KR100390602B1 - An method for compensating steering sensor's zero point in VDC - Google Patents
An method for compensating steering sensor's zero point in VDC Download PDFInfo
- Publication number
- KR100390602B1 KR100390602B1 KR10-2000-0047703A KR20000047703A KR100390602B1 KR 100390602 B1 KR100390602 B1 KR 100390602B1 KR 20000047703 A KR20000047703 A KR 20000047703A KR 100390602 B1 KR100390602 B1 KR 100390602B1
- Authority
- KR
- South Korea
- Prior art keywords
- value
- steering angle
- angular velocity
- sensor
- velocity sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D15/00—Steering not otherwise provided for
- B62D15/02—Steering position indicators ; Steering position determination; Steering aids
- B62D15/021—Determination of steering angle
- B62D15/0245—Means or methods for determination of the central position of the steering system, e.g. straight ahead position
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/02—Control of vehicle driving stability
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
본 발명은 VDC 시스템의 상대 조향각 센서의 영점보정에 관한 것으로, VDC 시스템에서 운전자의 의지를 판단하는데 주요한 요소로 작용하는 조향각센서의 하나인 상대각 센서의 영점을 알아내어 VDC의 오동작 및 이상작동이 일어나지 않도록 센서의 신뢰도를 향상함에 의해 차량의 진행방향을 안정적으로 제어하기 위한 것이다.The present invention relates to the zero compensation of the relative steering angle sensor of the VDC system, and to detect the zero point of the relative angle sensor, which is one of the steering angle sensors that act as a major factor in determining the driver's will in the VDC system, thereby preventing malfunction and abnormal operation of the VDC. It is to stably control the traveling direction of the vehicle by improving the reliability of the sensor so as not to occur.
Description
본 발명은 VDC(Vehicle Dynamic control) 시스템의 조향각 센서의 영점 보정방법에 관한 것으로, VDC 시스템에서 운전자의 의지를 판단하는데 주요한 요소로 작용하는 조향각 센서의 하나인 상대각 센서의 영점(Zero Point)을 알아내어 VDC 시스템의 오동작 및 이상작동이 일어나는 것을 방지함으로써 VDC 시스템이 올바르게 작동되도록 하기 위한 것이다.The present invention relates to a zero point calibration method of a steering angle sensor of a VDC (Vehicle Dynamic Control) system. The zero point of a relative angle sensor, which is one of the steering angle sensors that acts as a major factor in determining the driver's will in the VDC system, is described. This is to ensure that the VDC system works correctly by finding out and preventing the malfunction and abnormal operation of the VDC system.
도 1a는 차량에 적용되는 종래의 조향각 센서를 도시한 것으로서, 포토 다이오드(1)와 포토트랜지스터(2)로 이루어진 포토 인터럽트와, 상기 포토 인터럽트로부터 입력되는 신호를 처리하는 신호처리부(3)와, 상기 포토 인터럽트의 포토다이오드(1)와 포토트랜지스터(2) 사이에 설치되는 회전체 디스크(4)를 구비하며, 회전체 디스크(4)에는 도 1b에 도시된 바와 같이 다수개의 구멍(5)이 형성되어 있다.1A illustrates a conventional steering angle sensor applied to a vehicle, including a photo interrupt including a photodiode 1 and a phototransistor 2, a signal processing unit 3 for processing a signal input from the photo interrupt, and A rotating disk 4 is provided between the photo interrupt 1 and the phototransistor 2 of the photo interrupt, and the rotating disk 4 has a plurality of holes 5 as shown in FIG. Formed.
