KR100490506B1 - Composition for removing residues from the microstructure of an object - Google Patents
Composition for removing residues from the microstructure of an object Download PDFInfo
- Publication number
- KR100490506B1 KR100490506B1 KR10-2004-7006269A KR20047006269A KR100490506B1 KR 100490506 B1 KR100490506 B1 KR 100490506B1 KR 20047006269 A KR20047006269 A KR 20047006269A KR 100490506 B1 KR100490506 B1 KR 100490506B1
- Authority
- KR
- South Korea
- Prior art keywords
- composition
- fluoride
- solvent
- mixtures
- additive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/02—Inorganic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B7/00—Cleaning by methods not provided for in a single other subclass or a single group in this subclass
- B08B7/0021—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by liquid gases or supercritical fluids
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/02—Inorganic compounds
- C11D7/04—Water-soluble compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/02—Inorganic compounds
- C11D7/04—Water-soluble compounds
- C11D7/10—Salts
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
- C11D7/3209—Amines or imines with one to four nitrogen atoms; Quaternized amines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
- C11D7/3218—Alkanolamines or alkanolimines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/50—Solvents
- C11D7/5004—Organic solvents
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/422—Stripping or agents therefor using liquids only
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/42—Stripping or agents therefor
- G03F7/422—Stripping or agents therefor using liquids only
- G03F7/425—Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31127—Etching organic layers
- H01L21/31133—Etching organic layers by chemical means
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
- C11D2111/22—Electronic devices, e.g. PCBs or semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02052—Wet cleaning only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67075—Apparatus for fluid treatment for etching for wet etching
- H01L21/67086—Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Detergent Compositions (AREA)
- Drying Of Solid Materials (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Extraction Or Liquid Replacement (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Silicon Compounds (AREA)
- Ceramic Products (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Micromachines (AREA)
Abstract
CO2, 잔사를 제거하기 위한 첨가제 및 상기 CO2에 상기 첨가제를 용해시키기 위한 공-용매를 포함하는 제거제를 가압된 유체 조건으로 제조하는 단계, 및 물체를 상기 제거제와 접촉시켜 물체로부터 잔사를 제거하는 단계를 포함하는 물체의 미세구조로부터 잔사를 제거하기 위한 방법과 조성물이 제공된다. 상기 방법을 수행하기 위한 장치 또한 제공된다.CO 2, the additives, and the CO 2 to remove the residue ball for the dissolution of the additives by the step of producing a removing agent comprising a solvent, a pressurized fluid condition, and the object into contact with the removing agent to remove the residues from the object A method and composition are provided for removing residue from a microstructure of an object, the method comprising: An apparatus for carrying out the method is also provided.
Description
본 발명은 물체의 미세구조로부터 잔사를 제거하는 방법 및 조성물에 관한 것이다. 구체적으로, 본 발명은 요철부의 미세구조를 갖는 반도체 웨이퍼 표면으로부터 반도체 제조공정중에 발생하는 레지스트와 같은 잔사를 제거하는 방법 및 조성물에 관한 것이다.The present invention relates to methods and compositions for removing residue from the microstructure of an object. Specifically, the present invention relates to methods and compositions for removing residues such as resists generated during semiconductor manufacturing processes from the surface of semiconductor wafers having microstructures of irregularities.
반도체 웨이퍼 제조시 하나의 단계로서, 제조방법의 다른 단계로부터 발생한 포토레지스트, UV-경화된 레지스트, X-선 경화된 레지스트, 애싱된(ashed) 레지스트, 탄소-불소 함유 중합체, 플라즈마 에칭 잔사 및 유기 또는 무기 오염물과 같은 잔사를 제거할 필요가 있다. 건식 및 습식 제거방법이 통상적으로 사용된다. 습식 제거방법에서는, 반도체 웨이퍼를 그의 표면으로부터 잔사를 제거하기 위해 제거제를 포함하는 수용액과 같은 시약중에 침지시킨다. 최근, 초임계 CO2가 그의 낮은 점도 때문에 이러한 시약으로서 사용된다.As a step in the manufacture of semiconductor wafers, photoresists, UV-cured resists, X-ray cured resists, ashed resists, carbon-fluorine-containing polymers, plasma etch residues and organics resulting from other steps of the manufacturing method Or residues such as inorganic contaminants. Dry and wet removal methods are commonly used. In the wet removal method, the semiconductor wafer is immersed in a reagent such as an aqueous solution containing a removal agent to remove residues from its surface. Recently, supercritical CO 2 is used as such a reagent because of its low viscosity.
그러나, 초임계 CO2는 그 자체로는 반도체 웨이퍼의 표면으로부터 몇몇 잔사를 제거하기에 그다지 충분하지 않다. 이러한 문제점을 해결하기 위해, 초임계 CO2에 대한 몇가지 첨가제가 제안되었다. 일본 특허 공개공보 제 98-125644 호에 개시된 바와 같이, CFx기를 갖는 계면활성제 또는 메탄을 초임계 CO2에 대한 첨가제로서 사용한다. 일본 특허 공개공보 제 96-191063 호에서는, 디메틸설폭사이드 또는 디메틸포름아미드를 이러한 첨가제로서 사용한다. 이들 첨가제는 잔사를 제거하는데 항상 효과적인 것은 아니다.However, supercritical CO 2 by itself is not very sufficient to remove some residue from the surface of the semiconductor wafer. To solve this problem, several additives to supercritical CO 2 have been proposed. As disclosed in Japanese Patent Laid-Open No. 98-125644, a surfactant or methane having a CF x group is used as an additive to supercritical CO 2 . In Japanese Patent Laid-Open No. 96-191063, dimethyl sulfoxide or dimethylformamide is used as such an additive. These additives are not always effective for removing residue.
본 발명의 목적은 물체의 미세구조로부터 잔사를 효율적으로 제거하는 조성물을 제공하는 것이다. It is an object of the present invention to provide a composition for efficiently removing residue from the microstructure of an object.
본 발명에 따르면, CO2, 잔사를 제거하기 위한 첨가제, 및 가압된 유체 조건에서 상기 CO2에 상기 첨가제를 용해시키기 위한 공-용매를 포함하는 제거제를 제조하는 단계, 및 물체를 상기 제거제와 접촉시켜 물체로부터 잔사를 제거하는 단계를 포함하는, 물체로부터 잔사를 제거하는 방법 및 이에 사용되는 조성물이 제공된다.According to the present invention there is provided a process for preparing a remover comprising CO 2 , an additive for removing residue, and a co-solvent for dissolving the additive in the CO 2 under pressurized fluid conditions, and contacting an object with the remover. There is provided a method for removing a residue from an object and a composition for use, comprising the step of removing the residue from the object.
또한, 초임계 CO2, 하이드록실기를 갖는 화합물 및 일반식 NR1R2R3R4F(여기서, R은 수소 또는 알킬기를 나타낸다)의 플루오라이드를 포함하는 제거제와 물체를 접촉시키는 단계를 포함하는, 물체로부터 잔사를 제거하는 방법을 제공한다.And removing the residue from the object, comprising contacting the object with a remover comprising a supercritical CO 2 , a compound having a hydroxyl group and a fluoride of the general formula NR1R2R3R4F, where R represents hydrogen or an alkyl group. Provide a way to.
또한, 용기, CO2, 잔사를 제거하기 위한 첨가제 및 상기 CO2에 상기 첨가제를 용해시키기 위한 공-용매를 상기 용기 안으로 공급하기 위한 하나 이상의 유입구, CO2를 상기 용기 안으로 가압하기 위한 펌프, 및 상기 가압된 CO2를 소정의 온도로 유지하기 위한 가열기를 포함하는, 물체로부터 잔사를 제거하기 위한 장치를 제공한다.In addition, the vessel, CO 2, the ball for the additive and the CO 2 to remove the residue to dissolve the additives - at least one inlet port for supplying a solvent into said vessel, a pump for pressurizing the CO 2 into said vessel, and An apparatus is provided for removing residue from an object, including a heater for maintaining the pressurized CO 2 at a predetermined temperature.
