[go: up one dir, main page]

KR100305205B1 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
KR100305205B1
KR100305205B1 KR1019950020974A KR19950020974A KR100305205B1 KR 100305205 B1 KR100305205 B1 KR 100305205B1 KR 1019950020974 A KR1019950020974 A KR 1019950020974A KR 19950020974 A KR19950020974 A KR 19950020974A KR 100305205 B1 KR100305205 B1 KR 100305205B1
Authority
KR
South Korea
Prior art keywords
layer
forming
silicon layer
polycrystalline silicon
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019950020974A
Other languages
Korean (ko)
Other versions
KR970008422A (en
Inventor
박상준
오세중
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019950020974A priority Critical patent/KR100305205B1/en
Publication of KR970008422A publication Critical patent/KR970008422A/en
Application granted granted Critical
Publication of KR100305205B1 publication Critical patent/KR100305205B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/0223Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate
    • H10D30/0227Manufacture or treatment of FETs having insulated gates [IGFET] having source and drain regions or source and drain extensions self-aligned to sides of the gate having both lightly-doped source and drain extensions and source and drain regions self-aligned to the sides of the gate, e.g. lightly-doped drain [LDD] MOSFET or double-diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76202Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/601Insulated-gate field-effect transistors [IGFET] having lightly-doped drain or source extensions, e.g. LDD IGFETs or DDD IGFETs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • H10D84/017Manufacturing their source or drain regions, e.g. silicided source or drain regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A fabrication method of semiconductor devices is provided to reduce a junction capacitance by forming a barrier layer at lower portions of a junction region. CONSTITUTION: After forming an N-well(2) and a P-well(3) in a silicon substrate(1), a barrier layer(4) is formed to expose a channel region of the silicon substrate(1). By epitaxial growing of the resultant structure, a single crystalline silicon layer(5A) is formed on the exposed silicon substrate(1) and a polycrystalline silicon layer(5B) is formed on the barrier layer(4). After forming a field oxide(6), a gate electrode(8A) is formed on the single crystalline silicon layer(5A). An LDD(Lightly Doped Drain) region(9) is formed by implanting lightly doped ions into the exposed polycrystalline silicon layer(5B). After forming an oxide spacer(10) at both sidewalls of the gate electrode(8A), a junction region(11) is formed by implanting heavily doped ions into the exposed polycrystalline silicon layer(5B). After depositing interlayer dielectrics(12) on the resultant structure, a contact hole is formed by sequentially etching the interlayer dielectrics(12) and the polycrystalline silicon layer(5B) using the barrier layer(4) as a stopper.

Description

반도체 소자의 제조방법Manufacturing method of semiconductor device

제1(a)도 내지 제(g)도는 본 발명에 따른 반도체 소자의 제조방법을 설명하기 위한 소자의 단면도.1 (a) to (g) are cross-sectional views of a device for explaining a method of manufacturing a semiconductor device according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 실리콘기판 2 : N 웰1: silicon substrate 2: N well

3 : P 웰 4 : 베리어층3: P well 4: barrier layer

5A : 단결정실리콘층 5B : 제1다결정실리콘층5A: single crystal silicon layer 5B: first polycrystalline silicon layer

6 : 필드산화막 7 : 게이트산화막6: field oxide film 7: gate oxide film

8 : 제2다결정실리콘층 8A : 게이트전극8: second polysilicon layer 8A: gate electrode

9 : LDD 영역 10 : 산화막 스페이서9: LDD region 10: oxide film spacer

11 : 접합영역 12 : 절연막11 junction region 12 insulating film

12A : TEOS 12B : BPSG12A: TEOS 12B: BPSG

13 : 감광막 14 : 콘택홀13: photosensitive film 14: contact hole

15 : 금속배선15: metal wiring

본 발명은 반도체 소자의 제조방법에 관한 것으로, 특히 접합영역의 하부에 베리어(Barrier)층을 형성하고, 상기 접합영역이 관통되도록 콘택홀을 형성하므로써 소자의 전기적특성이 향상될 수 있도록 한 반도체 소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device. In particular, a barrier layer is formed below a junction region and a contact hole is formed to penetrate the junction region, thereby improving the electrical characteristics of the device. It relates to a manufacturing method of.

일반적으로 반도체 소자가 고집적화됨에 따라 트랜지스터가 차지하는 단위면적도 감소된다. 이에 따라 접합영역의 깊이를 얕게 형성해야 하는데, 쇼트 채널 효과(Short Channe1 Effect)의 감소라는 측면에서 얕은 접합깊이의 구현은 필수적이다. 접합 깊이는 이온주입 에너지에 의해 결정된다. 그런데 종래의 방법으로는 접합영역에 불순물이온이 불균일하게 주입되기 때문에 전류가 흐를 수 있는 부분의 면적이 작아 소자의 전기적특성이 저하된다. 그리고 접합영역과 상부에 형성되는 금속층과의 접속을 위한 콘택홀 형성시 접합영역과 금속층의 완전한 접촉을 위해 접합영역의 표면을 과도식각(Over Etch)하기 때문에 실리콘기판의 표면이 손상되는 문제가 발생되며, 접합영역과 접촉되는 부분의 금속층에서 게이트전극과 근접하는 부분에 전류밀도가 집중되어 전류 집증 저항 성분이 존재하게 된다. 또한 접합영역에서 기생 정전용량(Parasitic Capacitance)이 발생되어 소자의 동작속도를 저하시킨다.In general, as semiconductor devices are highly integrated, the unit area occupied by transistors is also reduced. Accordingly, the depth of the junction region should be formed shallowly, and the implementation of the shallow junction depth is essential in terms of reducing the short channel effect (Short Channe1 Effect). The junction depth is determined by the ion implantation energy. However, in the conventional method, since the impurity ions are unevenly injected into the junction region, the area of the portion through which current can flow is reduced, and the electrical characteristics of the device are degraded. In addition, when forming the contact hole for connecting the junction region and the metal layer formed on the upper part, the surface of the silicon substrate is damaged due to over etching of the junction region for complete contact between the junction region and the metal layer. The current density is concentrated in a portion close to the gate electrode in the metal layer in contact with the junction region, and thus a current collecting resistance component is present. In addition, parasitic capacitance is generated in the junction region, which reduces the operation speed of the device.

따라서 본 발명은 접합영역의 하부에 베리어층을 형성하고, 상기 접합영역이 관통되도록 콘택홀을 형성하므로써 상기한 단점을 해소할 수 있는 반도체 소자의 제조방법을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method of manufacturing a semiconductor device capable of solving the above-mentioned disadvantages by forming a barrier layer under the junction region and forming a contact hole to allow the junction region to penetrate.

상기한 목적을 달성하기 위한 본 발명은 실리콘기판상에 N웰 및 P웰을 형성한 후 전체 상부면에 베리어층을 형성하고 채널이 형성될 부분의 상기 실리콘기판이 노출되도록 상기 베리어층을 패터닝하는 단계와, 상기 단계로부터 상기 실리콘기판의 표면을 세정시킨 후 노출된 실리콘기판상에는 단결정 실리콘층이 형성되고, 상기 베리어층상에는 제 1 다결정 실리콘층이 형성되도록 에피택셜 성장을 실시하는 단계와, 상기 단계로부터 상기 N웰 및 P웰이 접하는 부분의 필드영역에 필드산화막을 형성하는 동시에 상기 N웰 및 P웰에 도핑된 불순물이온이 외부확산되어 상기 단결정 실리콘층에 채널 도핑이 이루어지도록 LOCOS 공정을 실시하는 단계와, 상기 단계로부터 전체 상부면에 게이트산화막 및 제 2 다결정 실리콘층을 순차적으로 형성한 후 게이트전극용 마스크를 이용한 사진 및 식각공정으로 상기 제 2다결정 실리콘층 및 게이트산화막을 순차적으로 페터닝하여 상기 단결정 실리콘층 상부에 게이트전극을 형성하는 단계와, 상기 단계로부터 노출된 상기 제 1 다결정 실리콘층에 저농도의 불순물이온을 주입하여 LDD영역을 형성하는 단계와, 상기 단계로부터 상기 게이트전극의 양측벽에 산화막 스페이서를 형성한 후 노출된 상기 제 1 다결정 실리콘층에 고농도의 불순물이온을 주입하여 접합영역을 형성하는 단계와, 상기 단계로부터 전체 상부면에 절연막 및 감광막을 순차적으로 형성한 후 콘택 마스크를 이용한 사진 및 식각공정으로 상기 감광막을 패터닝하는 단계와, 상기 단계로부터 상기 패터닝된 감광막을 마스크로 이용하여 상기 절연층을 소정 깊이 습식 식각한 후 나머지 두께의 절연층 및 제 1 다결정 실리콘층을 순차적으로 건식식각하여 상기 베리어층이 노출되도록 콘택홀을 형성하는 단계와, 상기 단계로부터 상기 콘택홀이 매립되도록 전체 상부면에 금속층을 형성한 후 금속배선용 마스크를 이용한 사진 및 식각공정으로 상기 금속층을 패터닝하여 금속배선을 형성하는 단계로 이루어지는 것을 특징으로 한다.The present invention for achieving the above object is to form a barrier layer on the entire upper surface after forming the N well and P well on the silicon substrate and to pattern the barrier layer so that the silicon substrate of the portion where the channel is to be exposed Performing a step of epitaxial growth such that a single crystal silicon layer is formed on the exposed silicon substrate and a first polycrystalline silicon layer is formed on the barrier layer after cleaning the surface of the silicon substrate from the step; LOCOS process is performed to form a field oxide film in the field region of the portion where the N well and the P well are in contact with each other and to simultaneously diffuse the dopant ions doped into the N well and the P well so that the single crystal silicon layer is channel doped. And sequentially forming a gate oxide film and a second polycrystalline silicon layer on the entire upper surface from the step; Sequentially patterning the second polycrystalline silicon layer and the gate oxide layer by a photolithography and etching process using a mask for forming a gate electrode on the single crystal silicon layer, and exposing the first polycrystalline silicon layer exposed from the step. Forming an LDD region by implanting low concentration of impurity ions; forming an oxide spacer on both sidewalls of the gate electrode; And forming an insulating film and a photoresist film on the entire upper surface sequentially from the step, and then patterning the photoresist film using a photomask and an etching process using a contact mask, and using the patterned photoresist film as a mask from the step. Wet etching the insulation layer a predetermined depth and then insulation layer of the remaining thickness Forming a contact hole to expose the barrier layer by sequentially dry etching the first polycrystalline silicon layer; forming a metal layer on the entire upper surface of the contact hole to be filled from the step; The metal layer is patterned by an etching process to form a metal wiring.

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

제1(a) 내지 제1(g)도는 본 발명에 따른 반도체 소자의 제조방법을 설명하기 위한 소자의 단면도로서,1 (a) to 1 (g) are cross-sectional views of a device for explaining a method of manufacturing a semiconductor device according to the present invention.

제1(a)도는 실리콘기판(1)상에 N웰(2) 및 P웰(3)을 형성한 후 전체 상부면에 베리어층(4)으로서 산화막을 형성하고 채널이 형성될 부분의 상기 실리콘기판(1)이 노출되도록 상기 베리어층(4)을 패터닝한 상태의 단면도인데, 이때 상기 N웰(2) 및 P웰(3)에 주입된 불순물이온의 외부확산에 의해 후속공정에서 채널 도핑(Doping)이 이루어지기 때문에 상기 N웰(2) 및 P웰(3)에 도핑되는 불순물이온의 농도를 적절하게 조절해야 하며, 접합 정전용량을 고려하여 상기 베리어층(4)의 두께를 결정해야 한다.After forming the N well 2 and the P well 3 on the silicon substrate 1 in FIG. 1 (a), an oxide film is formed as the barrier layer 4 on the entire upper surface, and the silicon in the portion where the channel is to be formed. The barrier layer 4 is patterned so that the substrate 1 is exposed. In this case, channel doping is performed in a subsequent process by external diffusion of impurity ions implanted into the N well 2 and the P well 3. Because doping is performed, the concentration of impurity ions doped in the N well 2 and the P well 3 should be properly adjusted, and the thickness of the barrier layer 4 should be determined in consideration of the junction capacitance. .

제1(b)도는 상기 실리콘기판(1)의 표면을 세정시킨 후 에피택셜 성장(Epi taxial Growth)을 실시한 상태의 단면도로서, 노출된 실리콘기판(1)상에는 단결정 실리콘층(5A)이 형성되고, 상기 베리어층(4)상에는 제 1 다결정 실리콘층(5B)이 형성된다. 이때 성장된 상기 단결정 실리콘층(5A) 및 제 1 다결정 실리콘층(5B)에는 불순물이온을 도핑시키지 않아야 한다.FIG. 1 (b) is a cross-sectional view of epitaxial growth after cleaning the surface of the silicon substrate 1, wherein a single crystal silicon layer 5A is formed on the exposed silicon substrate 1; The first polycrystalline silicon layer 5B is formed on the barrier layer 4. At this time, the grown single crystal silicon layer 5A and the first polycrystalline silicon layer 5B should not be doped with impurity ions.

제1(c)도는 LOCOS(Local 0xidation of Silicon )공정을 이용하여 상기 N웰(2) 및 P웰(3)이 접하는 부분의 필드영역에 필드산화막(6)을 형성한 상태의 단면도인데, 상기 필드산화막(6)이 형성되는 동안에 상기 N웰(2) 및 P웰(3)에 도핑된 불순물이온의 외부확산으로 인해 상기 단결정 실리콘층 (5A)에는 채널 도핑이 이루어진다.FIG. 1C is a cross-sectional view of the field oxide film 6 being formed in the field region of the portion where the N well 2 and the P well 3 are in contact by using a LOCOS (Local 0xidation of Silicon) process. While the field oxide film 6 is formed, channel doping is performed on the single crystal silicon layer 5A due to the external diffusion of the impurity ions doped into the N well 2 and the P well 3.

제1(d)도는 전체 상부면에 게이트산화막(7) 및 제 2 다결정 실리콘층(8)을 순차적으로 형성한 후 게이트전극용 마스크를 이용한 사진 및 식각공정으로 상기 제 2 다결정 실리콘층(8) 및 게이트산화막(7)을 순차적으로 패터닝하여 상기 단결정 실리콘층(5A) 상부에 게이트전극(8A)을 형성한다. 이후 노출된 상기 제 1 다결정 실리콘층(5B)에 저농도의 불순물이온을 주입하여 LDD영역(9)을 형성한 상태의 단면도이다.In FIG. 1 (d), the gate oxide film 7 and the second polycrystalline silicon layer 8 are sequentially formed on the entire upper surface, and the second polycrystalline silicon layer 8 is formed by a photolithography and etching process using a mask for a gate electrode. And the gate oxide film 7 is sequentially patterned to form a gate electrode 8A on the single crystal silicon layer 5A. Afterwards, the LDD region 9 is formed by implanting low concentrations of impurity ions into the exposed first polycrystalline silicon layer 5B.

제1(e)도는 상기 게이트전극(8A)의 양측벽에 산화막 스페이서(10)를 형성한 후 노출된 상기 제 1 다결정 실리콘층(5B)에 고농도의 불순물이온을 주입하여 접합영역(11)을 형성한 상태의 단면도로서, 이때 상기 제 1다결정 실리콘층(5B)의 하부에는 베리어층(4)이 형성되어 있으므로 불순물이온을 충분하게 주입하여 균일한 도핑을 이룬다.FIG. 1 (e) shows that the junction region 11 is formed by implanting a high concentration of impurity ions into the exposed first polycrystalline silicon layer 5B after forming oxide spacers 10 on both sidewalls of the gate electrode 8A. In this state, the barrier layer 4 is formed under the first polycrystalline silicon layer 5B. Thus, the impurity ions are sufficiently injected to form a uniform doping.

