999-03-08 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980042089A KR100282335B1 (en) 1998-10-08 1998-10-08 Magneto-optical recording media

Publications (2)

Publication Number Publication Date
KR20000025143A KR20000025143A (en) 2000-05-06
KR100282335B1 true KR100282335B1 (en) 2001-02-15

Family

ID=19553389

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980042089A Expired - Fee Related KR100282335B1 (en) 1998-03-11 1998-10-08 Magneto-optical recording media

Country Status (1)

Country Link
KR (1) KR100282335B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100499252B1 (en) 2002-12-17 2005-07-07 한국전자통신연구원 Recording layer of magneto-optical media enhanced with a sublayer(s) and a fabrication method therefor
JP2005347688A (en) * 2004-06-07 2005-12-15 Fujitsu Ltd Magnetic film for magnetic devices

Also Published As

Publication number Publication date
KR20000025143A (en) 2000-05-06

Similar Documents

Publication Publication Date Title
US5168482A (en) Magnetooptical recording and playback method employing multi-layer recording medium with record holding layer and playback layer
JP3049482B2 (en) Magneto-optical recording medium and reproducing method thereof
KR100238874B1 (en) Method of reproduction from magneto-optical recording medium
US5204193A (en) Recording magnetooptical recording medium
JP3474401B2 (en) Magneto-optical recording medium
KR100282335B1 (en) Magneto-optical recording media
KR100391741B1 (en) Magneto-optical storage medium and recording method thereof
JP3474464B2 (en) Magneto-optical recording medium
JP3496113B2 (en) Information recording medium, information recording medium reproducing method, and information recording medium reproducing apparatus
US5657299A (en) Magneto-optical recording medium
JP3186217B2 (en) Magneto-optical recording medium and recording and reproducing method using the medium
JP3995833B2 (en) Magneto-optical recording medium
US7153540B2 (en) Recording layer of magneto-optical storage medium having sublayer and method of fabricating the same
KR100546567B1 (en) Magneto-optical recording media and manufacturing method thereof
JP3756052B2 (en) Reproduction method of magneto-optical recording medium
KR100447159B1 (en) magneto-optical recording medium
JP3443410B2 (en) Magneto-optical recording medium and reproducing method thereof
JP2981474B2 (en) Magneto-optical recording medium
KR100203828B1 (en) Direct over-write optical magnetic media
JPH04313833A (en) Magneto-optical recording medium and magneto-optical recording and reproducing method using the same
JP3516865B2 (en) Magneto-optical recording medium and reproducing apparatus
JP3111960B2 (en) Signal reproducing method in magneto-optical recording medium
US20050069731A1 (en) Magneto-optical recording medium
JP2001126331A (en) Magneto-optical recording medium
JPH03142733A (en) Overwritable magneto-optical recording medium

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PN2301 Change of applicant

St.27 status event code: A-3-3-R10-R13-asn-PN2301

St.27 status event code: A-3-3-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-3-3-R10-R13-asn-PN2301

St.27 status event code: A-3-3-R10-R11-asn-PN2301

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

FPAY Annual fee payment

Payment date: 20060911

Year of fee payment: 7

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20071129

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20071129

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000