이와 같이 구성된 종래 조향각 센서는 회전체 디스크(4)가 포토 다이오드(1)와 포토트랜지스터(2) 사이에서 회전할 때, 포토 다이오드(1)의 광이 회전체 디스크(4)의 구멍(5)과 일치할 때에는 구멍(5)을 통하여 포토트랜지스터(2)에 입력되므로 신호처리부(3)에서 신호를 인식할 수 있게 되고, 상기와 반대로 포토 다이오드(1)의 광이 회전체 디스크(4)의 구멍(5)과 일치하지 않을 때에는 신호를 인식할 수 없게 되므로, 이러한 연속되는 수치의 배열로부터 핸들의 회전정도를 알수 있다.In the conventional steering angle sensor configured as described above, when the rotating disk 4 rotates between the photodiode 1 and the phototransistor 2, the light of the photodiode 1 is transmitted to the hole 5 of the rotating disk 4. When the signal is matched with the phototransistor 2 through the hole 5, the signal processing unit 3 can recognize the signal. On the contrary, the light of the photodiode 1 is applied to the rotating disk 4. When it does not coincide with the hole 5, the signal cannot be recognized, and thus the degree of rotation of the handle can be known from such a sequence of numerical values.
종래의 조향각 센서는 어떤 기준점에 대하여 상대적인 위치를 계산하여 핸들의 조향각 위치를 측정하는 상대 조향각 센서로서 기준점을 알기 전까지는 핸들의 조향각 위치를 알 수 없는 문제점이 있었다. 즉, 핸들이 단순히 1회전(turn)하는 것이 아니라 좌우로 총 3.5회전(turn)하게 되므로, 핸들의 조향각 위치가 1회전된 상태의 각도인지 2회전된 상태의 각도인지를 알 수 없는 문제점이 있었다The conventional steering angle sensor is a relative steering angle sensor that calculates a steering angle position of a handle by calculating a relative position with respect to a reference point, and there is a problem in that the steering angle position of the handle cannot be known until the reference point is known. That is, since the handle is not only one turn (turn), but a total of 3.5 turns to the left and right, there was a problem that the steering angle position of the handle is not known whether the angle of the first rotation or the angle of the second rotation.
예를 들어 종래의 상대 조향각 센서는 자동차의 전원이 OFF된 뒤, 다시 전원이 인가되었을 때 어떤 특정위치를 감지하기 전에는 핸들의 조향각과 회전수 즉, 핸들의 현재 위치를 정확하게 감지할 수 없다.For example, the conventional relative steering angle sensor cannot accurately detect the steering angle and the number of revolutions of the steering wheel, that is, the steering wheel's current position until the vehicle is turned off and before a specific position is detected when the power is again applied.
종래에는 제어부가 상대 조향각 센서의 영점을 알아내기 위해 차량이 시동이 꺼진 상태에서도 조향각의 값을 기억할 수 있도록 슬립모드(Slip Mode)(최소의 전력으로 계속 켜 있는 상태)를 유지하거나 이이피롬(EEPROM)(이하 EEPROM이라 칭함)에 시동이 꺼지기 직전의 값을 저장하는 방식을 사용한다.Conventionally, the control unit maintains the slip mode (continuously on at minimum power) or EEPROM so that the control unit can remember the steering angle value even when the vehicle is turned off to determine the zero point of the relative steering angle sensor. (EEPROM) is used to store the value just before the start is turned off.
그러나, 슬립모드를 유지하기 위해서는 정차 중에도 계속해서 배터리를 사용해야 하기 때문에 오랜 시간동안 정차하는 경우 방전의 위험이 있고 EEPROM 에 시동이 꺼지기 전의 조향각의 값을 저장한 경우에도 시동이 꺼진 상태에서 운전자가 조향을 하여 영점이 변한 경우에는 그 값을 알 수 없는 문제점이 있다.However, in order to maintain the sleep mode, the battery must be used continuously while the vehicle is parked.Therefore, if the vehicle is parked for a long time, there is a risk of discharge and even if the steering angle value is stored in the EEPROM before the engine is turned off. If the zero point is changed, the value is unknown.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은운전자가 시동을 켜고 차량을 출발시킬 경우 발생하는 VDC용 센서들의 값들을 조합하여 상대 조향각 센서의 영점을 보정함으로써 VDC 시스템의 오동작 및 이상동작을 방지하여 센서의 신뢰도를 향상함에 의해 차량의 진행방향을 안정적으로 제어하는데 있다.The present invention is to solve the above problems, an object of the present invention is to operate the VDC system by correcting the zero point of the relative steering angle sensor by combining the values of the VDC sensors that occur when the driver turns on the vehicle and start the vehicle And it is to stably control the traveling direction of the vehicle by preventing the abnormal operation to improve the reliability of the sensor.
도 1a는 종래의 조향각 센서를 도시한 개략도이다.1A is a schematic diagram illustrating a conventional steering angle sensor.
도 1b는 종래 조향각 센서의 회전체 디스크를 발췌하여 도시한 평면도이다.1B is a plan view showing an extract of a rotating disk of a conventional steering angle sensor.
도 2는 본 발명에 따른 VDC 시스템의 상대 조향각 센서의 영점 보정방법에 대한 블록도이다.2 is a block diagram of a zero calibration method of a relative steering angle sensor of a VDC system according to the present invention.
도 3은 본 발명에 따른 VDC 시스템의 상대 조향각 센서의 영점 보정방법에 대한 흐름도이다.3 is a flowchart illustrating a zero calibration method of a relative steering angle sensor of a VDC system according to the present invention.
*도면의 주요 기능에 대한 부호의 설명** Description of the symbols for the main functions of the drawings *
10 : 센서부 11 : 각속도센서10: sensor unit 11: angular velocity sensor
12 : 상대 조향각센서 13 : 차륜속도센서12: relative steering angle sensor 13: wheel speed sensor
14 : 압력센서 20 : 전자제어유닛14 pressure sensor 20 electronic control unit
21 : 인터페이스 22 : 제어부21: interface 22: control unit
30 : 액추에이터 구동부 31 : 드로틀 밸브 액추에이터30: actuator drive unit 31: throttle valve actuator
32 : 브레이크 액추에이터32: brake actuator
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명에 따른 VDC 시스템의 상대 조향각 센서의 영점 보정방법은 차량에 마련된 각각의 센서들에 대한 영점을 보정하는 방법에 있어서, 상대 조향각센서와, 각속도센서로부터 각각의 상대 조향각센서와, 각속도센서의 실측값을 검출하고, 상기 검출된 상대 조향각센서의 실측값에 요구되는 미리 설정된 각속도센서의 산출값을 계산한다. 그 후 상기 검출된 각속도센서의 실측값과 상기 계산된 각속도센서의 산출값의 차를 계산하고, 상기 계산된 각속도센서값의 차와 미리 설정된 영점조정 기준상수값을 비교하며, 상기 비교결과에 따라 상대 조향각센서값의 영점을 보정하는 것을 특징으로 한다.The present invention is to solve the above problems, the zero calibration method of the relative steering angle sensor of the VDC system according to the present invention in the method for correcting the zero point for each sensor provided in the vehicle, the relative steering angle sensor, The relative steering angle sensor and the measured value of the angular velocity sensor are detected from the angular velocity sensor, and the calculated value of the preset angular velocity sensor required for the measured value of the detected relative steering angle sensor is calculated. Thereafter, the difference between the actual measured value of the angular velocity sensor and the calculated value of the calculated angular velocity sensor is calculated, and the difference between the calculated angular velocity sensor value and a preset zero point reference constant value are calculated, and according to the comparison result. The zero point of the relative steering angle sensor value is corrected.
이하에서는 본 발명에 따른 바람직한 실시 예를 첨부 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명에 따른 VDC 시스템의 상대 조향각 센서의 영점 보정방법에 대한 블록도이다. 도 2에 도시된 바와 같이, 본 발명은 차량의 진행방향을 제어하기 위한 기준정보인 조향각, 각속도 및 브레이크액압등의 물리량을 각각 검출하는 센서들을 구비한 센서부(10)와, 상기 센서부(10)의 출력측에 전기적으로 연결되어각 센서의 검출값에 따라 차량을 제어하는 전자제어유닛(20)와, 상기 전자제어유닛(20)의 출력측에 전기적으로 연결되어 해당 액추에이터를 구동시키는 액추에이터구동부(30)와, 상기 액추에이터구동부(30)에 전기적으로 연결되어 액추에이터구동부(30)의 구동신호 따라 드로틀밸브의 개도를 조절하는 드로틀밸브액추에이터(31) 및 차륜의 브레이크 액압을 조절하는 브레이크액추에이터(32)를 구비한다.2 is a block diagram of a zero calibration method of a relative steering angle sensor of a VDC system according to the present invention. As shown in FIG. 2, the present invention provides a sensor unit 10 having sensors for detecting physical quantities such as steering angle, angular velocity, and brake hydraulic pressure, which are reference information for controlling the traveling direction of a vehicle, and the sensor unit ( 10 is electrically connected to the output side of the electronic control unit 20 for controlling the vehicle according to the detection value of each sensor, and an actuator driving unit electrically connected to the output side of the electronic control unit 20 to drive the corresponding actuator ( 30) and the throttle valve actuator 31 electrically connected to the actuator driver 30 to adjust the opening degree of the throttle valve according to the drive signal of the actuator driver 30 and the brake actuator 32 to adjust the brake hydraulic pressure of the wheel. It is provided.
상기 센서부(10)는 차량의 각속도를 검출하는 각속도센서(11)와, 차량의 조향각을 검출하는 상대 조향각센서(12)와, 상기 차량의 차륜의 속도를 검출하는 차륜속도센서(13)와, 상기 차량의 차륜에 공급되는 브레이크 유압라인의 압력을 검출하는 압력센서(14)를 포함하고 있다.The sensor unit 10 includes an angular velocity sensor 11 for detecting an angular velocity of the vehicle, a relative steering angle sensor 12 for detecting a steering angle of the vehicle, a wheel speed sensor 13 for detecting a speed of a wheel of the vehicle, and And a pressure sensor 14 for detecting pressure of the brake hydraulic line supplied to the wheel of the vehicle.
상기 전자제어유닛(20)은 센서부(10)의 각 센서의 검출값을 디지털 변환하는 인터페이스(21)와, 상기 인터페이스(21)에 의해 디지털 변환된 검출값을 입력받아 조향각과 차체속도(차륜속도에 따라 추정된 차체속도)에 따라 차량이 소정속도이상으로 직진주행상태를 지속하는 경우 발생하는 상기 각속도센서(11)의 실측값을 상기 조향각에 요구되는 계산된 각속도센서(11)의 계산값과 비교하여 소정값 이상의 차이가 있을 경우 상기 상대 조향각센서(12)의 영점을 보정하고, 상기 보정된 상대 조향각센서(12)의 검출값에 따라 제어신호를 출력하는 제어부(22)를 포함하고 있다.The electronic control unit 20 receives an interface 21 for digitally converting detection values of each sensor of the sensor unit 10 and a detection value digitally converted by the interface 21 to receive a steering angle and a vehicle speed (wheel). Calculated value of the calculated angular velocity sensor 11 required for the steering angle by measuring the actual value of the angular velocity sensor 11 that occurs when the vehicle continues to go straight ahead of a predetermined speed according to the estimated vehicle speed). And a controller 22 for correcting the zero point of the relative steering angle sensor 12 and outputting a control signal according to the corrected detection value of the relative steering angle sensor 12 when there is a difference over a predetermined value. .
도 3은 본 발명에 따른 VDC 시스템의 상대 조향각 센서의 영점 보정방법의 흐름도이다. 도 3에 도시된 바와 같이, 차량이 정지한 상태에서 사용자가 차량을출발시키기 위해 시동을 켜면 제어부(22)는 차륜속도센서(13)로부터 차륜속도를 검출하고(S100), 상기 검출된 차륜속도로부터 차체속도값(vref)를 계산한다(S101).3 is a flowchart of a zero calibration method of a relative steering angle sensor of a VDC system according to the present invention. As shown in FIG. 3, when the user turns on the vehicle to start the vehicle while the vehicle is stopped, the controller 22 detects the wheel speed from the wheel speed sensor 13 (S100) and detects the wheel speed. The vehicle speed value v ref is calculated from the step S101.