제1(f)도는 전체 상부면에 TEOS(12A) 및 BPSG(12B)를 순차적으로 증착하여 절연막(12)을 형성한 후 전체 상부면에 감광막(13)을 도포한다. 콘택 마스크를 이용한 사진 및 식각공정으로 상기 감광막(13)을 패터닝하고, 상기 패터닝된 감광막(13)을 마스크로 이용하여 상기 절연층(12)을 소정 깊이 습식 식각한다. 이후 나머지 두께의 절연층(12) 및 제 1 다결정 실리콘층(5B)을 순차적으로 건식 식각하여 상기 베리어층(4)이 노출되도록 콘택홀(14)을 형성한 상태의 단면도인데, 상기 콘택홀(14)은 상기 제 1 다결정 실리콘층(5B)에 형성된 접합영역(11)을 관통하도록 형성되며, 이때 상기 베리어층(4)은 식각 정지(Etch Stop)층 및 실리콘기판(1) 손상 방지층으로 이용된다.In FIG. 1 (f), TEOS 12A and BPSG 12B are sequentially deposited on the entire upper surface to form an insulating film 12, and then the photosensitive film 13 is coated on the entire upper surface. The photoresist layer 13 is patterned by a photolithography and an etching process using a contact mask, and the insulating layer 12 is wet-etched to a predetermined depth using the patterned photoresist 13 as a mask. Thereafter, the insulating layer 12 and the first polycrystalline silicon layer 5B having the remaining thickness are sequentially etched to form a contact hole 14 so that the barrier layer 4 is exposed. 14 is formed to penetrate the junction region 11 formed in the first polycrystalline silicon layer 5B, wherein the barrier layer 4 is used as an etch stop layer and a damage preventing layer of the silicon substrate 1. do.

제1(g)도는 상기 콘택홀(14)이 매립되도록 전체 상부면에 알루미늄 (A1)과 같은 금속(Metal)을 증착하여 금속층을 형성한 후 금속배선용 마스크를 이용한 사진 및 식각공정으로 상기 금속층을 패터닝하여 금속배선(15)을 형성한 상태의 단면도이다.In FIG. 1 (g), the metal layer is formed by depositing a metal, such as aluminum (A1), on the entire upper surface of the contact hole 14 to fill the metal layer. It is sectional drawing in the state which patterned and the metal wiring 15 was formed.

이와 같이 제조되는 반도체 소자는 첫째, 채널의 도핑 농도가 낮아 상기 베리어층(4)과 동일한 깊이까지 공핍영역(Depletion Region)이 형성되므로 쇼트 채널 효과에 대한 저항성이 증가되며, 핫 케리어(Hot Carrier)에 의해 발생되는 정공(Ho1e)으로 인한 스냅 백(Snap Back) 등의 문제점이 개선된다. 둘째, 상기 제 1 다결정 실리콘층(5B)의 두께 조절을 통해 접합 깊이를 정확히 조절할 수 있으며, 접합영역(11)이 균일하게 도핑되므로써 전류의 흐름이 효과적으로 극대화된다. 셋째, 상기 접합영역(11)과 채널이 상기 LDD영역(9)에 의해 완전히 분리되므로써 핫 케리어 또는 펀치 쓰루우(Punch through) 등의 문제점이 개선된다. 네째, 상기 콘택홀(14)을 상기 접합영역(11)을 관통하도록 형성하므로써 금속배선(15)과 접합영역(11)과의 접촉이 깊이 방향으로 완전하게 이루어져 전류의 흐름에 대한 기생 저항을 최대한 억제시킬 수 있다. 즉, 전류 집중 현상이 발생되지 않아 소자의 전류 구동능력이 향상된다. 다섯째, 접합영역(11)에서 기생 정전 용량이 발생되지 않도록 하여 소자의 동작속도가 향상된다.In the semiconductor device fabricated as described above, first, since the depletion region is formed to the same depth as the barrier layer 4 due to the low doping concentration of the channel, resistance to the short channel effect is increased, and a hot carrier Problems such as snap back due to holes Ho1e generated by the present invention are improved. Second, the junction depth can be precisely adjusted by controlling the thickness of the first polycrystalline silicon layer 5B, and the current flow is effectively maximized by uniformly doping the junction region 11. Third, since the junction region 11 and the channel are completely separated by the LDD region 9, problems such as hot carrier or punch through are improved. Fourth, since the contact hole 14 is formed to penetrate through the junction region 11, the contact between the metal wiring 15 and the junction region 11 is completely completed in the depth direction to maximize the parasitic resistance to the flow of current. Can be suppressed. That is, the current concentration phenomenon does not occur, thereby improving the current driving capability of the device. Fifth, the operating speed of the device is improved by preventing parasitic capacitance from occurring in the junction region 11.

상술한 바와 같이 본 발명에 의하면 접합영역의 하부에 베리어층을 형성하고 상기 접합영역이 관통되도록 콘택홀을 형성하므로써 소자의 전기적특성이 향상될 수 있는 탁월한 효과가 있다.As described above, according to the present invention, the barrier layer is formed below the junction region and the contact hole is formed to penetrate the junction region, thereby improving the electrical characteristics of the device.

Claims (3)

반도체 소자의 제조방법에 있어서, 실리콘기판상에 N웰 및 P웰을 형성한 후 전체 상부면에 베리어층을 형성하고 채널이 형성될 부분의 상기 실리콘기판이 노출되도록 상기 베리어층을 패터닝하는 단계와, 상기 단계로부터 상기 실리콘기판의 표면을 세정시킨 후 노출된 실리콘기판상에는 단결정 실리콘층이 형성되고, 상기 베리어층상에는 제 1 다결정 실리콘층이 형성되도록 에피택셜 성장을 실시하는 단계와, 상기 단계로부터 상기 N웰 및 P웰이 접하는 부분의 필드영역에 필드산화막을 형성하는 동시에 상기 N웰 및 P웰에 도핑된 불순물이온이 외부확산되어 상기 단결정 실리콘층에 채널 도핑이 이루어지도록 LOCOS 공정을 실시하는 단계와, 상기 단계로부터 전체 상부면에 게이트산화막 및 제 2 다결정 실리콘층을 순차적으로 형성한 후 게이트전극용 마스크를 이용한 사진 및 식각공정으로 상기 제 2 다결정 실리콘층 및 게이트산화막을 순차적으로 패터닝하여 상기 단결정 실리콘층 상부에 게이트전극을 형성하는 단계와, 상기 단계로부터 노출된 상기 제 1 다결정 실리콘층에 저농도의 불순물이온을 주입하여 LDD영역을 형성하는 단계와, 상기 단계로부터 상기 게이트전극의 양측벽에 산화막 스페이서를 형성한 후 노출된 상기 제 1 다결정 실리콘층에 고농도의 불순물이온을 주입하여 접합영역을 형성하는 단계와, 상기 단계로부터 전체 상부면에 절연막 및 감광막을 순차적으로 형성한 후 콘택 마스크를 이용한 사진 및 식각공정으로 상기 감광막을 패터닝하는 단계와, 상기 단계로부터 상기 패터닝된 감광막을 마스크로 이용하여 상기 절연층을 소정 깊이 습식 식각한 후 나머지 두께의 절연층 및 제 1 다결정실리콘층을 순차적으로 건식 식각하여 상기 베리어층이 노출되도록 콘택홀을 형성하는 단계와, 상기 단계로부터 상기 콘택홀이 매립되도록 전체 상부면에 금속층을 형성한 후 금속배선용 마스크를 이용한 사진 및 식각공정으로 상기 금속층을 패터닝하여 금속배선을 형성하는 단계로 이루어지는 것을 특징으로 하는 반도체 소자의 제조방법.A method of manufacturing a semiconductor device, comprising: forming an N well and a P well on a silicon substrate, forming a barrier layer on an entire upper surface thereof, and patterning the barrier layer to expose the silicon substrate in a portion where a channel is to be formed; Performing epitaxial growth so that a single crystal silicon layer is formed on the exposed silicon substrate after cleaning the surface of the silicon substrate from the step, and a first polycrystalline silicon layer is formed on the barrier layer; Performing a LOCOS process to form a field oxide film in a field region of a portion where N wells and P wells are in contact with each other, and simultaneously dopant ion doping into the N wells and P wells to perform channel doping to the single crystal silicon layer; After forming the gate oxide film and the second polycrystalline silicon layer on the entire upper surface sequentially from the step for the gate electrode Sequentially patterning the second polycrystalline silicon layer and the gate oxide layer by a photolithography and etching process to form a gate electrode on the single crystal silicon layer, and at a low concentration on the first polycrystalline silicon layer exposed from the step. Implanting impurity ions to form an LDD region; and forming an oxide spacer on both side walls of the gate electrode from the step, and implanting a high concentration of impurity ions into the exposed first polycrystalline silicon layer to form a junction region. And sequentially forming an insulating film and a photoresist film on the entire upper surface from the step, and then patterning the photoresist film by a photolithography and etching process using a contact mask, and using the patterned photoresist film as a mask from the step. After wet etching the layer to a predetermined depth, the insulating layer and the remaining thickness 1 dry etching the polysilicon layer sequentially to form a contact hole to expose the barrier layer; and forming a metal layer on the entire upper surface of the contact hole to fill the contact hole from the step, and then photograph and etching using a metal wiring mask. And forming a metal wiring by patterning the metal layer by a process. 제1항에 있어서, 상기 베리어층은 산화막인 것을 특징으로 하는 반도체 소자의 제조방법.The method of claim 1, wherein the barrier layer is an oxide film. 제1항에 있어서, 상기 절연막은 TEOS 및 BPSG 가 순차적으로 증착되어 형성되는 것을 특징으로 하는 반도체 소자의 제조방법.The method of claim 1, wherein the insulating layer is formed by sequentially depositing TEOS and BPSG.
KR1019950020974A 1995-07-18 1995-07-18 Manufacturing method of semiconductor device Expired - Fee Related KR100305205B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950020974A KR100305205B1 (en) 1995-07-18 1995-07-18 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950020974A KR100305205B1 (en) 1995-07-18 1995-07-18 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
KR970008422A KR970008422A (en) 1997-02-24
KR100305205B1 true KR100305205B1 (en) 2001-11-30

Family

ID=37530031

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950020974A Expired - Fee Related KR100305205B1 (en) 1995-07-18 1995-07-18 Manufacturing method of semiconductor device

Country Status (1)

Country Link
KR (1) KR100305205B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117912956B (en) * 2024-03-18 2024-06-14 泰科天润半导体科技(北京)有限公司 Manufacturing method of low-resistance planar gate silicon carbide MOSFET

Also Published As

Publication number Publication date
KR970008422A (en) 1997-02-24

Similar Documents

Publication Publication Date Title
US6551870B1 (en) Method of fabricating ultra shallow junction CMOS transistors with nitride disposable spacer
US5583064A (en) Semiconductor device and process for formation thereof
US6027978A (en) Method of making an IGFET with a non-uniform lateral doping profile in the channel region
US6362025B1 (en) Method of manufacturing a vertical-channel MOSFET
US6008100A (en) Metal-oxide semiconductor field effect transistor device fabrication process
US5547903A (en) Method of elimination of junction punchthrough leakage via buried sidewall isolation
KR100289056B1 (en) Manufacturing Method of Power Device Using Insulating Film Inclined Etch
KR100341182B1 (en) Method of forming mos transistor in semiconductor device
KR0154306B1 (en) Method of fabricating mosfet
KR100257074B1 (en) Mosfet and method for manufacturing the same
KR100305205B1 (en) Manufacturing method of semiconductor device
KR100273296B1 (en) Method for fabricating mos transistor
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
KR100313783B1 (en) Method for fabricating metal oxide semiconductor transistor
KR20000003936A (en) Transistor of semiconductor devices and method thereof
KR100274979B1 (en) Contact formation method in semiconductor device
KR0137549B1 (en) Junction formation method of mosfet
KR0124642B1 (en) Manufacture of semiconductor device
KR100497221B1 (en) Method For Manufacturing Semiconductor Devices
KR100421899B1 (en) Method for fabricating semiconductor device
KR100280535B1 (en) MOS transistor manufacturing method
KR100304500B1 (en) Method for manufacturing semiconductor device
KR0142787B1 (en) Fabrication method of mosfet
KR100261991B1 (en) Manufacturing method for transistor of semiconductor memory cell and its structure
KR100257148B1 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

A201 Request for examination
PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

PN2301 Change of applicant

St.27 status event code: A-3-3-R10-R13-asn-PN2301

St.27 status event code: A-3-3-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-3-3-R10-R13-asn-PN2301

St.27 status event code: A-3-3-R10-R11-asn-PN2301

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R14-asn-PN2301

FPAY Annual fee payment

Payment date: 20050620

Year of fee payment: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20060727

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20060727

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000