본 발명의 구성 및 특성은 첨부된 도면을 참조한 하기 상세한 설명을 통해 더욱 명백하게 이해될 수 있을 것이다(첨부된 도면에서 유사한 숫자는 유사한 요소를 의미함).The construction and features of the present invention will become more clearly understood from the following detailed description with reference to the accompanying drawings in which like numerals refer to like elements.
발명의 상세한 설명Detailed description of the invention
본 발명은 물체, 예를 들면 표면에 요철부의 미세구조를 갖는 반도체 웨이퍼, 및 서로 상이한 물질의 연속 또는 비연속층을 형성하거나 유지하는 금속, 플라스틱 또는 세라믹으로 이루어진 기판의 미세구조에 적용된다.The present invention applies to the microstructure of an object, for example a semiconductor wafer having a microstructure of irregularities on its surface, and a substrate made of metal, plastic or ceramic, which forms or maintains continuous or discontinuous layers of different materials.
가압된 CO2가 그 자체로는 잔사를 제거하는데 충분하지 않기 때문에, 첨가제 및 공-용매가 첨가된 본 발명의 가압된 CO2를 물체로부터 잔사를 제거하기 위한 제거제로서 사용한다. 이러한 목적을 위해 사용된 첨가제는 잔사를 제거할 수 있지만 그 자체로는 CO2에 실질적으로 용해될 수 없다. 이러한 목적을 위해 사용되는 공-용매는 첨가제를 CO2중에 균일하게 용해시키거나 분산시킬 수 있다.Since pressurized CO 2 by itself is not sufficient to remove the residue, the pressurized CO 2 of the present invention with the addition of additives and co-solvents is used as a remover for removing the residue from the object. The additives used for this purpose can remove the residue but by themselves cannot be substantially dissolved in CO 2 . Co-solvents used for this purpose can dissolve or disperse the additives uniformly in CO 2 .
가압된 CO2는 높은 분산율을 갖고, 용해된 잔사를 그 안에 분산시킬 수 있다. CO2가 초임계 조건으로 전환되면, 물체의 미세 패턴부 안으로 더욱 효과적으로 침투한다. 이러한 특징에 의해, 상기 첨가제는 CO2의 저점도에 기인하여 물체의 표면상의 기공 또는 오목부 안으로 전달된다.Pressurized CO 2 has a high dispersion rate and can dissolve the dissolved residue therein. When CO 2 is converted to supercritical conditions, it penetrates more effectively into the fine pattern portion of the object. By this feature, the additive is transferred into the pores or recesses on the surface of the object due to the low viscosity of the CO 2 .
CO2를 31℃의 온도에서 5MPa 이상, 7.1MPa 이상까지 가압하여 CO2를 초임계 유체 조건으로 전환시킨다.CO 2 is pressurized to at least 5 MPa and at least 7.1 MPa at a temperature of 31 ° C. to convert CO 2 to supercritical fluid conditions.
바람직하게는 염기성 화합물이 반도체 제조중 레지스트로서 일반적으로 사용되는 중합체를 효율적으로 가수분해시키기 때문에 첨가제로서 사용된다. 바람직한 염기성 화합물은 4급 암모늄 하이드록사이드, 4급 암모늄 플루오라이드, 알킬아민, 알칸올아민, 하이드록실아민 및 암모늄플루오라이드로 이루어진 군으로부터 선택된 1종 이상을 포함한다. 4급 암모늄 하이드록사이드, 4급 암모늄 플루오라이드, 하이드록실아민 및 암모늄플루오라이드로 이루어진 군으로부터 선택된 1종 이상을 포함하는 화합물을 사용하여 반도체 웨이퍼로부터 노볼락 페놀 레지스트를 제거하는 것이 바람직하다. 4급 암모늄 하이드록사이드는 임의의 4급 암모늄 하이드록사이드, 예를 들면 테트라메틸암모늄하이드록사이드, 테트라에틸암모늄하이드록사이드, 테트라프로필암모늄하이드록사이드, 테트라부틸암모늄하이드록사이드(이후, TBAH로 칭함) 및 콜린일 수 있다. 4급 암모늄플루오라이드는 임의의 4급 암모늄 플루오라이드, 예를 들면 테트라메틸암모늄플루오라이드(이후, TMAF로서 칭함), 테트라에틸암모늄플루오라이드, 테트라프로필암모늄플루오라이드, 테트라부틸암모늄플루오라이드 및 콜린플루오라이드일 수 있다. 알킬아민은 임의의 알킬아민, 예를 들면 메틸아민, 디메틸아민, 에틸아민, 디에틸아민, 트리에틸아민, 및 프로필아민, 디프로필아민일 수 있다. 알칸올아민은 임의의 알칸올아민, 예를 들면 모노에탄올아민, 디에탄올아민, 및 트리에탄올아민일 수 있다. Preferably, the basic compound is used as an additive because it efficiently hydrolyzes a polymer commonly used as a resist during semiconductor manufacturing. Preferred basic compounds include at least one selected from the group consisting of quaternary ammonium hydroxides, quaternary ammonium fluorides, alkylamines, alkanolamines, hydroxylamines and ammonium fluorides. It is preferred to remove the novolak phenolic resist from the semiconductor wafer using a compound comprising at least one selected from the group consisting of quaternary ammonium hydroxide, quaternary ammonium fluoride, hydroxylamine and ammonium fluoride. The quaternary ammonium hydroxide can be any quaternary ammonium hydroxide such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide (hereinafter TBAH). ) And choline. Quaternary ammonium fluorides may be any quaternary ammonium fluoride such as tetramethylammonium fluoride (hereinafter referred to as TMAF), tetraethylammonium fluoride, tetrapropylammonium fluoride, tetrabutylammonium fluoride and choline fluoride. It may be a ride. The alkylamine may be any alkylamine, for example methylamine, dimethylamine, ethylamine, diethylamine, triethylamine, and propylamine, dipropylamine. Alkanolamines can be any alkanolamines, such as monoethanolamine, diethanolamine, and triethanolamine.
첨가제는 바람직하게는 제거제의 0.001중량% 이상, 더욱 바람직하게는 0.002중량% 이상의 비율로 첨가된다. 첨가제가 8중량%보다 많은 비율로 첨가되면, 공-용매는 더 많이 첨가되어야 하지만, CO2의 양은 첨가된 공-용매의 양에 따라 감소하고, 이는 CO2의 물체의 표면 안으로의 침투율을 감소시킨다. 첨가제의 상한은 8중량%, 바람직하게는 6중량%, 더욱 바람직하게는 4중량%이다.The additive is preferably added at a rate of at least 0.001% by weight, more preferably at least 0.002% by weight of the remover. When the additive is added in a large proportion than 8% by weight, co-solvent should be added more, but the CO 2 The amount of added co-reduced according to the amount of solvent, which reduces the penetration of the inside surface of the CO 2 object Let's do it. The upper limit of the additive is 8% by weight, preferably 6% by weight, more preferably 4% by weight.
본 발명에 따르면, 공-용매는 첨가제와 함께 CO2에 첨가된다. 본 발명의 공-용매는 CO2와 첨가제 모두에 대해 친화력을 갖는 화합물이다. 이러한 공-용매가 첨가제를 유체 조건의 가압된 CO2중에 균일하게 용해 또는 분산시킨다. 알콜, 디메틸설폭사이드 또는 이들의 혼합물을 공-용매로서 사용한다. 알콜은 임의의 알콜, 예를 들면 에탄올, 메탄올, n-프로판올, 이소-프로판올, n-부탄올, 이소-부탄올, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노에틸에테르, 및 헥사플루오로 이소프로판올, 바람직하게는 에탄올 및 메탄올일 수 있다.According to the invention, the co-solvent is added to the CO 2 with additives. Co-solvents of the invention are compounds that have an affinity for both CO 2 and additives. These co-solvents dissolve or disperse the additives uniformly in pressurized CO 2 in fluid conditions. Alcohol, dimethylsulfoxide or mixtures thereof are used as co-solvent. The alcohol is any alcohol, for example ethanol, methanol, n-propanol, iso-propanol, n-butanol, iso-butanol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and hexafluoro isopropanol, preferably Preferably ethanol and methanol.
공-용매의 종류와 양은 CO2에 첨가되는 첨가제의 종류와 양에 따라 선택된다. 제거제가 용이하게 균일해지고 투명해지기 때문에 공-용매의 양은 바람직하게는 첨가제의 5배 이상이다. 선택적으로, 제거제는 1 내지 50중량%의 공-용매를 포함할 수 있다. 공-용매를 50중량%보다 많이 첨가하면, 제거제의 침투율은 CO2의 더 적은 양 때문에 감소한다. CO2, 공-용매로서 알콜, 첨가제로서 4급 암모늄플루오라이드 및/또는 4급 암모늄 하이드록사이드를 포함하는 제거제를 사용하는 것이 바람직한데, 이는 이들 첨가제가 알콜에 의해 CO2중에 잘 용해되고 CO2-친화성이기 때문이다.The type and amount of co-solvent is selected according to the type and amount of additives added to CO 2 . The amount of co-solvent is preferably at least five times that of the additive because the remover becomes easily homogeneous and transparent. Optionally, the remover may comprise 1 to 50 weight percent co-solvent. If more co-solvent is added than 50% by weight, the penetration rate of the remover decreases because of the smaller amount of CO 2 . It is preferred to use a remover comprising CO 2 , an alcohol as a co-solvent, a quaternary ammonium fluoride as an additive and / or a quaternary ammonium hydroxide, which are well dissolved in CO 2 by the alcohol and the CO 2 -because it is affinity.
본 발명에 따르면, CO2를 고압화하거나 바람직하게는 초임계 조건을 유지하면서, 물체를 CO2, 일반식 NR1R2R3R4F(여기서, R은 수소 또는 알킬기이다)의 플루오라이드 및 하이드록실기를 포함하는 화합물로 구성된 제거제와 접촉시키는 것이 바람직하다. 이러한 제거제는 반도체 웨이퍼로부터 애싱된 잔사를 제거하는데 더욱 효율적이다. 플루오라이드는 일반식 NR1R2R3R4F(여기서, R은 수소 또는 알킬기이다)의 임의의 플루오라이드, 예를 들면 암모늄 플루오라이드, 테트라메틸암모늄플루오라이드, 및 테트라에틸암모늄플루오라이드일 수 있다. R이 알킬기인 플루오라이드를 사용하는 것이 CO2-친화성이기 때문에 바람직하며, 예를 들면 테트라메틸암모늄플루오라이드 및 테트라에틸암모늄플루오라이드를 사용하는 것이 바람직하다. 본 발명에서, 제거제는 플루오라이드를 제거제의 0.001 내지 5중량%, 더욱 바람직하게는 0.002 내지 0.02중량%로 포함할 수 있다.According to the present invention, a compound comprising a fluoride and a hydroxyl group of CO 2 , of the general formula NR 1 R 2 R 3 R 4 F, wherein R is hydrogen or an alkyl group, while increasing the pressure of CO 2 or preferably maintaining supercritical conditions Preference is given to contacting with a remover consisting of: Such removers are more efficient in removing ashed residues from semiconductor wafers. The fluoride can be any fluoride of the general formula NR1R2R3R4F, wherein R is hydrogen or an alkyl group, for example ammonium fluoride, tetramethylammonium fluoride, and tetraethylammonium fluoride. It is preferable to use fluoride in which R is an alkyl group because it is CO 2 -affinity, for example, tetramethylammonium fluoride and tetraethylammonium fluoride. In the present invention, the scavenger may comprise fluoride in 0.001 to 5% by weight, more preferably 0.002 to 0.02% by weight of the scavenger.
플루오라이드는 하이드록실기를 갖는 화합물, 예를 들면 알콜(예를 들면, 에탄올, 메탄올, n-프로판올, 이소프로판올, n-부탄올 및 이소부탄올, 페놀), 글리콜(예를 들면, 에틸렌글리콜 및 메틸렌글리콜 및 폴리에틸렌글리콜)의 존재하에 초임계 CO2에 대한 첨가제로서 사용된다. 알콜은 플루오라이드, 예를 들면 TMAF를 초임계 CO2중에 효율적으로 균일하게 용해시키거나 분산시키기 때문에 바람직하다. 다량의 플루오라이드, 예를 들면 TMAF가 에탄올의 존재하에 초임계 CO2중에 용해될 수 있기 때문에 알콜중에서 에탄올이 바람직하다. 초임계 CO2중 화합물의 농도는 플루오라이드의 종류 및 농도, 및 잔사의 종류에 의존한다. 대략, 화합물은 바람직하게는 초임계 CO2중에 제거제의 1 내지 20중량%로 포함된다.Fluoride may be a compound having a hydroxyl group, for example alcohol (e.g., ethanol, methanol, n-propanol, isopropanol, n-butanol and isobutanol, phenol), glycol (e.g., ethylene glycol and methylene glycol And polyethylene glycol) as an additive to supercritical CO 2 . Alcohols are preferred because they dissolve or disperse fluoride, for example TMAF efficiently and uniformly in supercritical CO 2 . Ethanol is preferred in alcohols because large amounts of fluoride, for example TMAF, can be dissolved in supercritical CO 2 in the presence of ethanol. The concentration of the compound in supercritical CO 2 depends on the type and concentration of fluoride and the type of residue. Approximately, the compound is preferably included in 1 to 20% by weight of the remover in supercritical CO 2 .
초임계 CO2는 디메틸아세트아미드(이후, "DMAC"라 칭함)를 추가로 포함하는 것이 바람직하다. CO2안에 함유된 DMAC는 바람직하게는 CO2중 함유된 플루오라이드 중량의 6 내지 70배이다. 또한, 초임계 CO2는 물(이는 반도체 웨이퍼를 제조하는데 장애가 된다)을 실질적으로 함유하지 않는 것이 바람직하다.Supercritical CO 2 preferably further comprises dimethylacetamide (hereinafter referred to as “DMAC”). The DMAC contained in CO 2 is preferably 6 to 70 times the weight of fluoride contained in CO 2 . It is also desirable that the supercritical CO 2 be substantially free of water (which is a barrier to manufacturing semiconductor wafers).
도 1은 본 발명에 따른 잔사를 제거하기 위한 장치 사용의 간략화된 도식을 나타낸다. 먼저, 표면상에 잔사를 갖는 반도체 웨이퍼를 고압 용기(9) 안에 도입하여 그 안에 위치시킨 후, CO2를 고압 펌프(2)에 의해 CO2 실린더(1)로부터 고압 용기(9)까지 공급한다. 고압 용기(9)를 자동온도조절장치(10)에 의해 특정 온도로 자동온도조절하여 초임계 조건에서 고압 용기(9)중 가압된 CO2를 유지한다. 첨가제 및 공-용매를 고압 펌프(4 및 7)에 의해 각각 탱크(3 및 6)로부터 고압 용기(9)로 공급하면서, 첨가제 및 공-용매를 고압 용기(9)로의 경로상의 라인 혼합기(11)에 의해 혼합한다. 첨가제 및 공-용매의 유속은 소정의 값으로 설정되도록 각각 밸브(5 및 8)에 의해 조절된다. CO2, 첨가제 및 공-용매는 연속적으로 공급될 수 있다.1 shows a simplified schematic of the use of a device for removing residue according to the invention. First, a semiconductor wafer having residues on the surface is introduced into a high pressure vessel 9 and placed therein, and then CO 2 is supplied from the CO 2 cylinder 1 to the high pressure vessel 9 by the high pressure pump 2. . The high pressure vessel 9 is automatically thermostated to a specific temperature by the thermostat 10 to maintain pressurized CO 2 in the high pressure vessel 9 at supercritical conditions. The line mixer 11 on the path to the high pressure vessel 9 with the additive and co-solvent while supplying the additive and co-solvent from the tanks 3 and 6 to the high pressure vessel 9 by the high pressure pumps 4 and 7, respectively. Mix by). The flow rates of the additives and co-solvents are regulated by valves 5 and 8, respectively, to be set to predetermined values. CO 2 , additives and co-solvents can be fed continuously.
도 2는 본 발명에 따라 잔사를 제거하기 위한 장치의 또 다른 실시태양을 나타낸다. 이러한 장치에서, 첨가제를 고압 용기(9)로 공급하기 전 라인 혼합기(11)에 의해 공-용매와 혼합하여 불균일하게 접촉되지 않도록 한다. 고압 용기(9)로 공급될 첨가제와 공-용매의 비율은 비율 제어기(12)에 의해 조절하고, 이는 고압 용기(9)중 초임계 CO2로의 첨가제 및/또는 공-용매의 공급량을 조절한다.2 shows another embodiment of an apparatus for removing residue in accordance with the present invention. In such an apparatus, the additives are mixed with the co-solvent by the line mixer 11 before being fed into the high pressure vessel 9 so as not to be inhomogeneously contacted. The ratio of additive and co-solvent to be supplied to the high pressure vessel 9 is controlled by the ratio controller 12, which controls the amount of additive and / or co-solvent to supercritical CO 2 in the high pressure vessel 9. .
제거방법은 31 내지 210℃의 온도에서 5 내지 30MPa, 바람직하게는 7.1 내지 20MPa의 압력에서 수행된다. 잔사를 제거하는데 요구되는 시간은 물체의 크기, 잔사의 종류 및 양에 의존하고, 이는 통상적으로 1분 내지 수십분의 범위이다.The removal method is carried out at a pressure of 5 to 30 MPa, preferably 7.1 to 20 MPa at a temperature of 31 to 210 ° C. The time required to remove the residue depends on the size of the object, the type and amount of the residue, which usually ranges from 1 minute to several tens of minutes.
이후, 본 발명은 실험을 참조하여 개시한다.The present invention is then described with reference to experiments.
실시예Example
실시예 1Example 1
본 실험은 물체를 대기압 및 40 내지 100℃의 온도에서 20분 동안 표 1에 나타낸 첨가제에 침지하여 수행된다. 이러한 실험을 위한 물체는 현상에 의해 패턴화되고 불소 기체의 건식 에칭에 의해 표면상에 미세구조를 형성하도록 처리된 노볼락 페놀 유형 레지스트로 코팅된 SiO2 층을 갖는 실리콘 웨이퍼이다. 잔사의 제거율은 현미경에 의해 제거 전후 잔사가 붙어있는 표면적의 비율로서 평가된다. 기호 "X" 및 "O"는 상기 비율이 각각 90% 미만 및 90% 이상인 것을 의미한다. 기호 "Φ"는 첨가제가 디메틸설폭사이드와 같은 공-용매에 의해 10배로 희석될 때 비율이 90% 이상인 것을 의미한다.This experiment is performed by immersing the object in the additives shown in Table 1 for 20 minutes at atmospheric pressure and at a temperature of 40-100 ° C. The object for this experiment is a silicon wafer with a SiO 2 layer patterned by development and coated with a novolak phenol type resist that has been treated to form microstructures on the surface by dry etching of fluorine gas. The removal rate of a residue is evaluated by the microscope as a ratio of the surface area in which the residue adheres before and after removal. The symbols "X" and "O" mean that the ratios are less than 90% and 90% or more, respectively. The symbol "Φ" means that the ratio is at least 90% when the additive is diluted 10-fold by a co-solvent such as dimethylsulfoxide.
결과를 표 1에 요약한다.The results are summarized in Table 1.
표 1에 나타낸 바와 같이, 알킬아민(예를 들면, 메틸아민 및 에틸아민), 알칸올아민(예를 들면, 모노에탄올아민), 4급 암모늄 하이드록사이드(예를 들면, TMAH 및 콜린), 하이드록실아민 및 암모늄 플루오라이드는 높은 제거성능을 가진다. 특히, 4급 암모늄 하이드록사이드, 하이드록실아민, 및 암모늄 플루오라이드는 우수한 잔사 제거율을 갖는다.As shown in Table 1, alkylamines (eg methylamine and ethylamine), alkanolamines (eg monoethanolamine), quaternary ammonium hydroxides (eg TMAH and choline), Hydroxylamine and ammonium fluoride have high removal performance. In particular, quaternary ammonium hydroxides, hydroxylamines, and ammonium fluorides have good residue removal rates.
실시예 2Example 2
첨가제의 CO2중의 가용성에 대한 공-용매의 효과를 조사하기 위한 실험을 도 5에 나타낸 장치를 통해 수행한다. CO2를 펌프(2)에 의해 CO2 실린더(1)로부터 용기(9)로 도입한다. 용기중 압력과 온도는 자동온도조절장치(10)에 의해 20MPa및 80℃에서 유지된다. 첨가제 및 공-용매를 표 2에 나타낸 바와 같은 비율로 혼합한 후, 혼합물을 펌프(4)에 의해 혼합조(14)로부터 용기(9)로 도입한다. 혼합물과 동일한 양의 CO2를 용기(9)로부터 배기하여 압력을 혼합물이 도입될 때 20MPa에서 유지한다. 공-용매의 효과, 즉 첨가제가 CO2중에 용해되는지 여부를 용기(9)의 유리 윈도우(13)를 통해 관찰한다. 첨가제가 CO2중에 용해되지 않으면, 두 개의 상이 윈도우를 통해 관찰된다. 표 2중 기호 "X"는 두 개의 상이 관찰됨을 의미한다. 기호 "O"는, 공-용매가 첨가제를 CO2에 균일하게 용해시키거나 분산시킴을 의미한다(두개의 상이 관찰되지 않음).Experiments to investigate the effect of the co-solvent on the solubility of CO 2 in the additives are carried out via the apparatus shown in FIG. 5. CO 2 is introduced into the vessel (9) from the CO 2 cylinder (1) by a pump (2). The pressure and temperature in the vessel are maintained at 20 MPa and 80 ° C. by the thermostat 10. After the additives and co-solvents are mixed in the proportions as shown in Table 2, the mixture is introduced from the mixing vessel 14 into the vessel 9 by the pump 4. The same amount of CO 2 as the mixture is withdrawn from the vessel 9 to maintain the pressure at 20 MPa when the mixture is introduced. The effect of the co-solvent, ie whether the additive is dissolved in CO 2 , is observed through the glass window 13 of the container 9. If the additive is not dissolved in CO 2 , two phases are observed through the window. The symbol "X" in Table 2 means that two phases are observed. The symbol "O" means that the co-solvent evenly dissolves or disperses the additive in CO 2 (no two phases are observed).
표 2에 나타낸 바와 같이, 실험번호 2-1 내지 2-9에서는 공-용매의 효과가 확인되었다. 윈도우를 통해 관찰된 실험번호 2-1 내지 2-9에서의 상태는 투명하고 균일하며 두 개의 상이 나타나지 않았다.As shown in Table 2, Experiment Nos. 2-1 to 2-9 confirmed the effect of the co-solvent. The conditions in Test Nos. 2-1 to 2-9 observed through the window were clear and uniform and did not show two phases.
실시예 3Example 3
고압 CO2, 첨가제 및 공-용매를 포함하는 제거제를 사용하여 잔사를 제거하기 위한 실험을 도 1의 장치를 통해 수행한다. 이러한 실험을 위한 물체는 실시예 1과 동일하다. 제거제중 첨가제 및 공-용매의 종류 및 농도를 표 3에 나타낸다. 표 3에서 기호 "Φ", "O" 및 "X"는 각각 잔사 제거율 90% 이상, 60% 이상 및 10% 이하를 나타낸다.Experiments for removing the residue using a remover comprising high pressure CO 2 , additives and co-solvents are carried out via the apparatus of FIG. 1. The object for this experiment is the same as in Example 1. Table 3 shows the types and concentrations of additives and co-solvents in the remover. In Table 3, the symbols "Φ", "O" and "X" represent residue removal rates of 90% or more, 60% or more and 10% or less, respectively.
표 3에 나타낸 바와 같이, 실험번호 3-1 내지 3-4에서는 잔사가 효과적으로 제거된다.As shown in Table 3, in Experiment Nos. 3-1 to 3-4, the residue was effectively removed.
실시예 4Example 4
반도체 웨이퍼의 표면으로부터 잔사를 제거하기 위한 실험은 일반식 NR1R2R3R4F(여기서, R은 수소 또는 알킬기이다)의 플루오라이드를 포함하는 첨가제 H, I, G, J, L 및 K를 포함한 제거제를 사용하여 수행한다. 첨가제의 조성은 표 4에 열거되어 있다.Experiments for removing residues from the surface of semiconductor wafers were carried out using a remover comprising additives H, I, G, J, L and K, including fluoride of the general formula NR1R2R3R4F, where R is hydrogen or an alkyl group. do. The composition of the additives is listed in Table 4.
이러한 실험에서, 실리콘 웨이퍼 A, B 및 C의 3종을 사용한다. 이러한 실리콘 웨이퍼는 그 표면상에 상이한 패턴을 갖고 이들 레지스트의 제거 특성 또한 상이하다. 실리콘 웨이퍼를 그 표면상에 실리콘의 열적 산화물을 생성하도록 제조하고 칩으로 분쇄한다(1㎝ ×1㎝). 칩을 플루오라이드 기체중에서 에칭한다. 이어서 칩상의 레지스트를 플라즈마에 의해 애싱하여 애싱된 레지스트를 생성한다. 칩을 고압 용기(9)중에 위치시킨다. 첨가제 H, I, G, J, K 및 L의 용액을 플루오라이드가 표 4에 열거된 기타 성분중에 용해되도록 각각 제조한다. 이러한 첨가제를 CO2 및 에탄올과 함께 도 1의 고압 용기 안으로 도입한다. 고압 용기(9)중 CO2의 온도는 40℃이고, 압력은 15MPa이고, 칩이 CO2와 접촉하는 시간은 3분이다. 칩을 고압 용기(9)로부터 취한 후, 전자 현미경으로 관찰한다.In this experiment, three kinds of silicon wafers A, B and C are used. Such silicon wafers have different patterns on their surfaces and also have different removal characteristics of these resists. Silicon wafers are prepared to produce thermal oxides of silicon on their surface and ground into chips (1 cm x 1 cm). The chip is etched in fluoride gas. The resist on the chip is then ashed by plasma to produce an ashed resist. The chip is placed in the high pressure vessel 9. Solutions of additives H, I, G, J, K and L are each prepared such that the fluoride dissolves in the other ingredients listed in Table 4. This additive is introduced into the high pressure vessel of FIG. 1 together with CO 2 and ethanol. The temperature of CO 2 in the high pressure vessel 9 is 40 ° C., the pressure is 15 MPa, and the time for the chip to contact with CO 2 is 3 minutes. After taking a chip from the high pressure container 9, it observes with an electron microscope.
이러한 실험 결과를 표 5에 요약한다.The results of these experiments are summarized in Table 5.
웨이퍼-A상의 애싱된 레지스트는, 초임계 CO2중에 용해된 5중량% 에탄올을 포함하는 H 및 I 0.05중량% 모두에 의해 세정된다. 용어 "우수"는, 실리콘 웨이퍼(칩)의 표면상에 잔사가 전혀 없다는 것을 의미한다. 용어 "양호"는 표면상에 잔사가 거의 없거나 패턴이 거의 사라지지 않는다는 것을 의미한다. NH4F를 사용하는 실행 8에서는, 실리콘 웨이퍼(칩)의 표면상에 수용성 잔사가 새로 나타나기 때문에, 잔사를 제거하기 위해서는 물 세정이 필요하다. 실행 1 내지 7 및 9 내지 14에서는, 제거 단계에 뒤이은 물 세정 단계가 필요하지 않다. 이러한 경우, 바람직하게는 CO2 및 알콜(예를 들면, 메탄올 및 에탄올)을 포함하는 용매(단, 물은 함유하지 않음)가 실리콘 웨이퍼를 세정하기 위해 사용된다. 또한, 첨가제 J, K 및 L의 경우, 어떠한 물도 실질적으로 제거 및 세정 단계 둘모두에서 필요하지 않다. 이러한 방법은 반도체 웨이퍼의 제조에 장애가 되는 물을 실질적으로 사용하지 않기 때문에 우수하다.The ashed resist on wafer-A is cleaned by both H and I 0.05% by weight, including 5% by weight ethanol dissolved in supercritical CO 2 . The term "excellent" means that there are no residues on the surface of the silicon wafer (chip). The term "good" means that there are few residues on the surface or almost no pattern disappears. In Run 8 using NH4F, since water-soluble residues newly appear on the surface of the silicon wafer (chip), water washing is necessary to remove the residues. In Runs 1 to 7 and 9 to 14, no water rinsing step following the removal step is necessary. In this case, a solvent, preferably containing no CO 2 and alcohols (eg, methanol and ethanol), but without water, is used to clean the silicon wafer. In addition, for additives J, K and L, no water is substantially required in both the removal and cleaning steps. This method is excellent because it substantially does not use water, which impedes the manufacture of semiconductor wafers.
웨이퍼-C는 실리콘 웨이퍼(칩)의 표면으로부터 제거되기 더욱 어려운 애싱된 레지스트를 함유한다. 이러한 레지스트를 제거하기 위해, 더 많은 제거 시간(웨이퍼-B보다 3배 길다)이 요구된다. 결과는 우수하다.Wafer-C contains an ashed resist that is more difficult to remove from the surface of a silicon wafer (chip). To remove this resist, more removal time (three times longer than wafer-B) is required. The result is excellent.
실시예 5Example 5
실리콘 웨이퍼는 그 표면상에 실리콘의 열적 산화물을 생성하도록 제조되고 칩으로 분쇄된다. 칩을 도 1의 고압 용기(9)중에 위치시킨다. 이어서, CO2, 첨가제 및 에탄올을 포함하는 제거제를 고압 용기(9)에 도입한다. 수십분동안 제거 처리 후, 칩을 취하고 칩상의 열적 산화물의 두께를 엘립시오미터(ellipseometer)로 측정한다. 열적 산화물의 에칭 속도를 두께의 감소를 처리 시간으로 나누어 측정한다. 초임계 조건에서 CO2의 온도는 40℃이고, 압력은 15MPa이고 처리 시간은 20 내지 60분이다.Silicon wafers are fabricated to produce thermal oxides of silicon on their surfaces and broken into chips. The chip is placed in the high pressure vessel 9 of FIG. Subsequently, a remover comprising CO 2 , additives and ethanol is introduced into the high pressure vessel 9. After a few minutes of removal treatment, the chip is taken and the thickness of the thermal oxide on the chip is measured with an ellipseometer. The etch rate of the thermal oxide is measured by dividing the reduction in thickness by the treatment time. In supercritical conditions the temperature of CO 2 is 40 ° C., the pressure is 15 MPa and the treatment time is 20 to 60 minutes.
이러한 실험결과를 하기 표 6에 요약한다.These experimental results are summarized in Table 6 below.
이러한 표 6의 데이터를 도 3 및 4에 도시한다. 도 3에 나타낸 바와 같이, 열적 산화물의 에칭 속도는 첨가제의 농도에 의존한다. 또한, 도 4에 도시된 바와 같이, 첨가제의 농도가 일정하면, 에칭 속도는 에탄올 농도에 따라 변화한다. 에칭 속도는 제거 물체나 제거 방법에 따라 조절할 수 있다. 도 3 및 도 4로부터 알 수 있듯이, 에칭 속도는 첨가제 및 에탄올의 농도, 및 이들 비율을 조절하여 제어한다.The data in Table 6 is shown in FIGS. 3 and 4. As shown in FIG. 3, the etching rate of the thermal oxide depends on the concentration of the additive. In addition, as shown in FIG. 4, if the concentration of the additive is constant, the etching rate changes with the ethanol concentration. The etching rate can be adjusted according to the removal object or the removal method. As can be seen from Figures 3 and 4, the etching rate is controlled by adjusting the concentrations of additives and ethanol, and these ratios.
본 발명의 원리, 바람직한 실시태양 및 양상을 상기 명세서에 개시하였다. 그러나, 본 발명의 보호받고자 하는 사항이 개시된 특정 실시태양에 제한되지는 않는다. 본원에 개시된 실시태양은 제한적이지 않고 설명적이다. 임의의 변형 및 변화가 본 발명의 취지를 벗어나지 않으면서 사용된 다른 등가물에 의해 이루어질 수 있다. 따라서, 모든 이러한 변형, 변화 및 등가물을 청구의 범위에 정의된 본 발명의 취지 및 범위 안에 포함하고자 한다.The principles, preferred embodiments and aspects of the present invention have been disclosed above. However, the subject matter of the invention to be protected is not limited to the particular embodiments disclosed. The embodiments disclosed herein are illustrative and not restrictive. Any modifications and variations can be made by other equivalents used without departing from the spirit of the invention. Accordingly, all such modifications, changes and equivalents are intended to be included within the spirit and scope of the invention as defined in the claims.
본 발명에 따르면, 물체의 미세구조로부터 잔사를 효율적으로 제거하는 조성물이 제공된다. According to the present invention, a composition is provided for efficiently removing residues from the microstructure of an object.
도 1은 본 발명에 따른 잔사 제거장치의 개략적인 도식이다.1 is a schematic diagram of a residue removing apparatus according to the present invention.
도 2는 본 발명에 따른 잔사 제거장치의 다른 실시태양의 개략적인 도식이다.2 is a schematic diagram of another embodiment of a residue removing apparatus according to the present invention.
도 3은 에칭 속도에 대한 테트라메틸암모늄플루오라이드(이후 "TMAF"라 칭함) 농도의 영향을 나타낸다.Figure 3 shows the effect of tetramethylammonium fluoride (hereinafter referred to as "TMAF") concentration on the etch rate.
도 4는 에칭 속도에 대한 에탄올 농도의 영향을 나타낸다.4 shows the effect of ethanol concentration on the etch rate.
도 5는 본 발명에 따른 잔사 제거장치의 또 다른 실시태양의 개략적인 도식이다.5 is a schematic diagram of another embodiment of a residue removing apparatus according to the present invention.
Claims (18)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JPJP-P-2001-00034337 | 2001-02-09 | ||
| JP2001034337A JP2002237481A (en) | 2001-02-09 | 2001-02-09 | Method of cleaning microscopic structure |
| PCT/US2002/003608 WO2002080233A2 (en) | 2001-02-09 | 2002-02-08 | Process and apparatus for removing residues from the microstructure of an object |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR10-2002-7013494A Division KR100482496B1 (en) | 2001-02-09 | 2002-02-08 | Process and apparatus for removing residues from the microstructure of an object |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20040040490A KR20040040490A (en) | 2004-05-12 |
| KR100490506B1 true KR100490506B1 (en) | 2005-05-19 |
Family
ID=18897963
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR10-2004-7006269A Expired - Fee Related KR100490506B1 (en) | 2001-02-09 | 2002-02-08 | Composition for removing residues from the microstructure of an object |
| KR10-2002-7013494A Expired - Fee Related KR100482496B1 (en) | 2001-02-09 | 2002-02-08 | Process and apparatus for removing residues from the microstructure of an object |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR10-2002-7013494A Expired - Fee Related KR100482496B1 (en) | 2001-02-09 | 2002-02-08 | Process and apparatus for removing residues from the microstructure of an object |
Country Status (10)
| Country | Link |
|---|---|
| US (3) | US20030106573A1 (en) |
| EP (2) | EP1358670B1 (en) |
| JP (2) | JP2002237481A (en) |
| KR (2) | KR100490506B1 (en) |
| CN (2) | CN1542910A (en) |
| AT (2) | ATE332571T1 (en) |
| DE (2) | DE60212937T2 (en) |
| SG (1) | SG125957A1 (en) |
| TW (1) | TW569328B (en) |
| WO (1) | WO2002080233A2 (en) |
Families Citing this family (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7064070B2 (en) * | 1998-09-28 | 2006-06-20 | Tokyo Electron Limited | Removal of CMP and post-CMP residue from semiconductors using supercritical carbon dioxide process |
| EP1277233A2 (en) * | 2000-04-25 | 2003-01-22 | Tokyo Electron Corporation | Method of depositing metal film and metal deposition cluster tool including supercritical drying/cleaning module |
| JP3978023B2 (en) * | 2001-12-03 | 2007-09-19 | 株式会社神戸製鋼所 | High pressure processing method |
| US7557073B2 (en) * | 2001-12-31 | 2009-07-07 | Advanced Technology Materials, Inc. | Non-fluoride containing supercritical fluid composition for removal of ion-implant photoresist |
| US7326673B2 (en) | 2001-12-31 | 2008-02-05 | Advanced Technology Materials, Inc. | Treatment of semiconductor substrates using long-chain organothiols or long-chain acetates |
| WO2003064065A1 (en) * | 2002-01-25 | 2003-08-07 | Supercritical Systems Inc. | Method for reducing the formation of contaminants during supercritical carbon dioxide processes |
| JP2003224099A (en) * | 2002-01-30 | 2003-08-08 | Sony Corp | Surface treatment method |
| EP1474723A2 (en) * | 2002-02-15 | 2004-11-10 | Supercritical Systems Inc. | DRYING RESIST WITH A SOLVENT BATH AND SUPERCRITICAL CO sb 2 /sb |
| US6924086B1 (en) | 2002-02-15 | 2005-08-02 | Tokyo Electron Limited | Developing photoresist with supercritical fluid and developer |
| US7387868B2 (en) | 2002-03-04 | 2008-06-17 | Tokyo Electron Limited | Treatment of a dielectric layer using supercritical CO2 |
| JP4246640B2 (en) * | 2002-03-04 | 2009-04-02 | 東京エレクトロン株式会社 | Method for passivating low dielectric constant materials in wafer processing |
| US20040072706A1 (en) * | 2002-03-22 | 2004-04-15 | Arena-Foster Chantal J. | Removal of contaminants using supercritical processing |
| US7169540B2 (en) * | 2002-04-12 | 2007-01-30 | Tokyo Electron Limited | Method of treatment of porous dielectric films to reduce damage during cleaning |
| US6764552B1 (en) * | 2002-04-18 | 2004-07-20 | Novellus Systems, Inc. | Supercritical solutions for cleaning photoresist and post-etch residue from low-k materials |
| JP2003318810A (en) * | 2002-04-26 | 2003-11-07 | Kobe Steel Ltd | Radio data collection system and radio data repeater |
| US6669785B2 (en) * | 2002-05-15 | 2003-12-30 | Micell Technologies, Inc. | Methods and compositions for etch cleaning microelectronic substrates in carbon dioxide |
| US20030217764A1 (en) * | 2002-05-23 | 2003-11-27 | Kaoru Masuda | Process and composition for removing residues from the microstructure of an object |
| US6800142B1 (en) * | 2002-05-30 | 2004-10-05 | Novellus Systems, Inc. | Method for removing photoresist and post-etch residue using activated peroxide followed by supercritical fluid treatment |
| JP2004128251A (en) * | 2002-10-03 | 2004-04-22 | Elpida Memory Inc | Machine and method for coating |
| US7485611B2 (en) * | 2002-10-31 | 2009-02-03 | Advanced Technology Materials, Inc. | Supercritical fluid-based cleaning compositions and methods |
| US7223352B2 (en) * | 2002-10-31 | 2007-05-29 | Advanced Technology Materials, Inc. | Supercritical carbon dioxide/chemical formulation for ashed and unashed aluminum post-etch residue removal |
| JP2004158534A (en) * | 2002-11-05 | 2004-06-03 | Kobe Steel Ltd | Method for cleaning microscopic structure |
| US20040112409A1 (en) * | 2002-12-16 | 2004-06-17 | Supercritical Sysems, Inc. | Fluoride in supercritical fluid for photoresist and residue removal |
| US20040177867A1 (en) * | 2002-12-16 | 2004-09-16 | Supercritical Systems, Inc. | Tetra-organic ammonium fluoride and HF in supercritical fluid for photoresist and residue removal |
| JP4248903B2 (en) | 2003-03-19 | 2009-04-02 | 大日本スクリーン製造株式会社 | High pressure processing apparatus and high pressure processing method |
| US20040231707A1 (en) * | 2003-05-20 | 2004-11-25 | Paul Schilling | Decontamination of supercritical wafer processing equipment |
| KR100505693B1 (en) * | 2003-06-26 | 2005-08-03 | 삼성전자주식회사 | Cleaning method of photoresist or organic material from microelectronic device substrate |
| JP2005033135A (en) * | 2003-07-11 | 2005-02-03 | Kobe Steel Ltd | Cleaning device for microstructure |
| US7163380B2 (en) | 2003-07-29 | 2007-01-16 | Tokyo Electron Limited | Control of fluid flow in the processing of an object with a fluid |
| US20050022850A1 (en) * | 2003-07-29 | 2005-02-03 | Supercritical Systems, Inc. | Regulation of flow of processing chemistry only into a processing chamber |
| US20050039775A1 (en) * | 2003-08-19 | 2005-02-24 | Whitlock Walter H. | Process and system for cleaning surfaces of semiconductor wafers |
| JP4757452B2 (en) * | 2004-04-02 | 2011-08-24 | 昭和炭酸株式会社 | Gas-liquid separator |
| US7195676B2 (en) * | 2004-07-13 | 2007-03-27 | Air Products And Chemicals, Inc. | Method for removal of flux and other residue in dense fluid systems |
| US7307019B2 (en) | 2004-09-29 | 2007-12-11 | Tokyo Electron Limited | Method for supercritical carbon dioxide processing of fluoro-carbon films |
| US20060081273A1 (en) * | 2004-10-20 | 2006-04-20 | Mcdermott Wayne T | Dense fluid compositions and processes using same for article treatment and residue removal |
| US7491036B2 (en) | 2004-11-12 | 2009-02-17 | Tokyo Electron Limited | Method and system for cooling a pump |
| US7291565B2 (en) | 2005-02-15 | 2007-11-06 | Tokyo Electron Limited | Method and system for treating a substrate with a high pressure fluid using fluorosilicic acid |
| US7550075B2 (en) * | 2005-03-23 | 2009-06-23 | Tokyo Electron Ltd. | Removal of contaminants from a fluid |
| US7442636B2 (en) | 2005-03-30 | 2008-10-28 | Tokyo Electron Limited | Method of inhibiting copper corrosion during supercritical CO2 cleaning |
| US7399708B2 (en) | 2005-03-30 | 2008-07-15 | Tokyo Electron Limited | Method of treating a composite spin-on glass/anti-reflective material prior to cleaning |
| US7789971B2 (en) | 2005-05-13 | 2010-09-07 | Tokyo Electron Limited | Treatment of substrate using functionalizing agent in supercritical carbon dioxide |
| JP2007142335A (en) * | 2005-11-22 | 2007-06-07 | Dainippon Screen Mfg Co Ltd | High-pressure treatment method |
| JP4179378B2 (en) * | 2007-01-04 | 2008-11-12 | トヨタ自動車株式会社 | VEHICLE DRIVE CONTROL DEVICE AND VEHICLE |
| WO2014113293A1 (en) | 2013-01-15 | 2014-07-24 | Lawrence Livermore National Security, Llc | Laser-driven hydrothermal processing |
| FR3021554A1 (en) * | 2014-05-28 | 2015-12-04 | Dfd Dense Fluid Degreasing | METHOD AND DEVICE FOR SUPERCRITICAL FLUID TREATMENT WITH ADDITIVE INJECTION |
Family Cites Families (23)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5339844A (en) * | 1992-08-10 | 1994-08-23 | Hughes Aircraft Company | Low cost equipment for cleaning using liquefiable gases |
| US5456759A (en) * | 1992-08-10 | 1995-10-10 | Hughes Aircraft Company | Method using megasonic energy in liquefied gases |
| KR0137841B1 (en) * | 1994-06-07 | 1998-04-27 | 문정환 | How to remove etch residue |
| JPH08330266A (en) * | 1995-05-31 | 1996-12-13 | Texas Instr Inc <Ti> | Method of cleansing and processing surface of semiconductor device or the like |
| US5868856A (en) * | 1996-07-25 | 1999-02-09 | Texas Instruments Incorporated | Method for removing inorganic contamination by chemical derivitization and extraction |
| US5868862A (en) * | 1996-08-01 | 1999-02-09 | Texas Instruments Incorporated | Method of removing inorganic contamination by chemical alteration and extraction in a supercritical fluid media |
| US5989353A (en) * | 1996-10-11 | 1999-11-23 | Mallinckrodt Baker, Inc. | Cleaning wafer substrates of metal contamination while maintaining wafer smoothness |
| US5908510A (en) * | 1996-10-16 | 1999-06-01 | International Business Machines Corporation | Residue removal by supercritical fluids |
| US6118000A (en) * | 1996-11-04 | 2000-09-12 | Hydrochem Industrial Services, Inc. | Methods for preparing quaternary ammonium salts |
| US5709756A (en) * | 1996-11-05 | 1998-01-20 | Ashland Inc. | Basic stripping and cleaning composition |
| US6306564B1 (en) * | 1997-05-27 | 2001-10-23 | Tokyo Electron Limited | Removal of resist or residue from semiconductors using supercritical carbon dioxide |
| US6500605B1 (en) * | 1997-05-27 | 2002-12-31 | Tokyo Electron Limited | Removal of photoresist and residue from substrate using supercritical carbon dioxide process |
| US5983082A (en) * | 1997-10-31 | 1999-11-09 | Motorola, Inc. | Phase quadrature signal generator having a variable phase shift network |
| US6200943B1 (en) * | 1998-05-28 | 2001-03-13 | Micell Technologies, Inc. | Combination surfactant systems for use in carbon dioxide-based cleaning formulations |
| US6242165B1 (en) * | 1998-08-28 | 2001-06-05 | Micron Technology, Inc. | Supercritical compositions for removal of organic material and methods of using same |
| SG77710A1 (en) * | 1998-09-09 | 2001-01-16 | Tokuyama Corp | Photoresist ashing residue cleaning agent |
| US6277753B1 (en) * | 1998-09-28 | 2001-08-21 | Supercritical Systems Inc. | Removal of CMP residue from semiconductors using supercritical carbon dioxide process |
| CA2255413A1 (en) * | 1998-12-11 | 2000-06-11 | Fracmaster Ltd. | Foamed nitrogen in liquid co2 for fracturing |
| US6828289B2 (en) * | 1999-01-27 | 2004-12-07 | Air Products And Chemicals, Inc. | Low surface tension, low viscosity, aqueous, acidic compositions containing fluoride and organic, polar solvents for removal of photoresist and organic and inorganic etch residues at room temperature |
| EP1309990A1 (en) * | 2000-08-14 | 2003-05-14 | Tokyo Electron Limited | Removal of photoresist and photoresist residue from semiconductors using supercritical carbon dioxide process |
| US6425956B1 (en) * | 2001-01-05 | 2002-07-30 | International Business Machines Corporation | Process for removing chemical mechanical polishing residual slurry |
| US7326673B2 (en) * | 2001-12-31 | 2008-02-05 | Advanced Technology Materials, Inc. | Treatment of semiconductor substrates using long-chain organothiols or long-chain acetates |
| US20030217764A1 (en) * | 2002-05-23 | 2003-11-27 | Kaoru Masuda | Process and composition for removing residues from the microstructure of an object |
-
2001
- 2001-02-09 JP JP2001034337A patent/JP2002237481A/en active Pending
-
2002
- 2002-02-08 US US10/240,848 patent/US20030106573A1/en not_active Abandoned
- 2002-02-08 EP EP02736487A patent/EP1358670B1/en not_active Expired - Lifetime
- 2002-02-08 SG SG200402533A patent/SG125957A1/en unknown
- 2002-02-08 AT AT02736487T patent/ATE332571T1/en not_active IP Right Cessation
- 2002-02-08 KR KR10-2004-7006269A patent/KR100490506B1/en not_active Expired - Fee Related
- 2002-02-08 AT AT04011792T patent/ATE332355T1/en not_active IP Right Cessation
- 2002-02-08 KR KR10-2002-7013494A patent/KR100482496B1/en not_active Expired - Fee Related
- 2002-02-08 TW TW091102499A patent/TW569328B/en not_active IP Right Cessation
- 2002-02-08 JP JP2002578549A patent/JP3996513B2/en not_active Expired - Fee Related
- 2002-02-08 WO PCT/US2002/003608 patent/WO2002080233A2/en active IP Right Grant
- 2002-02-08 US US10/067,773 patent/US20020164873A1/en not_active Abandoned
- 2002-02-08 DE DE60212937T patent/DE60212937T2/en not_active Expired - Lifetime
- 2002-02-08 EP EP04011792A patent/EP1457550B1/en not_active Expired - Lifetime
- 2002-02-08 DE DE60212999T patent/DE60212999T2/en not_active Expired - Fee Related
- 2002-02-08 CN CNA2004100447914A patent/CN1542910A/en active Pending
- 2002-02-08 CN CNB028002741A patent/CN1243366C/en not_active Expired - Fee Related
-
2004
- 2004-04-09 US US10/820,695 patent/US20040198627A1/en not_active Abandoned
Also Published As
| Publication number | Publication date |
|---|---|
| SG125957A1 (en) | 2006-10-30 |
| JP2004519863A (en) | 2004-07-02 |
| EP1358670A4 (en) | 2004-11-17 |
| US20040198627A1 (en) | 2004-10-07 |
| US20020164873A1 (en) | 2002-11-07 |
| EP1457550B1 (en) | 2006-07-05 |
| ATE332355T1 (en) | 2006-07-15 |
| US20030106573A1 (en) | 2003-06-12 |
| JP2002237481A (en) | 2002-08-23 |
| KR20040040490A (en) | 2004-05-12 |
| CN1457502A (en) | 2003-11-19 |
| EP1457550A2 (en) | 2004-09-15 |
| EP1358670B1 (en) | 2006-07-05 |
| ATE332571T1 (en) | 2006-07-15 |
| JP3996513B2 (en) | 2007-10-24 |
| EP1358670A2 (en) | 2003-11-05 |
| TW569328B (en) | 2004-01-01 |
| EP1457550A3 (en) | 2004-11-03 |
| KR100482496B1 (en) | 2005-04-14 |
| DE60212999D1 (en) | 2006-08-17 |
| CN1542910A (en) | 2004-11-03 |
| DE60212937T2 (en) | 2007-12-06 |
| KR20020093896A (en) | 2002-12-16 |
| CN1243366C (en) | 2006-02-22 |
| DE60212937D1 (en) | 2006-08-17 |
| WO2002080233A2 (en) | 2002-10-10 |
| DE60212999T2 (en) | 2006-12-28 |
| WO2002080233A3 (en) | 2002-11-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100490506B1 (en) | Composition for removing residues from the microstructure of an object | |
| CN1222019C (en) | High-pressure treatment method | |
| KR100551864B1 (en) | Composition for removing residues from the microstructure of an object | |
| US7223352B2 (en) | Supercritical carbon dioxide/chemical formulation for ashed and unashed aluminum post-etch residue removal | |
| US20040050406A1 (en) | Compositions and method for removing photoresist and/or resist residue at pressures ranging from ambient to supercritical | |
| KR20050074511A (en) | Supercritical carbon dioxide/chemical formulation for removal of photoresists | |
| KR20060115896A (en) | Resist, BARC and Gap Fill Material Stripping Chemicals and Methods | |
| KR20060128037A (en) | Composition for removing anti-reflective coating from patterned ion-implanted photoresist wafer | |
| KR100720249B1 (en) | Method for cleaning microstructure | |
| KR20060135037A (en) | Non-Fluoride-Containing Supercritical Fluid Compositions for Ion-Injected Photoresist Removal | |
| JP4167257B2 (en) | Residue removal composition | |
| US20080060682A1 (en) | High temperature spm treatment for photoresist stripping | |
| JP2005048189A (en) | Composition for removing residue | |
| US20040079388A1 (en) | Removing fluorine-based plasma etch residues |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A107 | Divisional application of patent | ||
| A201 | Request for examination | ||
| PA0104 | Divisional application for international application |
St.27 status event code: A-0-1-A10-A16-div-PA0104 St.27 status event code: A-0-1-A10-A18-div-PA0104 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| N231 | Notification of change of applicant | ||
| PN2301 | Change of applicant |
St.27 status event code: A-3-3-R10-R11-asn-PN2301 St.27 status event code: A-3-3-R10-R13-asn-PN2301 |
|
| R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
Fee payment year number: 1 St.27 status event code: A-2-2-U10-U12-oth-PR1002 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| FPAY | Annual fee payment |
Payment date: 20080407 Year of fee payment: 4 |
|
| PR1001 | Payment of annual fee |
Fee payment year number: 4 St.27 status event code: A-4-4-U10-U11-oth-PR1001 |
|
| LAPS | Lapse due to unpaid annual fee | ||
| PC1903 | Unpaid annual fee |
Not in force date: 20090512 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE St.27 status event code: A-4-4-U10-U13-oth-PC1903 |
|
| PC1903 | Unpaid annual fee |
Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20090512 St.27 status event code: N-4-6-H10-H13-oth-PC1903 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |