KR100448718B1 - Plasma enhanced chemical vapor deposition apparatus - Google Patents
Plasma enhanced chemical vapor deposition apparatus Download PDFInfo
- Publication number
- KR100448718B1 KR100448718B1 KR10-2002-0004800A KR20020004800A KR100448718B1 KR 100448718 B1 KR100448718 B1 KR 100448718B1 KR 20020004800 A KR20020004800 A KR 20020004800A KR 100448718 B1 KR100448718 B1 KR 100448718B1
- Authority
- KR
- South Korea
- Prior art keywords
- reaction gas
- process chamber
- plasma
- vapor deposition
- chemical vapor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/3244—Gas supply means
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45574—Nozzles for more than one gas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/513—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
Abstract
본 발명은 플라즈마를 이용한 화학기상증착장치에 관한 것이다.The present invention relates to a chemical vapor deposition apparatus using a plasma.
본 발명에 따른 플라즈마를 이용한 화학기상증착장치는, 공정챔버 내부로 공급된 반응가스를 플라즈마 상태로 전환하여 대상물에 박막을 형성하는 플라즈마를 이용한 화학기상증착장치에 있어서, 상기 공정챔버 내부로 공급되는 반응가스를 히팅할 수 있는 히팅수단이 더 구비된 것을 특징으로 한다.Chemical vapor deposition apparatus using a plasma according to the present invention, in the chemical vapor deposition apparatus using a plasma to form a thin film on the object by converting the reaction gas supplied into the process chamber into a plasma state, the chemical vapor deposition apparatus is supplied into the process chamber It is characterized in that the heating means for heating the reaction gas is further provided.
따라서, 산소가스 등의 반응가스를 히터로 가열 활성화시켜 공정챔버 내부로 공급함으로써 용이하게 반응가스를 플라즈마 상태로 전환하고, 플라즈마 덴시티를 향상시켜 대상물 상에 양질의 박막을 형성할 수 있고, 산소가스 등의 반응가스의 플라즈마 덴시티를 향상시켜 트렌치가 구비된 반도체기판 상에 형성되는 산화막에 보이드가 형성되는 것을 방지할 수 있는 효과가 있다.Therefore, by heating and activating a reaction gas such as oxygen gas with a heater and supplying it into the process chamber, the reaction gas can be easily converted into a plasma state, and the plasma density can be improved to form a high quality thin film on an object. The plasma density of the reaction gas such as gas can be improved to prevent voids from being formed in the oxide film formed on the semiconductor substrate provided with the trench.
Description
본 발명은 플라즈마를 이용한 화학기상증착장치에 관한 것으로써, 보다 상세하게는 산소가스 등의 반응가스의 플라즈마 덴시티(Density)를 향상시킬 수 있는 플라즈마를 이용한 화학기상증착장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical vapor deposition apparatus using plasma, and more particularly, to a chemical vapor deposition apparatus using plasma capable of improving plasma density of a reaction gas such as oxygen gas.
통상, 반도체소자 제조공정은 웨이퍼 상에 산화막, 금속막 및 질화막 등의 다양한 재질의 박막(薄膜)을 순차적으로 적층하는 성막(成膜)공정을 필수적으로 포함한다.In general, a semiconductor device manufacturing process essentially includes a film forming process of sequentially stacking thin films of various materials such as oxide films, metal films, and nitride films on a wafer.
이와 같은 상기 성막공정은 스텝커버리지(Step coverage)가 뛰어나고, 두께 균일도가 좋고, 복수의 웨이퍼에 대해서 박막을 형성할 수 있는 등의 장점을 가진 화학기상증착(Chemical Vapor Deposition)장치를 주로 사용하며, 상기 화학기상증착장치는 플라즈마(Plasma)를 이용하여 반응가스를 분해하여 분해된 반응가스가 웨이퍼 상에 증착되도록 하는 PECVD(Plasma Enhanced Chemical Vapor Deposition)방법이 많이 사용되고 있다.The film forming process mainly uses a chemical vapor deposition apparatus having excellent step coverage, good thickness uniformity, and the like to form a thin film on a plurality of wafers. In the chemical vapor deposition apparatus, a plasma enhanced chemical vapor deposition (PECVD) method for decomposing a reaction gas using plasma is deposited on a wafer.
이와 같은 종래의 PECVD장치를 이용하여 HDP(Hign Density Plasma)상태에서 반도체기판 상에 산화막을 형성하는 방법은, 수 mTorr의 고진공상태가 유지되는 PECVD 공정챔버 내부에 트렌치(Trench)가 형성된 반도체기판을 투입하고, 상기 공정챔버 내부로 산소(O2)가스, 실란(SiH4)가스 및 나이트로젠 트리플루오라이드(Nitrogen Trifluoride : NF3)가스를 공급한다.The conventional method of forming an oxide film on a semiconductor substrate in the HDP (Hign Density Plasma) state using a conventional PECVD apparatus, a semiconductor substrate having a trench formed in the PECVD process chamber is maintained in a high vacuum state of several mTorr An oxygen (O 2 ) gas, a silane (SiH 4 ) gas, and a nitrogen trifluoride (NF 3 ) gas are supplied into the process chamber.
이때, 상기 산소가스 및 실란가스는 주반응가스로 사용되고, 상기 나이트로젠 트리플루오라이드가스는 세정가스로 사용된다.At this time, the oxygen gas and silane gas is used as the main reaction gas, the nitrogen trifluoride gas is used as the cleaning gas.
다음으로, 상기 공정챔버 내부에 자기장을 형성하기 위한 소정의 소스파워(Source power)와 상기 공정챔버 내부에 전기장을 형성하기 위한 바이어스파워(Bias power)를 인가하여 자기장 및 전기장을 형성함으로써 상기 산소가스, 실란가스 및 나이트로젠 트리플루오라이드가스를 플라즈마 상태로 전환한다.Next, the oxygen gas is formed by applying a predetermined source power for forming a magnetic field in the process chamber and a bias power for forming an electric field in the process chamber to form a magnetic field and an electric field. The silane gas and the nitrogen trifluoride gas are converted into a plasma state.
이때, 상기 플라즈마 상태의 산소가스 및 실란가스가 반도체기판 표면에 증착하여 반응하도록 함으로써 반도체기판 상에 산화막이 형성되고, 상기 플라즈마 상태의 나이트로젠 트리플루오라이드가스는 공정챔버 내벽 또는 반도체기판 표면을 세정하는 데 사용된다.In this case, an oxide film is formed on the semiconductor substrate by depositing the oxygen gas and the silane gas in the plasma state on the surface of the semiconductor substrate, and the nitrogen trifluoride gas in the plasma state cleans the inner wall of the process chamber or the surface of the semiconductor substrate. Used to.
특히, 플라즈마 상태의 산소가스는 바이어스파워(Bias power)에 의해서 플라즈마 상태로 전환되어 반도체기판 상에 형성된 트렌치의 양측 상단부 즉, 산화막이 돌출 형성되는 오버행(Overhang) 부위를 스퍼터링 식각함으로써 트렌치 내부에 형성된 산화막에 보이드(Void)가 형성되는 것을 방지한다.In particular, the oxygen gas in the plasma state is converted into the plasma state by bias power and formed in the trench by sputter etching the upper end portions of both sides of the trench formed on the semiconductor substrate, that is, the overhang portion where the oxide film protrudes. Prevents the formation of voids in the oxide film.
그러나, 종래의 PECVD장치에 의해서 복수의 트렌치가 형성된 반도체기판 상에 형성되는 산화막은, 도1에 도시된 바와 같이 산소가스의 플라즈마 덴시티(Density)가 작아 트렌치(12)를 구비하는 반도체기판(10) 상에 형성된 산화막(14)에 보이드(16)를 형성하는 문제점이 있었다.However, an oxide film formed on a semiconductor substrate having a plurality of trenches formed by a conventional PECVD apparatus has a semiconductor substrate having a trench 12 having a small plasma density of oxygen gas as shown in FIG. There was a problem in that the voids 16 were formed in the oxide film 14 formed on 10).
이와 같은 상기 보이드(16)는 반도체기판 상에 증착 형성되는 산화막의 증착비에 대한 산화막이 돌출 형성되는 오버행(Overhang) 부위를 스퍼터링 식각하는 스퍼터링비가 약 0.125로 스퍼터링비가 낮기 때문이다.The void 16 is because the sputtering ratio for sputter etching the overhang portion where the oxide film protrudes with respect to the deposition ratio of the oxide film deposited on the semiconductor substrate is about 0.125, the sputtering ratio is low.
즉, 반도체기판(10) 상에 형성된 트렌치(12)의 양측 상단부 즉, 산화막(14)이 돌출 형성되는 오버행(Overhang) 부위를 플라즈마 상태의 산소가스가 충분히 스퍼터링 식각하지 못함으로써 발생한다.That is, the oxygen gas in the plasma state does not sufficiently sputter-etch the upper end portions of both sides of the trench 12 formed on the semiconductor substrate 10, that is, the overhang portion where the oxide film 14 protrudes.
본 발명의 목적은, 산소가스 등의 반응가스의 플라즈마 덴시티를 향상시켜 용이하게 양질의 박막이 형성될 수 있도록 하는 플라즈마를 이용한 화학기상증착장치를 제공하는 데 있다.An object of the present invention is to provide a chemical vapor deposition apparatus using a plasma to improve the plasma density of a reaction gas such as oxygen gas so that a high quality thin film can be easily formed.
본 발명의 다른 목적은, 산소가스 등의 반응가스의 플라즈마 덴시티를 향상시켜 트렌치가 구비된 반도체기판 상에 형성되는 산화막에 보이드가 형성되는 것을 방지할 수 있는 플라즈마를 이용한 화학기상증착장치를 제공하는 데 있다.Another object of the present invention is to provide a chemical vapor deposition apparatus using plasma which can improve the plasma density of a reactive gas such as oxygen gas and prevent voids from forming in an oxide film formed on a trench-equipped semiconductor substrate. There is.
도1은 종래의 플라즈마를 이용한 화학기상증착장치를 사용하여 형성된 산화막의 문제점을 설명하기 위한 도면이다.1 is a view for explaining the problem of the oxide film formed using a conventional chemical vapor deposition apparatus using a plasma.
도2는 본 발명의 일 실시예에 따른 플라즈마를 이용한 화학기상증착장치를 설명하기 위한 구성도이다.2 is a block diagram illustrating a chemical vapor deposition apparatus using a plasma according to an embodiment of the present invention.
도3은 본 발명의 일 실시예에 따른 플라즈마를 이용한 화학기상증착장치를 사용하여 형성된 산화막을 설명하기 위한 도면이다.3 is a view for explaining an oxide film formed using a chemical vapor deposition apparatus using a plasma according to an embodiment of the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
10, 50 : 반도체기판 12, 52 : 트렌치10, 50: semiconductor substrate 12, 52: trench
14, 54 : 산화막 16 : 보이드14, 54: oxide film 16: void
20 : 상부챔버 21 : 절연체20: upper chamber 21: insulator
22 : 하부챔버 24 : 코일22: lower chamber 24: coil
26 : 제 1 제너레이터 28 : 스테이지26: first generator 28: stage
30 : 제 2 제너레이터 34 : 제 1 반응가스 공급라인30: second generator 34: first reaction gas supply line
35 : 히터 36 : 제 2 반응가스 공급라인35 heater 36 second reaction gas supply line
38 : 제 3 반응가스 공급라인 40 ; 진공펌프38: third reaction gas supply line 40; Vacuum pump
41 : 진공라인41: vacuum line
상기 목적을 달성하기 위한 본 발명에 따른 플라즈마를 이용한 화학기상증착장치는, 공정챔버 내부로 공급된 반응가스를 플라즈마 상태로 전환하여 대상물에 박막을 형성하는 플라즈마를 이용한 화학기상증착장치에 있어서, 상기 공정챔버 내부로 공급되는 반응가스를 히팅할 수 있는 히팅수단이 더 구비된 것을 특징으로 한다.In the chemical vapor deposition apparatus using a plasma according to the present invention for achieving the above object, in the chemical vapor deposition apparatus using a plasma for converting the reaction gas supplied into the process chamber into a plasma state to form a thin film on the object, the A heating means for heating the reaction gas supplied into the process chamber is characterized in that it is further provided.
여기서, 상기 반응가스는 산소가스일 수 있다.Here, the reaction gas may be oxygen gas.
그리고, 본 발명에 따른 다른 플라즈마를 이용한 화학기상증착장치는, 절연체에 의해서 서로 절연된 상부챔버 및 하부챔버를 구비한 공정챔버; 상기 상부챔버에 구비된 코일; 상기 코일에 고주파 전력을 공급하여 상기 공정챔버 내부에 자기장을 형성할 수 있는 제 1 고주파전력 공급수단; 상기 공정챔버의 저면부에 구비되어 박막 형성 대상물을 지지할 수 있는 스테이지; 상기 상부챔버와 스테이지에 고주파 전력을 공급하여 상기 공정챔버 내부에 전기장을 형성할 수 있는 제 2 고주파전력 공급수단; 상기 공정챔버의 내부압력을 조절하기 위한 진공펌프; 상기 공정챔버 내부로 반응가스를 공급하기 위한 반응가스 공급라인; 및 상기 반응가스를 히팅시킬 수 있도록 상기 반응가스 공급라인 상에 설치된 히팅수단;을 구비하여 이루어지는 것을 특징으로 한다.In addition, the chemical vapor deposition apparatus using another plasma according to the present invention comprises a process chamber having an upper chamber and a lower chamber insulated from each other by an insulator; A coil provided in the upper chamber; First high frequency power supply means for supplying high frequency power to the coil to form a magnetic field in the process chamber; A stage provided on a bottom surface of the process chamber to support a thin film forming object; Second high frequency power supply means for supplying high frequency power to the upper chamber and the stage to form an electric field inside the process chamber; A vacuum pump for adjusting the internal pressure of the process chamber; A reaction gas supply line for supplying a reaction gas into the process chamber; And heating means installed on the reaction gas supply line to heat the reaction gas.
여기서, 상기 히팅수단은 히터(Heater)일 수 있고, 상기 반응가스 공급라인은 복수개로 이루어지고, 상기 복수개의 반응가스 공급라인은 산소가스 공급라인일 수 있다.Here, the heating means may be a heater, the reaction gas supply line may be formed of a plurality, the plurality of reaction gas supply line may be an oxygen gas supply line.
이하, 첨부한 도면을 참고로 하여 본 발명의 구체적인 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도2는 본 발명의 일 실시예에 따른 플라즈마를 이용한 화학기상증착장치를 설명하기 위한 구성도이다.2 is a block diagram illustrating a chemical vapor deposition apparatus using a plasma according to an embodiment of the present invention.
본 발명에 따른 HDP(Hign Density Plasma)상태에서 산화막을 형성하는 플라즈마를 이용한 화학기상증착장치는, 도2에 도시된 바와 같이 원통형의하부챔버(22)와 돔(Dome)형의 상부챔버(20)가 절연체(21)에 의해서 서로 절연된 공정챔버(넘버링되지 않음)를 구비한다.Chemical vapor deposition apparatus using a plasma to form an oxide film in the HDP (Hign Density Plasma) state according to the present invention, as shown in Figure 2 the cylindrical lower chamber 22 and the dome (Dome) type upper chamber 20 ) Has a process chamber (not numbered) insulated from each other by the insulator 21.
그리고, 상기 상부챔버(22) 외벽에는 복수의 코일(24)이 감겨져 있고, 상기 코일(24)의 일단 및 타단이 제 1 제너레이터(26)와 연결되어 있다.A plurality of coils 24 are wound around the outer wall of the upper chamber 22, and one end and the other end of the coil 24 are connected to the first generator 26.
이때, 상기 제 1 제너레이터(26)는 고주파 전원(도시되지 않음)에서 인가된 소정의 고주파 전력을 약 5,000W의 소스파워(Source power)로 조절하여 코일(24)에 인가함으로써 공정챔버 내부에 자기장을 형성할 수 있도록 되어 있다.At this time, the first generator 26 adjusts a predetermined high frequency power applied from a high frequency power source (not shown) to a source power of about 5,000 W and applies the coil 24 to a magnetic field inside the process chamber. It is supposed to be able to form.
또한, 상기 하부챔버(22) 저면부에는 복수의 트렌치가 형성된 등의 박막 형성 대상물(32)이 위치하는 스테이지(Stage : 28)가 구비되어 있다.The lower chamber 22 is provided with a stage 28 on which a thin film forming object 32 such as a plurality of trenches is formed.
그리고, 상기 상부챔버(20)와 스테이지(28)가 제 2 제너레이터(30)와 연결되어 있다.The upper chamber 20 and the stage 28 are connected to the second generator 30.
이때, 상기 제 2 제너레이터(30)는 고주파 전원(도시되지 않음)에서 인가된 소정의 고주파 전력을 약 1,500W의 바이어스파워(Bias power)로 조절하여 상부챔버(20) 및 스테이지(28)에 인가함으로써 공정챔버 내부에 전기장을 형성할 수 있도록 되어 있다.At this time, the second generator 30 is applied to the upper chamber 20 and the stage 28 by adjusting a predetermined high frequency power applied from a high frequency power source (not shown) to a bias power of about 1,500W. As a result, an electric field can be formed inside the process chamber.
또한, 상기 공정챔버 일측부와 진공펌프(40)가 진공라인(41)에 의해서 연결됨으로써 진공펌프(40)의 가동에 의해서 공정챔버의 내부압력이 약 1mTorr 내지 3mTorr의 고진공상태로 조절되도록 되어 있다.In addition, the one side of the process chamber and the vacuum pump 40 is connected by the vacuum line 41, the internal pressure of the process chamber is adjusted to a high vacuum state of about 1mTorr to 3mTorr by the operation of the vacuum pump 40 .
그리고, 상기 공정챔버 내부로 산소가스를 공급할 수 있는 제 1 반응가스 공급라인(34), 상기 공정챔버 내부로 실란가스를 공급할 수 있는 제 2 반응가스 공급라인(36) 및 상기 공정챔버 내부로 나이트로젠 트리플루오라이드가스를 공급할 수 있는 제 3 반응가스 공급라인(38)이 각각 구비되어 있다.In addition, a first reaction gas supply line 34 capable of supplying oxygen gas into the process chamber, a second reaction gas supply line 36 capable of supplying silane gas into the process chamber, and a nitrate into the process chamber Each of the third reaction gas supply lines 38 capable of supplying the Rosene trifluoride gas is provided.
여기서, 상기 제 1 반응가스 공급라인(34) 상에는 제 1 반응가스 공급라인(34)을 통과하는 산소가스를 1,000℃ 정도로 가열 활성화함으로써 산소가스가 용이하게 플라즈마 상태로 전환될 수 있도록 하는 히터(Heater : 35)가 설치되어 있다.Here, the heater for heating the oxygen gas passing through the first reaction gas supply line 34 by about 1,000 ° C. on the first reaction gas supply line 34 so that the oxygen gas can be easily converted into a plasma state. : 35) is installed.
따라서, 상기 진공펌프(40)의 가동에 의해서 약 1mTorr 내지 3mTorr의 고진공상태가 유지되는 공정챔버의 스테이지(28) 상에 일련의 반도체소자 제조공정의 수행에 의해서 트렌치가 형성된 반도체기판 등의 대상물(32)을 위치시킨다.Accordingly, an object such as a semiconductor substrate having a trench formed by performing a series of semiconductor device manufacturing processes on a stage 28 of a process chamber in which a high vacuum of about 1 mTorr to 3 mTorr is maintained by the operation of the vacuum pump 40 ( 32).
다음으로, 상기 제 1 반응가스 공급라인(34), 제 2 반응가스 공급라인(36) 및 제 3 반응가스 공급라인(38)을 통해서 공정챔버 내부로 54 SCCM의 산소가스, 30 SCCM의 실란가스 및 소정량의 나이트로젠 트리플루오라이드가스를 각각 공급한다.Next, 54 SCCM oxygen gas and 30 SCCM silane gas into the process chamber through the first reaction gas supply line 34, the second reaction gas supply line 36, and the third reaction gas supply line 38. And a predetermined amount of nitrogen trifluoride gas, respectively.
이때, 본 발명에 따라 제 1 반응가스 공급라인(34) 상에는 히터(35)가 구비됨으로써 제 1 반응가스 공급라인(34)을 통과하는 산소가스는 히터(35)에 의해서 약 1,000℃로 가열 활성화되어 공정챔버 내부로 공급된다.At this time, the heater 35 is provided on the first reaction gas supply line 34 according to the present invention, the oxygen gas passing through the first reaction gas supply line 34 is heated and activated to about 1,000 ° C. by the heater 35. And is supplied into the process chamber.
이어서, 상기 고주파전원(도시되지 않음)은 제 1 제너레이터(26) 및 제 2 제너레이터(30)에 소정의 고주파 전력을 인가하게 되고, 상기 제 1 제너레이터(26)는 소정의 고주파 전력을 5,000W로 조절하여 5,000W의 고주파 전력을 코일(24)에 인가하게 되고, 상기 제 2 제너레이터(30)는 소정의 고주파 전력을 1,500W로 조절하여 1,500W의 고주파 전력을 상부챔버(20) 및 스테이지(28)에 인가하게 된다.Subsequently, the high frequency power supply (not shown) applies predetermined high frequency power to the first generator 26 and the second generator 30, and the first generator 26 sets the predetermined high frequency power to 5,000W. The high frequency power of 5,000 W is applied to the coil 24 by adjusting, and the second generator 30 adjusts the predetermined high frequency power to 1,500 W to adjust the high frequency power of 1,500 W in the upper chamber 20 and the stage 28. ) Is applied.
마지막으로, 상기 제 1 제너레이터(26)에 의해서 코일(24)에 인가된 5,000W의 고주파 전력에 의해서 공정챔버 내부에는 자기장이 형성되고, 상기 제 2 제너레이터(30)에 의해서 상부챔버(20) 및 스테이지(28)에 인가된 1,500W의 고주파 전력에 의해서 공정챔버 내부에는 전기장이 형성된다.Finally, a magnetic field is formed inside the process chamber by the high frequency power of 5,000 W applied to the coil 24 by the first generator 26, and the upper chamber 20 and the second generator 30 are formed. An electric field is formed inside the process chamber by the high frequency power of 1,500 W applied to the stage 28.
따라서, 상기 자기장 및 전기장에 의해서 공정챔버 내부로 공급된 산소가스, 실란가스 및 나이트로젠 트리플루오라이드가스는 플라즈마 상태로 전환되고, 플라즈마 상태의 산소가스 및 실란가스는 웨이퍼 표면에 증착 반응함으로써 트렌치가 형성된 반도체기판 등의 대상물(32) 상에는 산화막이 형성된다.Accordingly, oxygen gas, silane gas, and nitrogen trifluoride gas supplied into the process chamber by the magnetic and electric fields are converted into a plasma state, and the oxygen gas and silane gas in the plasma state are deposited on the wafer surface to form a trench. An oxide film is formed on the object 32 such as the formed semiconductor substrate.
이때, 상기 산소가스는 본 발명에 따라 히터(35)에 의해서 가열 활성화되어 공정챔버 내부로 공급됨으로써 전기장 및 자기장에 의해서 용이하게 플라즈마 상태로 전환되고, 플라즈마 덴시티가 향상된다.At this time, the oxygen gas is heated and activated by the heater 35 and supplied into the process chamber according to the present invention, thereby being easily converted into the plasma state by the electric field and the magnetic field, and the plasma density is improved.
그러므로, 본 발명에 따른 플라즈마를 이용한 화학기상증착장치를 이용하여 트렌치를 구비한 반도체기판 상에 형성되는 산화막은, 도3에 도시된 바와 같이 보이드가 없는 양질의 산화막(54)을 트렌치(52)가 구비된 반도체기판(50) 상에 형성할 수 있다.Therefore, the oxide film formed on the semiconductor substrate having the trench by using the chemical vapor deposition apparatus using the plasma according to the present invention, as shown in Figure 3, the trench 52 is a high quality oxide film 54 without voids It can be formed on the semiconductor substrate 50 is provided.
이때, 상기 보이드가 산화막에 형성되지 않는 이유는, 상기 반도체기판(50) 상에 증착 형성되는 산화막(54)의 증착비에 대한 산화막(54)이 돌출 형성되는 오버행(Overhang) 부위를 스퍼터링 식각하는 스퍼터링비가 약 0.140로 종래의 0.125보다 높기 때문이다.In this case, the void is not formed in the oxide film because the sputter etching of the overhang portion where the oxide film 54 protrudes with respect to the deposition ratio of the oxide film 54 formed on the semiconductor substrate 50. This is because the sputtering ratio is about 0.140, which is higher than the conventional 0.125.
즉, 산소가스의 플라즈마 덴시티가 향상됨으로써 반도체기판 상에 형성된 트렌치의 양측 상단부 즉, 산화막이 돌출 형성되는 오버행(Overhang) 부위를 덴시티가 향상된 플라즈마 상태의 산소가스가 연속적으로 스퍼터링 식각하여 제거하기 때문이다.That is, the plasma density of the oxygen gas is improved to remove the upper end portions of the trench formed on the semiconductor substrate, that is, the overhang portion where the oxide film protrudes, by continuously sputtering etching the oxygen gas in the plasma state having the improved density. Because.
그리고, 본 실시예에서는 공정챔버 내부로 산소가스를 공급하는 제 1 반응가스 공급라인에 한정하여 히터를 구비하였으나 제 2 반응가스 공급라인 및 제 3 반응가스 라인 등과 같이 공정챔버 내부로 반응가스를 공급하는 모든 반응가스 공급라인 상에 히터를 구비할 수 있음은 당연하다할 것이다.In the present embodiment, the heater is provided only in the first reaction gas supply line for supplying the oxygen gas into the process chamber, but the reaction gas is supplied into the process chamber like the second reaction gas supply line and the third reaction gas line. It will be obvious that a heater may be provided on all reaction gas supply lines.
본 발명에 의하면, 산소가스 등의 반응가스를 히터로 가열 활성화시켜 공정챔버 내부로 공급함으로써 용이하게 반응가스를 플라즈마 상태로 전환하고, 플라즈마 덴시티를 향상시켜 대상물 상에 양질의 박막을 형성할 수 있는 효과가 있다.According to the present invention, by heating and activating a reaction gas, such as oxygen gas, into the process chamber, the reaction gas can be easily converted into a plasma state, and the plasma density can be improved to form a high quality thin film on an object. It has an effect.
그리고, 산소가스 등의 반응가스의 플라즈마 덴시티를 향상시켜 트렌치가 구비된 반도체기판 상에 형성되는 산화막에 보이드가 형성되는 것을 방지할 수 있는 효과가 있다.In addition, the plasma density of the reaction gas such as oxygen gas can be improved to prevent the formation of voids in the oxide film formed on the semiconductor substrate provided with the trench.
이상에서는 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술 사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail only with respect to the described embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical spirit of the present invention, and such modifications and modifications belong to the appended claims.
Claims (5)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2002-0004800A KR100448718B1 (en) | 2002-01-28 | 2002-01-28 | Plasma enhanced chemical vapor deposition apparatus |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2002-0004800A KR100448718B1 (en) | 2002-01-28 | 2002-01-28 | Plasma enhanced chemical vapor deposition apparatus |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20030064489A KR20030064489A (en) | 2003-08-02 |
| KR100448718B1 true KR100448718B1 (en) | 2004-09-13 |
Family
ID=32219572
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR10-2002-0004800A Expired - Fee Related KR100448718B1 (en) | 2002-01-28 | 2002-01-28 | Plasma enhanced chemical vapor deposition apparatus |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR100448718B1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101197019B1 (en) | 2006-06-15 | 2012-11-06 | 주성엔지니어링(주) | Gap-fill method using pulsed RF power and gap-fill apparatus for the same |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR920005257A (en) * | 1990-08-29 | 1992-03-28 | 김정배 | Plasma chemical vapor deposition apparatus |
| KR930009726U (en) * | 1991-10-14 | 1993-05-26 | 금성일렉트론 주식회사 | Wafer preheater for plasma CVD equipment |
| KR950002061A (en) * | 1993-06-08 | 1995-01-04 | 이기준 | Tantalum oxide thin film formation method and its application |
| JPH0891987A (en) * | 1994-09-26 | 1996-04-09 | Mitsubishi Heavy Ind Ltd | Apparatus for plasma chemical vapor deposition |
-
2002
- 2002-01-28 KR KR10-2002-0004800A patent/KR100448718B1/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR920005257A (en) * | 1990-08-29 | 1992-03-28 | 김정배 | Plasma chemical vapor deposition apparatus |
| KR930009726U (en) * | 1991-10-14 | 1993-05-26 | 금성일렉트론 주식회사 | Wafer preheater for plasma CVD equipment |
| KR950002061A (en) * | 1993-06-08 | 1995-01-04 | 이기준 | Tantalum oxide thin film formation method and its application |
| JPH0891987A (en) * | 1994-09-26 | 1996-04-09 | Mitsubishi Heavy Ind Ltd | Apparatus for plasma chemical vapor deposition |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101197019B1 (en) | 2006-06-15 | 2012-11-06 | 주성엔지니어링(주) | Gap-fill method using pulsed RF power and gap-fill apparatus for the same |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20030064489A (en) | 2003-08-02 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10699903B2 (en) | Two-step process for gapfilling high aspect ratio trenches with amorphous silicon film | |
| US20200395209A1 (en) | Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method | |
| US7435684B1 (en) | Resolving of fluorine loading effect in the vacuum chamber | |
| EP0953066B1 (en) | Method of filling gaps with INDUCTIVELY COUPLED PLASMA CVD | |
| US6884318B2 (en) | Plasma processing system and surface processing method | |
| WO2019147462A1 (en) | Treatment methods for silicon nitride thin films | |
| KR20090060768A (en) | Thin Film Formation Method Using Precursor for SIO Thin Film Manufacturing | |
| KR20250041199A (en) | Flowable film curing using h2 plasma | |
| KR101234706B1 (en) | Substrate processing apparatus and substrate processing method using the same | |
| US11655537B2 (en) | HDP sacrificial carbon gapfill | |
| KR101234566B1 (en) | Method for forming silicon oxide film and method for manufacturing semiconductor device | |
| KR100729989B1 (en) | Method of forming insulation film on semiconductor substrate | |
| WO2012043250A1 (en) | Method and device for forming insulation film | |
| KR100448718B1 (en) | Plasma enhanced chemical vapor deposition apparatus | |
| TW202412066A (en) | Low temperature silicon oxide gap fill | |
| KR20250004047A (en) | Large area gap fill using volumetric expansion | |
| US20220238331A1 (en) | Gapfill process using pulsed high-frequency radio-frequency (hfrf) plasma | |
| KR100497607B1 (en) | Method and apparatus for forming a thin film | |
| TW202225452A (en) | Systems and methods for depositing high density and high tensile stress films | |
| JP2001345312A (en) | Plasma processing apparatus, plasma processing method and structure manufacturing method | |
| US20050079731A1 (en) | Plasma enhanced chemical vapor deposition methods and semiconductor processing methods of forming layers and shallow trench isolation regions | |
| TWI896049B (en) | Atomic layer deposition of silicon-carbon-and-nitrogen-containing materials | |
| KR20000029408A (en) | Microwave applicator, plasma processing apparatus having same, and plasma processing method | |
| US20240420950A1 (en) | Densified seam-free silicon-containing material gap fill processes | |
| US20240332001A1 (en) | Atomic layer deposition of silicon-carbon-and-nitrogen-containing materials |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R13-asn-PN2301 St.27 status event code: A-3-3-R10-R11-asn-PN2301 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| LAPS | Lapse due to unpaid annual fee | ||
| PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20070904 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20070904 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |