KR100403806B1 - Lithium secondary battery - Google Patents
Lithium secondary battery Download PDFInfo
- Publication number
- KR100403806B1 KR100403806B1 KR1019960060492A KR19960060492A KR100403806B1 KR 100403806 B1 KR100403806 B1 KR 100403806B1 KR 1019960060492 A KR1019960060492 A KR 1019960060492A KR 19960060492 A KR19960060492 A KR 19960060492A KR 100403806 B1 KR100403806 B1 KR 100403806B1
- Authority
- KR
- South Korea
- Prior art keywords
- lithium secondary
- secondary battery
- layer
- battery
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/137—Electrodes based on electro-active polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
본 발명은 리튬 2차전지에 관한 것으로서, 상세하기로는 콤포지트 전극과 집전체간의 접착력을 향상시켜서 충방전이 반복됨에 따라 계면이 분리되는 현상을 방지할 수 있는 리튬 2차전지에 관한 것이다.The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery capable of preventing an interface from being separated as charging and discharging is repeated by improving adhesion between the composite electrode and the current collector.
리튬 2차전지는 장수명, 고용량 등의 우수한 특성으로 인하여 차세대 동력원으로서 가장 주목받고 있는 전지로서, Li/MnO2와 같은 1차전지와 리튬이온전지, 플라스틱 리튬이온전지와 같은 리튬 2차전지로 세분할 수 있다.Lithium secondary batteries are attracting the most attention as next-generation power sources due to their excellent characteristics such as long life and high capacity. They can be subdivided into primary batteries such as Li / MnO2 and lithium secondary batteries such as lithium ion batteries and plastic lithium ion batteries. .
리튬 2차전지의 양극 활물질에는 리튬코발트산화물(LiCoO2), 리튬니켈산화물(LiNiO2), 리튬망간산화물(LiMn2O4) 등이 이용되고, 음극 활물질에는 리튬 금속이나 그 합금, 탄소재료 등이 이용된다. 그리고 전해질로는 액체 전해질이나 고체 전해질이 사용된다. 그런데 전해질로서 액체 전해질을 사용하는 경우, 누액에 따른 화재의 위험성 및 기화에 따른 전지의 파손 등과 같은 안전성과 관련한 많은 문제점이 발생된다. 이러한 문제점을 해결하기 위하여 액체 전해질 대신 고체 전해질을 사용하는 방법이 제안되었다. 고체 전해질은 일반적으로 전해액의 누출 위험이 없고 가공하기가 용이하기 때문에 많은 관심속에서 연구가 진행되고있다.Lithium cobalt oxide (LiCoO2), lithium nickel oxide (LiNiO2), lithium manganese oxide (LiMn2O4), etc. are used for the positive electrode active material of a lithium secondary battery, and lithium metal, its alloy, carbon material, etc. are used for a negative electrode active material. As the electrolyte, a liquid electrolyte or a solid electrolyte is used. However, when the liquid electrolyte is used as the electrolyte, many problems related to safety, such as the risk of fire due to leakage and breakage of the battery due to vaporization, are generated. In order to solve this problem, a method of using a solid electrolyte instead of a liquid electrolyte has been proposed. Solid electrolytes are generally studied with great interest because there is no risk of leakage of electrolytes and they are easy to process.
이러한 고체 전해질로서 리튬염과 폴리에틸렌옥사이드(polyethylene oxide)의 복합체를 사용하기 시작한 이래, 실온에서 높은 전도성을 갖는 고분자 전해질에 대한 연구가 활발히 진행되었다. 이러한 연구는 유기용매에 리튬염을 용해한 액체 전해질을 사용하는 리튬전지와 거의 동등한 방전율을 유지할 수 있는 고체 고분자 전해질을 찾고자 함에 그 목적을 두고 있다. 이러한 목적에 부합될 수 있는 고분자 전해질로서의 요건은 다음과 같다.Since the use of a composite of lithium salt and polyethylene oxide as a solid electrolyte, research into a polymer electrolyte having high conductivity at room temperature has been actively conducted. This study aims to find a solid polymer electrolyte that can maintain a discharge rate almost equal to that of a lithium battery using a liquid electrolyte in which lithium salt is dissolved in an organic solvent. Requirements as a polymer electrolyte that can meet this purpose are as follows.
첫째, 충전식 리튬전지에서 사용하는 액체 전해질의 전도도 즉 10-3∼10-2 S/cm 정도의 전도도를 갖고 있어야 한다.First, the liquid electrolyte used in the rechargeable lithium battery should have a conductivity of about 10-3 to 10-2 S / cm.
둘째, 화학적, 전기화학적 및 기계적인 안정성이 우수해야 한다.Second, the chemical, electrochemical and mechanical stability should be excellent.
셋째, 고분자가 비정질 상태에서 방향성을 거의 갖지 않을 때 이온 전도도가 높기 때문에 유리전이온도(Tg)가 낮은 비정질 고분자이어야 한다.Third, since the ionic conductivity is high when the polymer has almost no aromaticity in the amorphous state, the polymer should be an amorphous polymer having a low glass transition temperature (Tg).
상기와 같은 요건을 만족시키는 고분자 전해질을 이용하여 리튬 2차전지를 제조하는 경우, 콤포지트 전극을 사용하는 것이 필요하다. 즉 고분자 전해질은 용액 상태의 전해질이 아니어서 양극, 음극 및 전해질을 각각 독립적으로 사용할 수 없으므로 전극 형성시 전극 활물질 주성분이외에 이온들의 이동통로를 만들어주기 위하여 고분자 전해질 조성물을 첨가한다. 이 때 상기 전극 활물질로 종종 사용되는 LiNiO2, LiCoO2, V6O13, LiMnO4 등은 전기전도도가 비교적 낮기 때문에 카본블랙 등과 같은 도전제를 첨가하는 것이 바람직하다. 이 때 집전체의 기공도, 활물질 성분 및 그 입자 크기 등을 서로 조화시키는 것이 중요한데, 이는 상기 인자들이내부 임피던스, 집전체와 활물질의 부착력 등에 매우 중요한 영향을 주기 때문이다.When manufacturing a lithium secondary battery using a polymer electrolyte which satisfies the above requirements, it is necessary to use a composite electrode. That is, since the polymer electrolyte is not a solution electrolyte, the positive electrode, the negative electrode, and the electrolyte cannot be used independently, so that the polymer electrolyte composition is added to make the movement path of the ions in addition to the main component of the electrode active material during electrode formation. At this time, LiNiO2, LiCoO2, V6O13, LiMnO4 and the like, which are often used as the electrode active material, have a low electrical conductivity, and therefore, it is preferable to add a conductive agent such as carbon black. At this time, it is important to harmonize the porosity of the current collector, the active material component and its particle size, etc., because these factors have a very important influence on the internal impedance, the adhesion between the current collector and the active material.
상기한 콤포지트 전극 및 고분자 전해질를 포함하여 된 리튬2차전지는 충방전을 거듭할수록 전지 용량이 점차적으로 떨어지게 된다. 이러한 현상은 충방전의 반복데 따른 양극 내에서의 형태학적인 변화로부터 비롯된다. 즉, 방전과정에서는 음극으로부터 나온 리튬이 양극으로 침투함으로써 양극의 부피가 팽창된다. 이로 인하여 고분자 전해질이 인접한 빈 공간쪽으로 탄성적 및 점성적인 불균형운동을 하게 된다. 이와 반대로 충전과정에는 양극의 부피가 감소된다. 이 때 고분자 전해질의 탄성적인 수축은 회복되지만 점성적인 흐름에 의한 불균형은 회복되지 않는다. 이렇게 되면 양극/전해질, 전해질/음극간의 계면이외에 다른 계면이 발생되어 전체적으로 계면저항이 커지게 된다.In the lithium secondary battery including the composite electrode and the polymer electrolyte, the battery capacity gradually decreases as charging and discharging are repeated. This phenomenon stems from morphological changes in the anode due to repeated charge and discharge. That is, in the discharge process, lithium from the negative electrode penetrates into the positive electrode, thereby expanding the volume of the positive electrode. This causes the polymer electrolyte to have elastic and viscous imbalance movement toward the adjacent empty space. In contrast, the charging process reduces the volume of the positive electrode. At this time, the elastic shrinkage of the polymer electrolyte is recovered, but the imbalance due to the viscous flow is not recovered. In this case, an interface other than the interface between the anode / electrolyte and the electrolyte / cathode is generated to increase the interface resistance as a whole.
상기한 바와 같은 문제점을 해결하기 위하여 쉬트상태의 양극, 전해질 및 음극을 포갠 다음, 이를 약 135℃ 정도의 온도에서 열융착시킴으로써 계면의 저항을 감소시키는 방법이 제안되었다. 그러나 이 방법은 열중합성 고분자를 사용하는 경우에만 가능하므로 매우 제한적인 방법이다.In order to solve the above problems, a method of reducing the resistance of the interface by stacking the positive electrode, the electrolyte and the negative electrode in a sheet state, and then heat-sealing them at a temperature of about 135 ° C has been proposed. However, this method is very limited because it is possible only when using a thermopolymer.
다른 방법으로서, 쉬트 형태의 양극, 전해질 및 음극을 포갠 다음, 이를 압력을 이용하여 압착하는 방법이 있다. 이 방법에 따르면, 양극/전해질, 전해질/음극간의 계면이 뚜렷하므로 계면간에 큰 임피던스 성분이 존재하게 된다. 이러한 전지에 충방전을 계속적으로 실시하면 집전체와 콤포지트 전극간의 밀착력이 점점 저하되어 결국은 분리되는 현상이 발생된다. 이러한 문제점을 감안하여 집전체와 콤포지트 전극간의 사이에 별도의 접착층을 형성하는 방법이 이용되고 있다.As another method, a sheet-like anode, an electrolyte, and a cathode are stacked and then pressed using pressure. According to this method, since the interface between the anode / electrolyte and the electrolyte / cathode is clear, a large impedance component exists between the interfaces. If the battery is continuously charged and discharged, the adhesion between the current collector and the composite electrode gradually decreases, resulting in a phenomenon of separation. In view of these problems, a method of forming a separate adhesive layer between the current collector and the composite electrode is used.
이에 본 발명에서는 집전체와 콤포지트 전극간의 밀착력을 향상시키기 위한 접착층 형성에 있어서 계면저항을 최소화시킬 수 있는 접착층 형성용 조성물을 완성하기에 이르렀다.Accordingly, in the present invention, the composition for forming the adhesive layer capable of minimizing the interfacial resistance in forming the adhesive layer for improving the adhesion between the current collector and the composite electrode has been completed.
본 발명이 이루고자 하는 기술적 과제는 집전체/전극간의 계면저항을 최소화시킴으로써 전지가 제용량을 발휘할 수 있는 리튬 2차전지를 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a lithium secondary battery in which a battery can exhibit full capacity by minimizing interfacial resistance between a current collector and an electrode.
상기 과제를 이루기 위하여 본 발명에서는 집전체, 접착층, 콤포지트 전극층 및 고분자 전해질층을 포함하여 된 리튬 2차전지에 있어서, 상기 접착층이 폴리비닐부티랄, 용매 및 도전제를 포함하는 조성물로 이루어지는 것을 특징으로 하는 리튬 2차전지를 제공한다.In order to achieve the above object, in the present invention, in the lithium secondary battery comprising a current collector, an adhesive layer, a composite electrode layer, and a polymer electrolyte layer, the adhesive layer is made of a composition containing polyvinyl butyral, a solvent, and a conductive agent. Provided is a lithium secondary battery.
상기 접착층 형성용 조성물에서 폴리비닐부티랄은 전체 조성에서 3 내지 7중량%인 것이 바람직하다. 만약 폴리비닐부티랄이 전체 조성에서 7중량%를 초과하면 폴리비닐부티랄 본래의 저항성분이 현저하여 산화물층과 집전체사이에 이중층의 생성 및 이로 인한 충방전시 전지의 열화가 심하게 되며, 3중량% 미만이면 집전체와 콤포지트 전극층을 밀착시키는 효과가 미미하여 바람직하지 못하다. 그리고 도전제는 카본블랙, 아세틸렌블랙, 수퍼-P-카본중에서 선택되며, 그 함량은 전체 조성에서 3 내지 7중량%이다. 상기 용매는 테트라하이드로퓨란, 에틸알콜, 아세톤, 에틸에테르중에서 선택된 적어도 1종이며, 그 함량은 전체 조성에서 상기 폴리비닐부티랄과 도전제를 제외한 나머지 함량이다.The polyvinyl butyral in the adhesive layer-forming composition is preferably 3 to 7% by weight in the total composition. If the polyvinyl butyral exceeds 7% by weight of the total composition, the original resistance component of the polyvinyl butyral is remarkable, so that a double layer is formed between the oxide layer and the current collector and the deterioration of the battery during charging and discharging is severe. If it is less than%, the effect of adhering the current collector to the composite electrode layer is insignificant, which is not preferable. And the conductive agent is selected from carbon black, acetylene black, super-P-carbon, the content is 3 to 7% by weight of the total composition. The solvent is at least one selected from tetrahydrofuran, ethyl alcohol, acetone and ethyl ether, the content of which is the remaining content except the polyvinyl butyral and the conductive agent in the total composition.
본 발명의 접착층 형성용 조성물은 폴리비닐 부티랄의 산소 원자와 알루미늄 박막 및 구리 박막과 같은 집전체 표면상에 형성되어 있는 금속 수산화물간의 수소 원자와의 수소결합으로 인하여 집전체와 전극층간의 밀착력을 매우 향상시킬 수 있다(여기에서 상기 금속 수산화물은 집전체를 사용하기 이전에 수산화나트륨 또는 질산을 이용한 예비처리과정에서 생성된 것임).The composition for forming an adhesive layer according to the present invention has excellent adhesion between the current collector and the electrode layer due to the hydrogen bond between the oxygen atom of polyvinyl butyral and the hydrogen atom between the metal hydroxide formed on the current collector surface such as an aluminum thin film and a copper thin film. It can be improved (wherein the metal hydroxide is produced in a pretreatment process using sodium hydroxide or nitric acid before using the current collector).
한편, 상기 폴리비닐부티랄은 전도성이 작기 때문에 카본블랙과 같은 도전제를 함께 사용하는 것이 바람직하며, 이렇게 도전제를 부가하면 전도도가 매우 향상되어 폴리비닐부티랄의 첨가가 집전체의 집전능력에는 미칠 수 있는 부정적인 영향은 배제시킬 수 있다.On the other hand, since the polyvinyl butyral is low in conductivity, it is preferable to use a conductive agent such as carbon black, and when the conductive agent is added, the conductivity is greatly improved, so that the addition of polyvinyl butyral to the current collector capacity of the current collector. Negative effects can be ruled out.
본 발명에서 사용된 고분자 고체 전해질은 N-이소프로필아크릴 아미드와 아크릴로일 몰포린, N,N-디메틸 아미노프로필아크릴 아미드 등의 비닐 모노머와, 폴리에틸렌 글리콜 디아크릴산 에스테르 또는 폴리에틸렌 글리콜 디메타크릴산 에스테르의 공중합체를 사용하고, 이 공중합체에 이온성 리튬염 및 유기용매가 함유되어 있는 구조를 갖는다.The polymer solid electrolyte used in the present invention is a vinyl monomer such as N-isopropylacrylamide, acryloyl morpholine, N, N-dimethyl aminopropylacrylamide, polyethylene glycol diacrylic acid ester or polyethylene glycol dimethacrylic acid ester. It has a structure using a copolymer of, containing an ionic lithium salt and an organic solvent in the copolymer.
상기 유기용매로는 에틸렌 카보네이트, 프로필렌 카보네이트, γ-부티로락톤, 디메톡시에탄, 디메틸 카보네이트, 디에틸 카보네이트 등으로부터 선택된 적어도 1종의 용매를 사용한다. 그리고 이온성 리튬염으로는 과염소산리튬(PClO4), 사불화붕산리튬(LiBF4), 육불화인산리튬(LiPF6), 삼불화메타설포닐이미드(LiN(CF3SO2)2) 중에서 선택된 적어도 1종을 사용한다.The organic solvent is at least one solvent selected from ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethoxyethane, dimethyl carbonate, diethyl carbonate and the like. And at least one selected from lithium perchlorate (PClO4), lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), and meta trifluoride imide (LiN (CF3SO2) 2). do.
이하, 본 발명에 따른 리튬 2차전지를 제조하는 방법을 설명하기로 한다.Hereinafter, a method of manufacturing a lithium secondary battery according to the present invention will be described.
폴리비닐부티랄 3 내지 7중량%, 도전제 3 내지 7중량% 및 나머지 함량의 용매를 포함하는 조성물을 충분히 혼합하고, 이 조성물을 양극 및 음극 집전체상에 각각 캐스팅하고 건조하여 접착층을 형성한다. 이어서 상기 결과물의 접착층 상부에 콤포지트 양극층 및 음극층을 각각 형성한다. 그리고 상기 콤포지트 양극층 상부에 고분자 전해질층을 형성하고, 상기 고분자 전해질층 상부에 상기 콤포지트 음극층을 압착시킨 후, 열처리하는 단계를 거쳐 본 발명에 따른 리튬 2차전지를 완성한다.A composition comprising 3 to 7 wt% of polyvinyl butyral, 3 to 7 wt% of a conductive agent and the remaining amount of solvent is sufficiently mixed, and the composition is cast on a positive electrode and a negative electrode current collector and dried to form an adhesive layer, respectively. . Subsequently, a composite anode layer and a cathode layer are formed on the adhesive layer of the resultant, respectively. A polymer electrolyte layer is formed on the composite cathode layer, the composite anode layer is compressed on the polymer electrolyte layer, and heat treated to complete the lithium secondary battery according to the present invention.
이하, 본 발명을 실시예를 들어 상세히 설명하기로 하되, 본 발명이 하기 비제한적인 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following non-limiting Examples.
<실시예><Example>
먼저, 접착층 형성용 조성물을 다음과 같이 준비하였다.First, the composition for forming an adhesive layer was prepared as follows.
THF 90중량% 및 에틸 알콜 10중량%의 혼합용매에 폴리비닐부티랄 5중량%, 카본블랙 5중량%를 부가하여 약 1시간동안 교반하였다.5% by weight of polyvinyl butyral and 5% by weight of carbon black were added to a mixed solvent of 90% by weight of THF and 10% by weight of ethyl alcohol, followed by stirring for about 1 hour.
유리기판 2장 상부에 약 30μm 두께를 갖는 알루미늄 박막 및 구리 박막을 각각 붙인 다음, 상기 접착층 형성용 조성물을 붓고, 코팅머신을 이용하여 약 20μm 두께로 얇게 캐스팅하였다. 그리고 나서, 50℃에서 약 30분동안 건조시켜 접착층을 형성하였다. 이렇게 얻어진 접착층의 집전체에 대한 접착력을 살펴보기 위하여 스카치 테잎을 이용하여 평가하였다. 광학 현미경을 이용하여 관찰한 결과, 알루미늄 및 구리 박막과 접착층간의 박리 현상은 관찰되지 않았다.An aluminum thin film and a copper thin film each having a thickness of about 30 μm were attached to two glass substrates, and then the composition for forming the adhesive layer was poured and cast into a thin thickness of about 20 μm using a coating machine. Then, drying was performed at 50 ° C. for about 30 minutes to form an adhesive layer. In order to examine the adhesion of the adhesive layer to the current collector obtained by using the scotch tape was evaluated. As a result of observing using an optical microscope, no peeling phenomenon between the aluminum and copper thin films and the adhesive layer was observed.
리튬이산화망간 산화물과 아세틸렌 블랙의 혼합물을 90:10 중량비로 혼합한 다음, 이 혼합물을 고속 믹서기에 넣어 분당회전속도 3000rpm에서 1분씩, 8회를 반복실시하여 망산스피넬 구조의 리튬이산화망간 주위에 도전제가 균일하게 분포될 수 있도록 하였다. 그 후, 여기에 고분자 전해질 조성물을 부가하고 볼밀에서 24시간동안 혼합하였다. 이 때 고분자 전해질 조성물은 N-이소프로필아크릴 아미드와 반복단위(폴리에틸렌 글리콜)의 수가 23인 (EO)23DMA를 15:5 중량비로 혼합하고 여기에 프로필렌 카보네이트 및 사불화붕산리튬을 부가하여 만들었다. 그 후, 열중합개시제인 AIBN을 부가한 다음, 충분히 교반하여 콤포지트 양극 형성용 조성물을 만들었다.The mixture of lithium manganese dioxide oxide and acetylene black was mixed in a 90:10 weight ratio, and then the mixture was placed in a high speed mixer to perform eight times of one minute at a speed of 3000 rpm per minute to uniform the conducting agent around the lithium manganese dioxide having a manganese spinel structure. It can be distributed. Thereafter, the polymer electrolyte composition was added thereto and mixed in a ball mill for 24 hours. At this time, the polymer electrolyte composition was prepared by mixing N-isopropylacrylamide with (EO) 23DMA having a number of repeating units (polyethylene glycol) in a 15: 5 weight ratio, and adding propylene carbonate and lithium tetrafluoroborate thereto. Then, AIBN which is a thermal polymerization initiator was added, and it stirred well, and made the composition for composite anode formation.
접착층이 형성된 알루미늄 집전체상에 상기 콤포지트 양극 형성용 조성물을 붓고, 캐스팅머신을 사용하여 약 200μm 두께의 콤포지트 필름을 만든 다음, 70℃에서 약 30분동안 열중합을 실시하였다.The composite anode forming composition was poured onto an aluminum current collector on which an adhesive layer was formed, a composite film having a thickness of about 200 μm was made using a casting machine, and thermal polymerization was performed at 70 ° C. for about 30 minutes.
한편, 카본 분말, 아세틸렌 및 상기 고분자 전해질 조성물을 혼합하여 콤포지트 음극 형성용 조성물을 얻었다. 그리고 나서 이 조성물을 접착층이 형성된 구리 박막상에 도포한 다음, 상기 양극 제조방법과 동일한 방법에 따라 콤포지트 음극을 제조하였다.On the other hand, carbon powder, acetylene and the polymer electrolyte composition were mixed to obtain a composition for forming a composite negative electrode. Then, the composition was applied onto the copper thin film on which the adhesive layer was formed, and then a composite negative electrode was prepared in the same manner as the positive electrode manufacturing method.
이어서, 콤포지트 양극층 상부에 상기 고분자 전해질 조성물을 도포하고 자외선의 조사로 광중합을 실시하여 고분자 전해질층을 형성하였다. 그리고 나서 상기 고분자 전해질층에 콤포지트 음극층을 맞대어 포갠 다음, 500g/㎠ 압력을 가한 상태에서 70℃에서 30분동안 가열처리하여 전지를 완성하였다.Subsequently, the polymer electrolyte composition was coated on the composite anode layer and photopolymerized by irradiation with ultraviolet rays to form a polymer electrolyte layer. Then, the composite negative electrode layer was stacked on the polymer electrolyte layer, and then heated at 70 ° C. for 30 minutes while applying a pressure of 500 g / cm 2 to complete the battery.
상기 방법에 따라 얻어진 리튬 2차전지의 계면 접합상태를 살펴보기 위하여, 직경 13mm의 펀치를 사용하여 전지의 일부를 잘라낸 다음, 이를 육안으로 관찰하거나 핀셋으로 벗겨 보았다. 그 결과 양극, 전해질 및 음극 각각의 층이 광중합 및 열중합에 의하여 효율적으로 접합되어 별개의 계면이 존재하지 않음을 알 수 있었다.In order to examine the interfacial junction state of the lithium secondary battery obtained by the above method, a part of the battery was cut out using a punch having a diameter of 13 mm, and then visually observed or peeled off with tweezers. As a result, it was found that the layers of the positive electrode, the electrolyte, and the negative electrode were effectively bonded by photopolymerization and thermal polymerization, so that a separate interface did not exist.
한편, 상기 리튬 2차전지의 전기화학적인 상태를 살펴보기 위하여, 직경 13mm의 펀치를 이용하여 전지의 일부를 떼어내고 알루미늄 호일을 리드선으로 이용하여 전지를 조립하였다. 그 후, 상기 전지를 드라이박스내 밀폐용기에 넣은 다음, 임피던스 분석기(요코하마 헤월레트 팩커드 4192A)를 이용하여 시간경과에 따른 이온전도도의 변화를 관찰하였다. 여기에서 상기 드라이아이스 박스의 내부는 진공 상태로 만든 다음, 아르곤가스를 주입하여 산소 기체 및 수분을 1ppm 이하로 제어함으로서 수분 및 산소 기체의 존재로 인한 전해액의 분해라든지 반응의 억제요인을 사전에 제거하였다. 그리고 본 발명에서 사용하는 화합물 시약들은 최소 99%이상의 순도를 갖는 제품들로서, 사용하기이전에 진공건조기를 사용하여 30분씩 건조시킨 다음, 사용하였다.Meanwhile, to examine the electrochemical state of the lithium secondary battery, a part of the battery was removed using a punch having a diameter of 13 mm, and the battery was assembled using aluminum foil as a lead wire. Thereafter, the battery was placed in a sealed container in a dry box, and then the change in ion conductivity over time was observed using an impedance analyzer (Yokohama Hewlett Packard 4192A). Here, the inside of the dry ice box is made into a vacuum state, and then, argon gas is injected to control oxygen gas and moisture to 1 ppm or less to remove decomposition factors or suppression factors of the electrolyte due to the presence of moisture and oxygen gas in advance. It was. In addition, the compound reagents used in the present invention are products having a purity of at least 99%, and are used after drying for 30 minutes using a vacuum dryer before use.
상기와 같은 실험결과, 72시간 경과후에도 전도도는 1.3×10-3 S/cm(오차:±10%)를 나타내었다.As a result of the experiment, even after 72 hours, the conductivity was 1.3 × 10 −3 S / cm (error: ± 10%).
<비교예>Comparative Example
집전체와 콤포지트 양극 사이 그리고 집전체와 콤포지트 음극사이에 접착층을 형성하지 않은 것을 제외하고는, 실시예와 동일한 방법에 따라 실시하였다.The same procedure as in Example was carried out except that no adhesive layer was formed between the current collector and the composite anode and between the current collector and the composite cathode.
상기 방법에 따라 제조된 전지에 있어서, 집전체와 콤포지트 전극사이의 접착력을 살펴보기 위하여 스카치 테잎을 이용하여 평가하였다. 광학현미경을 이용하여 상기 결과를 관찰한 보면, 알루미늄 및 구리 박막과 콤포지트 전극간에 미세한 박리 현상을 관찰할 수 있었다.In the battery manufactured according to the above method, the Scotch tape was evaluated to examine the adhesive force between the current collector and the composite electrode. Observing the results using an optical microscope, it was possible to observe a fine peeling phenomenon between the aluminum and copper thin film and the composite electrode.
그리고 직경 13mm의 펀치를 이용하여 전지의 일부를 떼어내고 알루미늄 호일을 리드선으로 이용하여 전지를 조립하였다. 그 후, 상기 전지를 드라이박스내 밀폐용기에 넣은 다음, 임피던스 분석기(요코하마 헤월레트 팩커드 419A)를 이용하여 시간경과에 따른 전도도의 변화를 관찰하였다. 관찰결과, 초기에는 전도도가 1.34×10-3S/cm(오차:±10%)이었고, 24시간 경과후에는 1.25×10-3S/cm, 48시간 경과후에는 0.97×10-3S/cm, 72시간 경과후에는 0.75×10-3S/cm였다.A part of the battery was removed using a punch having a diameter of 13 mm, and the battery was assembled using an aluminum foil as a lead wire. Thereafter, the battery was placed in an airtight container in a dry box, and then a change in conductivity over time was observed using an impedance analyzer (Yokohama Hewlett Packard 419A). As a result, the conductivity was 1.34 × 10-3S / cm (error: ± 10%) at the beginning, 1.25 × 10-3S / cm after 24 hours, 0.97 × 10-3S / cm after 48 hours, 72 After elapse of time, the result was 0.75 × 10 −3 S / cm.
상기에서 알 수 있는 바와 같이, 본 발명에 따라 접착층을 형성하면, 집전체와 콤포지트 전극간의 밀착력이 매우 우수할 뿐만 아니라 전도도가 우수함을 알 수 있었다.As can be seen from the above, when the adhesive layer was formed according to the present invention, it was found that not only the adhesion between the current collector and the composite electrode was excellent but also the conductivity was excellent.
본 발명에 따르면, 다음과 같은 효과가 있다.According to the present invention, the following effects are obtained.
첫째, 집전체와 콤포지트 전극간의 밀착력이 향상되어 계면의 박리가 일어나지 않으므로 전지의 내부 임피던스가 낮아진다. 그 결과 높은 효율을 갖는 동시에 수명이 연장된 전지를 제조할 수 있다.First, since the adhesion between the current collector and the composite electrode is improved and the interface is not peeled off, the internal impedance of the battery is lowered. As a result, a battery having a high efficiency and having an extended life can be manufactured.
둘째, 전해질층과 콤포지트 전극층을 접합하는 경우, 70℃ 정도의 비교적 낮은 온도 조건하에서 실시하므로 전해액의 증발 염려가 없어서 전해액 부족으로 인한 용량 감소가 거의 없을 뿐만 아니라, 계면저항이 거의 없어서 전해액 고유의 이온 전도도를 유지할 수 있다.Second, when the electrolyte layer and the composite electrode layer are bonded to each other, the electrolyte layer and the composite electrode layer are bonded under relatively low temperature conditions of about 70 ° C., so there is no fear of evaporation of the electrolyte and there is almost no capacity reduction due to the lack of electrolyte. Can maintain conductivity.
셋째, 고분자 전해질층은 광중합에 의하여 만들어지는데, 상기 광중합은 상온에서 가능하며, 365 내지 400nm의 비교적 장파장에서도 이루어질 수 있으므로 가격이 저렴한 자외선 형광등을 사용할 수 있어서 제조단가를 낮출 수 있다.Third, the polymer electrolyte layer is made by photopolymerization. The photopolymerization is possible at room temperature, and can be made at a relatively long wavelength of 365 to 400 nm, thereby making it possible to use an inexpensive ultraviolet fluorescent lamp, thereby lowering the manufacturing cost.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1019960060492A KR100403806B1 (en) | 1996-11-30 | 1996-11-30 | Lithium secondary battery |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1019960060492A KR100403806B1 (en) | 1996-11-30 | 1996-11-30 | Lithium secondary battery |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR19980041213A KR19980041213A (en) | 1998-08-17 |
| KR100403806B1 true KR100403806B1 (en) | 2003-12-18 |
Family
ID=37422565
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1019960060492A Expired - Lifetime KR100403806B1 (en) | 1996-11-30 | 1996-11-30 | Lithium secondary battery |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR100403806B1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1912275A1 (en) * | 2006-09-25 | 2008-04-16 | LG Chemical Limited | Gel-typed polymer electrolyte containing diacryl amide-based polymeric material and electrochemical device comprising the same |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100354249B1 (en) * | 2000-01-06 | 2002-09-28 | 삼성에스디아이 주식회사 | Lithium polymer battery |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02109256A (en) * | 1988-10-18 | 1990-04-20 | Fuji Elelctrochem Co Ltd | paper batteries |
| JPH07302586A (en) * | 1994-05-09 | 1995-11-14 | Ricoh Co Ltd | Battery electrode and manufacturing method thereof |
-
1996
- 1996-11-30 KR KR1019960060492A patent/KR100403806B1/en not_active Expired - Lifetime
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH02109256A (en) * | 1988-10-18 | 1990-04-20 | Fuji Elelctrochem Co Ltd | paper batteries |
| JPH07302586A (en) * | 1994-05-09 | 1995-11-14 | Ricoh Co Ltd | Battery electrode and manufacturing method thereof |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1912275A1 (en) * | 2006-09-25 | 2008-04-16 | LG Chemical Limited | Gel-typed polymer electrolyte containing diacryl amide-based polymeric material and electrochemical device comprising the same |
Also Published As
| Publication number | Publication date |
|---|---|
| KR19980041213A (en) | 1998-08-17 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110707361B (en) | Electrolyte for high-voltage soft-package lithium ion battery suitable for high-rate charge and discharge | |
| KR100425585B1 (en) | Lithium polymer secondary battery having crosslinked polymer protective thin film and method for manufacturing the same | |
| KR100502357B1 (en) | Positive electrode having polymer film and lithium-sulfer battery employing the positive electrode | |
| US7135254B2 (en) | Multi-layered, UV-cured polymer electrolyte and lithium secondary battery comprising the same | |
| WO2016133279A1 (en) | Gel polymer electrolyte, method for preparing same, and electrochemical device comprising same | |
| CN108232111A (en) | A kind of anode composite pole piece of solid state battery and preparation method thereof | |
| KR101042675B1 (en) | Electrode assembly and lithium secondary battery having same | |
| EP4071875A1 (en) | Solid-state battery, battery module, battery pack, and related device thereof | |
| US9029003B2 (en) | Electrode assembly of lithium secondary battery | |
| CN109873208B (en) | A kind of gel polymer electrolyte secondary battery and its preparation | |
| EP4379836A1 (en) | Positive electrode active material composition, aqueous positive electrode slurry, positive electrode sheet, secondary battery, and electric device | |
| JP7538876B2 (en) | Separator, manufacturing method thereof, and related secondary battery, battery module, battery pack, and device | |
| KR102755851B1 (en) | Electrochemical device and manufacturing method thereof | |
| EP4503193A1 (en) | Electrochemical apparatus and electronic apparatus comprising same | |
| WO2023133798A1 (en) | Positive electrode composite material for lithium-ion secondary battery, positive electrode, and battery | |
| WO2023071807A1 (en) | Membrane and preparation method therefor, secondary battery, battery module, battery pack, and power consumption device | |
| CN115810717A (en) | Negative pole piece and preparation method thereof, secondary battery, battery module, battery pack and electric device | |
| WO2023070600A1 (en) | Secondary battery, battery module, battery pack, and electrical device | |
| CN110854432A (en) | Electrolyte and electrochemical devices and electronic devices using the same | |
| CN115832444B (en) | Secondary battery, battery module, battery pack, and power consumption device | |
| KR100403806B1 (en) | Lithium secondary battery | |
| CN104744722B (en) | Porous self-cross linking type polymer film and preparation method, the electrolyte obtained by the film and its in the application of lithium ion battery | |
| WO2024212526A1 (en) | Separator film and preparation method therefor, battery, and electric device | |
| CN116581387A (en) | Electrolyte, battery and electrical equipment | |
| JP2002042874A (en) | Polymer secondary battery |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 19961130 |
|
| PG1501 | Laying open of application | ||
| A201 | Request for examination | ||
| PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20010219 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 19961130 Comment text: Patent Application |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20030219 Patent event code: PE09021S01D |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20030930 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20031017 Patent event code: PR07011E01D |
|
| PR1002 | Payment of registration fee |
Payment date: 20031020 End annual number: 3 Start annual number: 1 |
|
| PG1601 | Publication of registration | ||
| PR1001 | Payment of annual fee |
Payment date: 20060913 Start annual number: 4 End annual number: 4 |
|
| PR1001 | Payment of annual fee |
Payment date: 20070927 Start annual number: 5 End annual number: 5 |
|
| PR1001 | Payment of annual fee |
Payment date: 20080919 Start annual number: 6 End annual number: 6 |
|
| PR1001 | Payment of annual fee |
Payment date: 20090928 Start annual number: 7 End annual number: 7 |
|
| PR1001 | Payment of annual fee |
Payment date: 20100927 Start annual number: 8 End annual number: 8 |
|
| PR1001 | Payment of annual fee |
Payment date: 20110926 Start annual number: 9 End annual number: 9 |
|
| PR1001 | Payment of annual fee |
Payment date: 20120921 Start annual number: 10 End annual number: 10 |
|
| FPAY | Annual fee payment |
Payment date: 20130924 Year of fee payment: 11 |
|
| PR1001 | Payment of annual fee |
Payment date: 20130924 Start annual number: 11 End annual number: 11 |
|
| FPAY | Annual fee payment |
Payment date: 20140930 Year of fee payment: 12 |
|
| PR1001 | Payment of annual fee |
Payment date: 20140930 Start annual number: 12 End annual number: 12 |
|
| FPAY | Annual fee payment |
Payment date: 20150925 Year of fee payment: 13 |
|
| PR1001 | Payment of annual fee |
Payment date: 20150925 Start annual number: 13 End annual number: 13 |
|
| PC1801 | Expiration of term |