상기 차체속도값(vref)을 계산한 후 제어부(22)는 차량이 정지상태가 아닌 소정속도이상으로 직진주행상태를 유지하고 있는가를 판단하기 위해 상기 차체속도값(vref)를 소정속도이상의 주행시의 속도값인 미리 설정된 차체속도 상수값(A)과 비교한다(S102).After calculating the vehicle speed value v ref , the controller 22 controls the vehicle speed value v ref to exceed the predetermined speed in order to determine whether the vehicle maintains a straight driving state over a predetermined speed rather than a stationary state. It compares with the preset body speed constant value A which is the speed value of (S102).
상기 비교결과 차체속도값(vref)이 차체속도 상수값(A)보다 크다면, 즉 차체속도가 소정속도이상으로 직진주행하고 있다고 판단되면, 제어부(22)는 상대 조향각센서(12)로부터 상대 조향각센서값(wstr)와 각속도센서(11)로부터 각속도센서값(yawm)을 검출한다(S103).If the comparison result indicates that the vehicle speed value vref is greater than the vehicle speed constant value A, that is, the vehicle speed is traveling straight ahead of the predetermined speed or more, the control unit 22 controls the relative steering angle from the relative steering angle sensor 12. The angular velocity sensor value yawm is detected from the sensor value wstr and the angular velocity sensor 11 (S103).
상기 각 센서들로부터 센서값을 검출한 후 제어부(22)는 일반적인 경우의 상기 상대 조향각센서값(wstr)에 요구되는 미리 설정된 각속도센서값(yawc)을 산출한다(S104).After detecting the sensor values from the respective sensors, the controller 22 calculates a preset angular velocity sensor value yawc required for the relative steering angle sensor value wstr in the general case (S104).
상기의 값을 산출한 후 제어부(22)는 단계(104)에서 산출한 각속도센서(11)의 산출값과 단계(S103)에서 검출한 각속도센서(11)의 실측값의 차를 계산한다(S105). 즉 각속도센서값의 차(△yaw) = 각속도센서값(yawc) - 각속도센서값(yawm)이다.After calculating the above values, the controller 22 calculates the difference between the calculated value of the angular velocity sensor 11 calculated in step 104 and the measured value of the angular velocity sensor 11 detected in step S103 (S105). ). In other words, the difference between the angular velocity sensor value Δyaw = the angular velocity sensor value yawc and the angular velocity sensor value yawm.
상기에서 각속도센서(11)의 산출값과 실측값의 차가 계산되면, 제어부(22)는 차량의 정지상태동안에 스티어링휠이 어느 회전방향(시계방향 또는 반시계방향)으로 회전되었는가를 판단하기 위해 상기 각속도센서값의 차(△yaw)를 미리 설정된 영점조정이 필요한 값인 영점조정 기준상수값(B)과 비교한다(S106). 상기 영점조정 기준상수값은 스티어링휠이 시계방향으로 회전하였을 경우는 (+)영점조정 기준상수값이고, 반시계방향으로 회전하였을 경우는 (-)영점조정 기준상수값이다. 또한, 각속도센서값의 차(△yaw)도 스티어링휠이 시계방향으로 회전하였을때는 (+)의 값을 갖고, 반시계방향으로 회전하였을때는 (-)의 값을 갖는다.When the difference between the calculated value of the angular velocity sensor 11 and the measured value is calculated, the control unit 22 determines the rotational direction (clockwise or counterclockwise) in which the steering wheel is rotated while the vehicle is stopped. The difference [Delta] yaw of the angular velocity sensor value is compared with the zero adjustment reference constant value B, which is a value that requires a preset zero adjustment (S106). The zero adjustment reference constant value is a positive zero adjustment reference constant value when the steering wheel rotates clockwise, and a zero adjustment reference constant value when the steering wheel rotates counterclockwise. In addition, the difference Δyaw of the angular velocity sensor value also has a value of (+) when the steering wheel rotates clockwise and a value of (−) when rotated counterclockwise.
상기 단계(S106)에서 제어부(22)는 스티어링휠이 시계방향으로 회전하였다면 상기 각속도센서값의 차(△yaw)를 (+)영점조정 기준상수값과 비교하고, 반시계방향으로 회전하였다면 상기 각속도센서값의 차(△yaw)를 (-)영점조정 기준상수값과 비교한다.In the step S106, the controller 22 compares the difference Δyaw of the angular velocity sensor value with a positive zero adjustment reference constant value if the steering wheel is rotated clockwise, and rotates it counterclockwise if the steering wheel is rotated clockwise. Compare the difference (△ yaw) of the sensor value with the negative zero calibration reference constant value.
상기 비교결과 각속도센서값의 차(△yaw)가 (+)영점조정 기준상수값보다 크면, 제어부(22)는 차량이 정지한 동안 스티어링휠이 시계방향으로 회전하였다고 판단하고, 조향각센서값에 360。를 뺀값으로 영점을 보정한다(S107). 즉 제어부(22)는 차량이 정지상태에서 시계방향으로 1회전(360。)되었다고 판단하고, 상대 조향각센서값에서 360。뺀 상태를 영점으로 판단한다(상대 조향각센서(12)는 1회전을 360。로 인식하게 구성되어 있다).As a result of the comparison, if the difference? Yaw of the angular velocity sensor value is greater than the positive zero adjustment reference constant value, the controller 22 determines that the steering wheel has rotated clockwise while the vehicle is stopped, and then adjusts the steering angle sensor value to 360. Zero is corrected by subtracting。 (S107). That is, the controller 22 determines that the vehicle has rotated one clockwise (360 °) from the stopped state, and determines that the state obtained by subtracting 360 ° from the relative steering angle sensor value is zero (the relative steering angle sensor 12 makes one rotation 360). It is configured to recognize as.
또한, 상기 단계(S106)의 비교결과 각속도센서값의 차(△yaw)가 (+)영점조정 기준상수값보다 작다면, 상기 각속도센서값의 차(△yaw)가 (-)영점조정 기준상수값을 비교한다(S110). 상기 비교결과 각속도센서값의 차(△yaw)가 (-)영점조정 기준상수값보다 작다면, 제어부(22)는 차량이 정지한 동안 스티어링휠이 반시계방향으로 회전하였다고 판단하고, 조향각센서값에 360。를 더한값으로 영점을 보정한다(S111).Further, if the difference Δyaw of the angular velocity sensor value is smaller than the positive zero adjustment reference constant value as a result of the comparison in step S106, the difference Δyaw of the angular velocity sensor value is a negative zero adjustment reference constant. Compare the values (S110). As a result of the comparison, if the difference? Yaw of the angular velocity sensor value is smaller than the (-) zero adjustment reference constant value, the controller 22 determines that the steering wheel rotates counterclockwise while the vehicle is stopped, and the steering angle sensor value Zero point is corrected by adding 360 [deg.] (S111).
만약, 상기 판단단계(S110)의 비교결과 각속도센서값의 차(△yaw)가 (-)영점조정 기준상수값보다 크면, 제어부(22)는 차량이 정지한 동안 스티어링휠이 회전하지 않은 것으로 판단하여 종료한다.If the difference (Δyaw) of the angular velocity sensor value is greater than the negative zero calibration reference constant value as a result of the comparison in the determination step (S110), the controller 22 determines that the steering wheel does not rotate while the vehicle is stopped. To exit.
이상에서 상세히 설명한 바와 같이, 본 발명은 운전자가 차량이 정지한 상태에서 조향을 하여 영점이 변한 경우 상대 조향각 센서의 영점을 보정함으로써 센서의 신뢰도를 향상함에 의해 차량의 진행방향을 안정적으로 제어할 수 있는 효과가 있다.As described in detail above, the present invention can stably control the traveling direction of the vehicle by improving the reliability of the sensor by correcting the zero point of the relative steering angle sensor when the driver changes steering while the vehicle is stopped. It has an effect.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2000-0047703A KR100390602B1 (en) | 2000-08-18 | 2000-08-18 | An method for compensating steering sensor's zero point in VDC |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2000-0047703A KR100390602B1 (en) | 2000-08-18 | 2000-08-18 | An method for compensating steering sensor's zero point in VDC |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20020014427A KR20020014427A (en) | 2002-02-25 |
| KR100390602B1 true KR100390602B1 (en) | 2003-07-07 |
Family
ID=19683703
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR10-2000-0047703A Expired - Fee Related KR100390602B1 (en) | 2000-08-18 | 2000-08-18 | An method for compensating steering sensor's zero point in VDC |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR100390602B1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20240011547A (en) | 2022-07-19 | 2024-01-26 | (주)하이즈통상 | Separable safety hurdle |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100751246B1 (en) * | 2006-01-02 | 2007-08-23 | 주식회사 만도 | Zero Calibration Method of Steering Angle Sensor |
| KR102172577B1 (en) * | 2014-09-25 | 2020-11-04 | 현대모비스 주식회사 | Fault diagnostic apparatus and control method of motor driven power steering |
| KR20240120153A (en) | 2023-01-31 | 2024-08-07 | 김영인 | a powder meter distributor |
-
2000
- 2000-08-18 KR KR10-2000-0047703A patent/KR100390602B1/en not_active Expired - Fee Related
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20240011547A (en) | 2022-07-19 | 2024-01-26 | (주)하이즈통상 | Separable safety hurdle |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20020014427A (en) | 2002-02-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US5465210A (en) | Method for determining a vehicle steering wheel center position | |
| US8558534B2 (en) | Rotational angle detection device and electric power steering system | |
| US5032996A (en) | Apparatus and method for detecting neutral steering angle of steering wheel system for vehicle | |
| JP3660635B2 (en) | Electric power steering control device | |
| KR102024550B1 (en) | Fail Safe Control Apparatus For Electric Power Steering System And Method Thereof | |
| EP1277646B1 (en) | Steer-by-wire drive control system with operating element home position updating function | |
| US9126627B2 (en) | Device for controlling a position sensor of the steering wheel of an automobile | |
| JPH02299979A (en) | Neutral steering angle estimation device | |
| KR100390602B1 (en) | An method for compensating steering sensor's zero point in VDC | |
| JP2003081101A (en) | Decision of robust hand wheel position | |
| WO2018194029A1 (en) | Steering angle detection device | |
| KR100398296B1 (en) | Brake systems for automobiles | |
| US6763293B2 (en) | Calibration procedure for a permanently powered relative steering wheel angle sensor with power-loss indication | |
| JP3060768B2 (en) | Steering angle detection device | |
| EP1666338B1 (en) | Torque detecting apparatus | |
| KR100349538B1 (en) | Sensor zero calibration method and device using steering angle sensor of vehicle | |
| KR20120019890A (en) | Method for prevent veficle pulling using motor drive power steering | |
| JP4192620B2 (en) | Control device for electric power steering | |
| JP4432885B2 (en) | Yaw rate detection device and vehicle equipped with the same | |
| KR100828947B1 (en) | Zero Calibration Method of Steering Angle Sensor | |
| JP2007106210A (en) | Vehicle behavior control device | |
| KR20230045347A (en) | Apparatus for electronic stability control in a vehicle and control method thereof | |
| JP3678554B2 (en) | Automatic steering device | |
| KR100204774B1 (en) | How to Change Fail-Safe Mode for Rear Steering System | |
| KR20030021415A (en) | Method for sensing air-gap in wheel speed sensor |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 7 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 8 |
|
| R17-X000 | Change to representative recorded |
St.27 status event code: A-5-5-R10-R17-oth-X000 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 9 |
|
| FPAY | Annual fee payment |
Payment date: 20120130 Year of fee payment: 10 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 10 |
|
| FPAY | Annual fee payment |
Payment date: 20130327 Year of fee payment: 11 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 11 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 12 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R14-asn-PN2301 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 13 |
|
| FPAY | Annual fee payment |
Payment date: 20160330 Year of fee payment: 14 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 14 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| FPAY | Annual fee payment |
Payment date: 20170320 Year of fee payment: 15 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 15 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 16 |
|
| FPAY | Annual fee payment |
Payment date: 20190403 Year of fee payment: 17 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 17 |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20200627 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20200627 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |