[go: up one dir, main page]

KR100491684B1 - Gas concentrating Method and apparatus for use of Pressure Swing Adsorption - Google Patents

Gas concentrating Method and apparatus for use of Pressure Swing Adsorption Download PDF

Info

Publication number
KR100491684B1
KR100491684B1 KR10-2002-0020176A KR20020020176A KR100491684B1 KR 100491684 B1 KR100491684 B1 KR 100491684B1 KR 20020020176 A KR20020020176 A KR 20020020176A KR 100491684 B1 KR100491684 B1 KR 100491684B1
Authority
KR
South Korea
Prior art keywords
pressure
oxygen
adsorption tower
adsorption
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR10-2002-0020176A
Other languages
Korean (ko)
Other versions
KR20020048327A (en
Inventor
이태수
최윤순
Original Assignee
주식회사 옥서스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27726004&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR100491684(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 옥서스 filed Critical 주식회사 옥서스
Priority to KR10-2002-0020176A priority Critical patent/KR100491684B1/en
Publication of KR20020048327A publication Critical patent/KR20020048327A/en
Priority to US10/411,229 priority patent/US6811590B2/en
Application granted granted Critical
Publication of KR100491684B1 publication Critical patent/KR100491684B1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/12Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/102Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • B01D2259/40052Recycled product or process gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40062Four
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40066Six
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40077Direction of flow
    • B01D2259/40081Counter-current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/402Further details for adsorption processes and devices using two beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/053Pressure swing adsorption with storage or buffer vessel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

개시된 내용은 두 흡착탑의 하방에서 균등화가 이루어져 압축에너지를 절감하고, 배출소음이 적어지며, 유량 대비 산소순도를 높인 산소를 얻을 수 있는 산소농축방법 및 장치에 관한 것이다.Disclosed is an oxygen enrichment method and apparatus for equalizing the two adsorption towers to reduce compression energy, reduce emission noise, and obtain oxygen with increased oxygen purity relative to flow rate.

그 방법은 가압과 감압을 교번으로 작동하는 복탑방식의 흡착탑에서 가압과 감압의 압력차가 최대가 되었을 때 두개의 흡착탑 하부를 연통시켜 흡착탑 내부 압력을 균등화하도록 한 것이고,The method is designed to equalize the pressure inside the adsorption tower by communicating the lower part of the two adsorption towers when the pressure difference between the pressurization and the decompression becomes maximum in the double column type adsorption tower which operates the pressure and the pressure reduction alternately.

그 장치는, 압축기(50)와, 흡착함(60-1)(60-2)과, 솔레노이드 밸브(40-1)(40-2)와, 오리피스(90)와, 체크밸브(90-1)(90-2)와, 저장탱크(100)와, 압력조절기(70)와, 유량계(80)와,제어부(110)와, 소음기(20)로 이루어진다.The apparatus includes a compressor 50, suction cups 60-1 and 60-2, solenoid valves 40-1 and 40-2, orifice 90 and check valve 90-1. 90-2, the storage tank 100, the pressure regulator 70, the flow meter 80, the control unit 110, and the silencer 20.

Description

압력순환흡착을 이용한 산소농축방법 및 장치{Gas concentrating Method and apparatus for use of Pressure Swing Adsorption}Gas concentrating method and apparatus for use of Pressure Swing Adsorption}

본 발명은 압력순환흡착(Pressure Swing Adsorption, 이하 PSA라 약함)을 이용한 산소농축방법 및 장치에 관한 것으로 특히, 두개의 흡착베드(이하 흡착탑이라고 함) 서로 교대로 반복하여 약흡착질의 농축과 강흡착질의 세정을 반복하는 방식(두개의 흡착탑방식을 말하며, 이하에서는 복탑방식이라고도 함)에서 고압산소농축이 끝난 뒤 두개의 흡착탑을 하부에서 솔레노이드밸브를 통하여 일시연통시킴으로써 일측의 고압원료산소가 저압의 타측 흡착함으로 이동하여 두개의 흡착함이 일시 압력균등화되면서 세정 및 배출이 이루어지게 한 산소농축방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for oxygen concentration using pressure swing adsorption (hereinafter referred to as PSA), in particular, two adsorption beds (hereinafter referred to as adsorption towers) alternately repeating each other to concentrate and strongly adsorbate. In the method of repeating the cleaning (two adsorption tower method, hereinafter referred to as the double tower method), after the high pressure oxygen concentration is completed, the two adsorption towers are temporarily connected through the solenoid valve at the lower side, so that the high pressure raw material oxygen on one side is low pressure on the other side. The present invention relates to an oxygen concentrating method and apparatus for cleaning and discharging as the two adsorption chambers are temporarily pressure-equalized by moving to the adsorption chamber.

압력순환흡착(PSA)이라함은 압력에 따라 흡착제에 흡착되는 산소들의 흡착량의 차이를 이용하여 산소를 분리,농축하는 공정이다. 압축공기와 흡착제만을 이용하기 때문에 공해물질의 배출이 없고 사용이 쉬워 오래 전부터 의료용 산소농축기 등에 널리 사용되어 왔다.Pressure circulation adsorption (PSA) is a process of separating and concentrating oxygen by using a difference in the amount of adsorption of oxygen adsorbed to an adsorbent according to pressure. Since only compressed air and adsorbents are used, it is easy to use without the emission of pollutants and has been widely used for medical oxygen concentrators for a long time.

농축원리는 흡착제가 채워져 있는 흡착탑(Sieve Bed)에 압축공기를 유입시켜 가압함으로써 강흡착질은 흡착되고 약흡착질은 농축되면서 산소가 남게 되고 이 산소를 제품가스로 별도 저장하게 되고, 제품가스를 얻은 후에 흡착제에 흡착된 강흡착질은 내부산소로서 탈착시켜 외부로 배출하여 감압하는 것이다.The principle of concentration is to pressurize compressed air by injecting compressed air into a sieve bed filled with an adsorbent. The strong adsorbate adsorbed on the adsorbent is desorbed as internal oxygen, discharged to the outside, and depressurized.

산소분리원리는 위와 같은 공정을 2개의 흡착탑이 교번으로 수행하는 4단계공정으로 이루어지며, 흡착제인 제올라이트(Zeolite)가 포함된 흡착탑내에서 강흡착질인 다량의 질소중에서 약흡착질인 산소를 분리함으로써 이루어진다.The oxygen separation principle consists of a four-step process in which the two adsorption towers alternately perform the above process, and separates weakly adsorbed oxygen from a large amount of nitrogen, which is a strong adsorbent, in an adsorption tower containing zeolite, an adsorbent. .

대기중 약 80%인 질소는 산소보다 제올라이트에 잘 흡착되므로 공기를 흡착제가 충진된 흡착탑에 유입시키게 되면 질소성분은 흡착되고, 질소성분이 줄어든 산소는 흡착탑 상단 출구측으로 상승하게 되고 이것의 주성분은 약흡착질인 농축산소이다.Nitrogen, which is about 80% in the atmosphere, is more adsorbed to zeolite than oxygen, so when air enters the adsorption tower filled with adsorbent, the nitrogen is adsorbed, and the oxygen is reduced to the upper outlet side of the adsorption tower. It is concentrated oxygen that is an adsorbate.

이와같은 산소를 분리하기 위한 수단으로는 상술한 두개의 복탑방식 산소분리장치가 사용된다. 즉, 공기로부터 질소와 산소산소를 분리하는 흡착부와, 공기압축, 저장, 유출에 관련하는 작동부와, 밸브를 개폐하기 위한 제어부 및, 이들을 결합하기 위한 후레임부로 구성되어 있다.As the means for separating oxygen, the above-described two-column type oxygen separation apparatus is used. That is, it is comprised by the adsorption | suction part which isolates nitrogen and oxygen oxygen from air, the operation part related to air compression, storage, and outflow, the control part for opening / closing a valve, and the frame part for combining these.

이 장치의 산소분리방식은 흡착제가 충진된 흡착조에 압축공기를 공급하여 산소를 흡착하는 공정과, 이 흡착제에 흡착된 산소를 흡착제로부터 탈착하는 공정을 반복하여 필요산소를 일정한 농도로 얻게 되는 데, 이때 흡착조에서 얻은 필요 산소중 일부를 탈착공정을 위해 흡착조로 환류시켜 사용하고 있다.Oxygen separation method of this device is to supply the compressed air to the adsorption tank filled with the adsorbent to adsorb the oxygen and to desorb the oxygen adsorbed from the adsorbent from the adsorbent to obtain the necessary oxygen at a constant concentration. At this time, some of the necessary oxygen obtained from the adsorption tank is refluxed and used for the desorption process.

위의 흡착과정은 가압공기를 소정의 흡착제에 통과시킴으로써 강흡착질인 질소를 흡착시켜 공기중의 산소를 분리시키는 과정으로 한번의 흡착이 이루어지면 반드시 흡착제인 제올라이트에 흡착된 질소를 분리(탈착)시켜 원래의 성능을 회복시켜 주어야 된다. 이 과정이 세정과정으로 흡착제에 흡착된 산소중 일부를 저압상태에서 재순환시켜 탈착함으로써 흡착능을 회복시키며, 이와같은 산소농축과 질소의 세정을 반복하면서 소정순도의 농축산소를 얻게 된다.The above adsorption process is a process of adsorbing nitrogen as a strong adsorbate by passing the pressurized air through a predetermined adsorbent to separate oxygen in the air. Once adsorption is performed, the nitrogen adsorbed to the zeolite as the adsorbent must be separated (desorbed). You should restore the original performance. This process recovers the adsorption capacity by recycling some of the oxygen adsorbed on the adsorbent in a low pressure state by desorption and repeating the oxygen concentration and nitrogen cleaning to obtain concentrated oxygen with a certain purity.

복탑방식의 흡착탑을 통하여 농축되는 산소분리장치로는 첨부 도면 도 1에서 도시하는 바와 같은 산소농축장치가 본 출원인에 의하여 선출원되어 있다.As an oxygen separation device concentrated through a double column type adsorption column, an oxygen concentrating device as shown in FIG. 1 is first filed by the present applicant.

이 장치는 공기압축을 위한 콤프레셔(50)와, 압축공기의 공급을 제어하기 위한 솔레노이드밸브(40)와, 이 밸브를 거쳐 공급된 압축공기로부터 질소와 산소를 분리하는 흡착탑(60-1)(60-2)과, 두 대의 흡착탑 상부의 사이에 연결된 오리피스(90)와, 두대의 흡착탑사이에 각각 설치되어 고압,고순도 산소를 흡착탑 상방에서 타측 흡착탑 상방으로 흘려 보내어 평형을 이루기 위한 EQ밸브(평형밸브,120)와, 역류방지용 체크밸브(90-1)(90-2)와, 저장탱크(100)와, 압력조절기(70)와, 니들밸브(80)로 이루어진다.The apparatus includes a compressor (50) for air compression, a solenoid valve (40) for controlling the supply of compressed air, and an adsorption tower (60-1) for separating nitrogen and oxygen from the compressed air supplied through the valve ( 60-2), an orifice 90 connected between the two adsorption towers, and an EQ valve (equilibrium) which is installed between the two adsorption towers and flows high pressure and high purity oxygen from above the adsorption tower to the other adsorption tower. The valve 120, the check valve 90-1 and 90-2 for preventing the backflow, the storage tank 100, the pressure regulator 70 and the needle valve 80.

이와같은 산소농축장치는 제 1흡착탑(60-1)내부가 가압되면서 공기중 질소를 흡착시키고 나머지 농축산소를 배출시키면서 작동하나, 동시에 반대측 제 2흡착탑(60-2)에서는 질소가 흡착되어 있는 흡착제를 세정해야 하므로 농축산소중 일부를 오리피스(90)를 통해 타측 제 2흡착탑(60-2)상부로 이송시켜 내부를 세정하게 되고 이어서 짧은 시간동안 고압,고순도의 산소를 보내어 평형시키면서 세정후 기체를 배출하게 된다. 이때 흡착탑(60-2)내부는 상당한 내압을 갖는다.The oxygen concentrating device operates while adsorbing nitrogen in the air while discharging the remaining concentrated oxygen while pressurizing the inside of the first adsorption tower 60-1, but at the same time, the adsorbent in which nitrogen is adsorbed in the second adsorption tower 60-2 on the opposite side. Since some of the concentrated oxygen is transferred to the upper part of the second adsorption tower 60-2 through the orifice 90 to clean the inside, and then the high-pressure, high-purity oxygen is sent for a short time to equilibrate to discharge the gas after cleaning. Done. At this time, the inside of the adsorption tower 60-2 has a considerable internal pressure.

따라서 이와같은 산소농축방식에서는 제 1흡착탑을 통한 압축기작동이 고압으로 계속작동되면서 가압농축된 고압의 산소산소가 평형밸브를 통하여 저압상태인 제 2흡착탑내부에 공급되므로,Therefore, in such an oxygen concentration method, since the compressor operation through the first adsorption tower continues to operate at a high pressure, the oxygen condensed high pressure oxygen is supplied into the second adsorption tower under low pressure through a balance valve.

첫째, 제 2흡착탑의 세정작동을 고순도의 농축산소로 세정하므로 압축기 가압에 따른 기계적 에너지의 손실이 크고,First, since the cleaning operation of the second adsorption tower is cleaned with high purity concentrated oxygen, the loss of mechanical energy due to pressurization of the compressor is large,

둘째, 가압이 끝난 저압상태의 제 2흡착탑내부에 제 1흡착탑 상부로 부터 고압의 농축산소를 공급함에 따라 제 2흡착탑이 고압을 유지하면서 배기되므로 배기소음이 과다해지는 단점도 있다.Second, as the second adsorption tower is exhausted while maintaining the high pressure as the high pressure concentrated oxygen is supplied from the upper part of the first adsorption tower to the second adsorption tower under pressure, the exhaust noise is excessive.

이러한 과정을 첨부 도면 도 2에서 도시하는 바에 따라 살펴보면 제 1흡착탑의 압력곡선을 통하여 살펴볼 때, 제 1흡착탑의 농축산소가 배출되기 직전까지 압력이 상승되고나면 평형밸브(120)를 통하여 고압산소 일부를 제 2흡착탑측으로 약 2초동안에 압력 2.5에서 1로 낮아지게 하는 과정이 진행된다(①과 ②사이의 압력차).이때 양 흡착탑사이에는 압력의 균등화가 이루어짐과 동시에 제 2흡착탑에서는 부분가압이 이루어진다.As shown in the accompanying drawings as shown in Figure 2 when looking through the pressure curve of the first adsorption tower, after the pressure is increased until just before the concentrated oxygen of the first adsorption tower is discharged through the balance valve 120 The pressure is lowered from 2.5 to 1 (pressure difference between ① and ②) to the second adsorption tower for about 2 seconds. At this time, the pressure is equalized between the two adsorption towers and at the same time, the partial pressure is increased in the second adsorption tower. Is done.

이후 각 흡착탑의 압력곡선이 만나는 꼭지점(압력이 1.5인 부분③)과, 제 1흡착탑의 최대 압력상승점사이의 시간이 약100(sec)에서 127(sec)로 27초 정도로 길어져 제 2흡착탑으로 압축공기를 공급함에 따른 압축기작동의 기계적 에너지가 증가한 것이다.After that, the time between the pressure point of each adsorption tower where the pressure curve meets (part 3 with a pressure of 1.5) and the maximum pressure rise point of the first adsorption tower is about 27 seconds from about 100 (sec) to 127 (sec). The mechanical energy of the compressor operation is increased by supplying the compressed air.

또한, 제 2흡착탑으로의 압력균등화시의 압력이 2.5이므로 배출시 소음발생의 원인으로 작용하는 것이다.In addition, since the pressure at the pressure equalization to the second adsorption tower is 2.5, it acts as a cause of noise generation during discharge.

즉, 종래 복탑방식의 PSA공정은 효율을 높이기 위하여 흡착탑의 상부를 통해 균등화과정을 수행하였는데 이는 고압측 흡착탑의 상부로 부터 저압측 흡착탑으로 고압원료산소를 세정용,압력균등화용으로 사용함으로써 제 1흡착탑상부에 형성된 고압,고순도의 원료산소가 세정용 산소로 보내어지게 되어 이 산소를 압축하는 과정에 소요된 압축기 작동에너지가 낭비되는 것이다.That is, the conventional double column type PSA process performed an equalization process through the upper part of the adsorption tower in order to increase efficiency. This is because the high pressure raw material oxygen is used for cleaning and pressure equalization from the upper part of the high pressure side adsorption tower to the low pressure side adsorption tower. High-pressure, high-purity raw material oxygen formed on the adsorption tower is sent to the oxygen for cleaning, which wastes the compressor operating energy required to compress this oxygen.

일반적으로 산소 발생기에 이용되는 에너지는 대부분 공기 압축기의 압축기 작동에너지이다. 즉, 공기의 가압에 이용된 기계적 에너지가 흡착탑 내부에서 산소를 공기로부터 분리하는데 사용되지만, 일부는 세정단계에서 대기를 통해 버려지게 된다.In general, the energy used in the oxygen generator is mostly the compressor operating energy of the air compressor. That is, the mechanical energy used to pressurize the air is used to separate oxygen from the air inside the adsorption tower, but part of it is discarded through the atmosphere in the cleaning step.

그러나 흡착탑 상부가 아닌 하부를 연통시켜 원료산소를 이동시키는 경우 고압측 흡착탑의 하부에 위치하는 압축산소이므로 고순도의 농축산소가 아닌 가압산소로서 저압측 흡착탑의 가압에 이용할 수 있으므로 기계적 에너지를 상당히 회수할 수 있다.However, when the raw material oxygen is moved by communicating the lower part of the adsorption tower, the compressed oxygen is located at the lower part of the high pressure side adsorption tower. Can be.

본 발명은 종래 산소농축기의 산소농축 및 세정방법의 단점을 개선하여 제품가스를 얻은 후에 압력 균등화 과정에서 하부에 잔류하는 고압산소로서 저압측 흡착탑의 가압 및 세정,배출하는 방법을 제공하는 데에 주된 목적이 있다.The present invention is to provide a method for pressurizing, cleaning, and discharging a low pressure side adsorption column as high pressure oxygen remaining in the lower part of the pressure equalization process after obtaining a product gas by improving the disadvantages of the oxygen concentration and cleaning method of the conventional oxygen concentrator. There is a purpose.

본 발명은 이러한 산소농축 및 세정방법에서 두 개의 흡착탑사이에 압력 균등화 시간을 짧게 갖도록 하여 압축기 작동에 따른 에너지의 감소효과를 거두고자 하며, 아울러 보다 낮은 압력에서 세정,배출이 이루어지도록 함으로써 저압측 배출가스의 배출소음을 줄인 산소농축방법을 제공하는 데에도 있다.The present invention aims to shorten the pressure equalization time between the two adsorption towers in such an oxygen concentration and cleaning method to reduce the energy effect of the compressor operation, and also to clean and discharge at a lower pressure. It is also to provide an oxygen enrichment method that reduces the emission noise of the gas.

본 발명은 종래 산소농축장치에서 흡착탑 상부사이에 설치되어 압력균등화를 수행하던 EQ밸브를 제거하고 그 대신 각각의 흡착탑하부에 압력균등화를 수행하기 위한 솔레노이드밸브를 설치함으로써 각 솔레노이드밸브제어로서 흡착탑 하부의 저순도 고압산소를 이용한 압력순환흡착방식의 산소농축장치를 제공하는 데에도 그 목적이 있다.The present invention removes the EQ valve which is installed between the upper part of the adsorption tower in the conventional oxygen concentrator and performs pressure equalization, and instead, by installing a solenoid valve for performing pressure equalization under each adsorption tower, Another object of the present invention is to provide an oxygen concentrating device of a pressure circulation adsorption method using low purity high pressure oxygen.

또한, 이렇게 함으로써 기존에 복잡하게 흡착탑 상부를 연결하던 밸브들을 제거하여 구조가 간단해진다.This also simplifies the structure by eliminating the valves that previously connected the upper part of the adsorption column.

이와 같은 목적을 달성하기 위한 본 발명에 따른 산소농축방법은 가압과 감압을 교번으로 작동하는 복탑방식의 흡착탑에서 가압과 감압의 압력차가 최대가 되었을 때 두개의 흡착탑 하부를 통하여 압력의 균등화가 이루어지게 한 특징을 갖는다. 이러한 하부를 통한 압력균등화로서 제 1흡착탑에서의 고압산소를 고순도로 가압함에 따른 가압시간을 단축시켜 가압에너지를 줄일 수 있고, 제 2흡착탑은 보다 저압으로 세정산소를 배출시킬 수 있는 특징을 갖는다.Oxygen enrichment method according to the present invention for achieving the above object is to equalize the pressure through the bottom of the two adsorption tower when the pressure difference between the pressurization and the decompression is maximized in the double column type adsorption tower operating alternately pressurization and pressure reduction. Has one feature. The pressure equalization through the lower part can reduce the pressurization energy by shortening the pressurization time caused by pressurizing the high pressure oxygen in the first adsorption tower with high purity, and the second adsorption tower has a feature capable of discharging the cleaning oxygen at a lower pressure.

이러한 본 발명 압력순환흡착을 이용한 산소농축장치는 대기중의 공기를 여과하기 위한 흡기필터와, 압축기와, 흡착질소를 흡착하기 위한 두대의 흡착탑과, 흡착탑의 세정을 돕고, 고순도의 산소를 얻기 위한 오리피스와, 산소의 역류를 방지하는 체크밸브와,산소의 순도를 일정하게 하고, 토출되는 유량의 변화를 줄여주기 위한 저장탱크와,토출되는 산소의 압력을 저압으로 유지시켜주는 압력조절기와, 일정량의 산소를 공급하기 위한 유량계와,제어부와, 세정후 산소의 배출시 소음을 방지하기 위한 소음기와, 배출 공기를 이용한 압력 균등화 및 기계적 에너지를 회수하기 위하여 상기 흡착탑들 하부에 설치한 3/2 솔레노이드 밸브로 이루어진다.The oxygen concentrating device using the pressure circulation adsorption of the present invention includes an intake filter for filtering air in the atmosphere, a compressor, two adsorption towers for adsorbing nitrogen, and an adsorption tower for cleaning and obtaining high purity oxygen. Orifice, check valve to prevent backflow of oxygen, storage tank to keep oxygen purity constant and reduce the change of discharged flow rate, pressure regulator to keep the pressure of oxygen discharged at low pressure, 3/2 solenoids installed under the adsorption towers for flow rate meter for supplying oxygen, control unit, silencer for preventing noise during discharge of oxygen after cleaning, and pressure equalization and exhaustion of mechanical energy by using exhaust air It consists of a valve.

상기 본 발명 압력순환흡착을 이용한 산소농축장치는 제 1, 제 2솔레노이드 밸브는 각각 3포트 2웨이 솔레노이드밸브로 함이 바람직하다.In the oxygen concentrating device using the pressure circulation adsorption of the present invention, the first and second solenoid valves are preferably three-port two-way solenoid valves.

상기한 본 발명 산소농축방법은 두개의 흡착탑을 이용하여 제 1흡착탑이 농축되면 제 2흡착탑은 세정,배출시키고 다시 농축과 세정을 바꾸어 반복되는 복탑방식의 산소농축방법에 있어서 질소세정과 배출을 위하여 고농도 산소를 사용하지 아니하고 일측 흡착탑의 가압말기 저농도산소를 이용하는 특징이 있다.In the above oxygen concentration method of the present invention, when the first adsorption tower is concentrated using two adsorption towers, the second adsorption tower is cleaned and discharged, and the concentration and cleaning are changed again. It is characterized by using low concentration oxygen at the end of pressurization of one adsorption tower without using high concentration oxygen.

이하 본 발명의 바람직한 실시예를 첨부 도면에 의하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with the accompanying drawings.

첨부 도면중 도 3은 본 발명의 산소농축장치의 공정을설명하기 위한 도면이고, 도 4는 본 발명 산소농축장치의 저압공기를 이용한 압력 균등상태의 변동 그래프이다.3 is a view for explaining the process of the oxygen concentrating device of the present invention, Figure 4 is a graph of fluctuations in pressure equality state using the low pressure air of the oxygen concentrating device of the present invention.

먼저 본 발명 제어방법을 설명하기에 앞서 상기 도면에 따르는 본 발명 산소농축장치의 제어 방법을 구현하기 위한 산소농축장치를 설명한다.First, prior to explaining the control method of the present invention will be described an oxygen concentrating device for implementing the control method of the oxygen concentrating device of the present invention according to the drawings.

즉, 대기중의 공기가 흡입되는 입구측에 설치되어 흡입공기를 여과하기 위한 흡기필터(10)와, 흡입시의 소음을 방지하는 소음기(20)와, 흡입된 공기를 소정압력으로 압축하는 압축기(50)와, 상기 압축기(50)에서 압축된 공기를 교호로 분배하기 위하여 두개의 분기라인으로 연결되고 내부에 소정의 질소흡착수단을 내설하여 질소를 흡착하기 위한 두대의 흡착탑(60-1)(60-2)과, 토출되는 산소의 압력을 저압으로 유지시켜주는 압력조절기(레귤레이터,70)와, 일정량의 농축산소를 공급하기 위한 유량계(니들밸브,80)배출 공기를 이용한 압력 균등화 및 기계적 에너지를 회수하기 위하여 상기 흡착탑(60-1)(60-2)하부에 설치한 3/2 솔레노이드 밸브(40-1)(40-2),상기한 솔레노이드밸브들과 압축기등의 개폐작동을 제어하기 위한 제어수단(110)으로 이루어진다.That is, the inlet filter 10 is installed at the inlet side where air in the air is sucked in, the silencer 20 for filtering the intake air, the silencer 20 for preventing the noise during inhalation, and the compressor for compressing the sucked air to a predetermined pressure. 50 and two adsorption towers 60-1 connected to two branch lines to alternately distribute the compressed air from the compressor 50 and adsorbing nitrogen by incorporating predetermined nitrogen adsorption means therein. (60-2), a pressure regulator (regulator) 70 for maintaining the pressure of the discharged oxygen at a low pressure, and a flow meter (needle valve, 80) for supplying a certain amount of concentrated oxygen, pressure equalization and mechanical 3/2 solenoid valves 40-1 and 40-2 installed under the adsorption tower 60-1 and 60-2 to recover energy, and control the opening and closing operations of the solenoid valves and the compressor. It consists of a control means 110 for.

상기 장치에 따른 본 발명 산소농축과정을 첨부 도면 도 3 내지 도 5에 의거 공정별로 설명하면 다음과 같다.Referring to the oxygen concentration process of the present invention according to the device according to the process according to the accompanying drawings 3 to 5 as follows.

<제 1공정><1st process>

도 5a에서 도시하는 바와같이 제 1흡착탑(60-1)에 흡기필터(10),흡기소음기(20),압축기(50)를 통해 외부공기가 가압공급된다.As shown in FIG. 5A, external air is pressurized and supplied to the first adsorption tower 60-1 through the intake filter 10, the intake silencer 20, and the compressor 50.

흡기 필터(10)와 흡기 소음기(20),압축기(50)를 통해 가압된 공기는 제 1솔레노이드 밸브(40-1)를 거쳐 제 1흡착탑(60-1)에서 가압, 흡착이 진행된다.The air pressurized through the intake filter 10, the intake silencer 20, and the compressor 50 is pressurized and adsorbed through the first solenoid valve 40-1 in the first adsorption tower 60-1.

이때 제 2흡착탑(60-2)은 도 4에서 도시하는 바와같이 일부 고압산소를 오리피스를 통하여 공급하여 흡착제를 고압산소로 세정하면서 솔레노이드밸브(40-2)를 열어 흡착산소를 소음기(30)를 통하여 배출하게 된다.In this case, as shown in FIG. 4, the second adsorption tower 60-2 supplies some high pressure oxygen through the orifice to clean the adsorbent with high pressure oxygen, and opens the solenoid valve 40-2 to remove the adsorption oxygen from the silencer 30. Discharge through.

<제 2공정><The second process>

첨부 도면 도 5b에서 도시하는 바와같이 제 1흡착탑(60-1)이 농축(가압)이 일정시간 진행되어 제품가스를 추출한 뒤 제 1,제 2흡착탑(60-1)(60-2)은 제 1, 제 2솔레노이드밸브(40-1)(40-2)를 동시에 열어 하부를 연통시킨다.As shown in FIG. 5B, the first adsorption tower 60-1 has been concentrated (pressurized) for a predetermined time, and after extracting the product gas, the first and second adsorption towers 60-1 and 60-2 are made of the first adsorption tower 60-1. The first and second solenoid valves 40-1 and 40-2 are simultaneously opened to communicate with the lower part.

솔레노이드밸브(40-1)(40-2)가 열려 흡착탑(60-1)(60-2)들 하단부에서 연통되면 제 1흡착탑(60-1)의 고압산소가 흡착탑(60-2)으로 순간적으로 역류되어 양쪽 흡착탑의 압력은 순간적으로 같아진다. 이 상태가 도 4에서 도시하는 압력균등점③(압력1.5)이다.When the solenoid valves 40-1 and 40-2 are opened and communicate with the lower ends of the adsorption towers 60-1 and 60-2, the high pressure oxygen of the first adsorption tower 60-1 is momentarily transferred to the adsorption tower 60-2. The pressure in both adsorption towers is instantaneously equalized. This state is the pressure equality point ③ (pressure 1.5) shown in FIG.

이어서 약 7초후 저압상태의 제 2흡착탑(60-2)은 압축기 작동으로 가압되면서 압축산소의 농축이 진행되고, 제 1흡착탑(60-1)은 동시에 세정과 배출이 수행된다.Subsequently, after about 7 seconds, the second adsorption tower 60-2 in the low pressure state is pressurized by the operation of the compressor to concentrate the compressed oxygen, and the first adsorption tower 60-1 is simultaneously cleaned and discharged.

따라서 가압시간 개시점③과 제 1흡착탑의 압력곡선 마지막과의 시간은 불과 약7초 정도가 걸려 압축기의 작동이 곧바로 제 2흡착탑의 가압작동으로 이어지나, 종래에는 흡착탑(60-1)의 가압곡선말기로 부터 균등화점③까지의 사이에 상당한 압축기의 작동시간(약27초동안)을 가진 뒤 제 2흡착탑의 가압작동(1.5에서 시작)이 시작되는 것이므로 압축기가 불필요하게 작동하는 문제점이 있었다.Therefore, the time between the start point of the pressurization time ③ and the end of the pressure curve of the first adsorption tower takes only about 7 seconds, so that the operation of the compressor immediately leads to the pressurization operation of the second adsorption tower, but conventionally pressurization of the adsorption tower 60-1. Since the pressurization operation (starting at 1.5) of the second adsorption tower is started after a considerable compressor operating time (for about 27 seconds) between the end of the curve and the equalization point ③, there is a problem that the compressor is unnecessary.

또한, 제 2흡착탑의 균등화압력이 2.0을 유지하여 종래 2.5때 보다 0.5저감되어 배출시 소음의 발생도 감소하게 된다.In addition, the equalization pressure of the second adsorption tower is maintained at 2.0, which is reduced by 0.5 compared with the conventional 2.5, thereby reducing the generation of noise during discharge.

<제 3공정><Third process>

도 5c에서 도시하는 바와같이 제 2흡착탑(60-2)에 흡기필터(10),흡기소음기(20),압축기(50)를 통해 외부공기가 가압공급된다.As shown in FIG. 5C, external air is pressurized and supplied to the second adsorption tower 60-2 through the intake filter 10, the intake silencer 20, and the compressor 50.

흡기 필터(10)와 흡기 소음기(20),압축기(50)를 통해 가압된 공기는 제 2솔레노이드 밸브(40-2)를 거쳐 제 2흡착탑(60-2)에서 가압, 흡착이 진행된다.The air pressurized through the intake filter 10, the intake silencer 20, and the compressor 50 is pressurized and adsorbed in the second adsorption tower 60-2 via the second solenoid valve 40-2.

이때 제 1흡착탑(60-1)은 도 4에서 도시하는 바와같이 일부 고압산소를 오리피스를 통하여 공급하여 흡착제를 고압산소로 세정하면서 솔레노이드밸브(40-1)를 열어 흡착산소를 소음기(30)를 통하여 배출하게 된다.At this time, the first adsorption tower 60-1 supplies some high pressure oxygen through the orifice to clean the adsorbent with high pressure oxygen as shown in FIG. 4 and opens the solenoid valve 40-1 to remove the adsorption oxygen from the silencer 30. Discharge through.

이후 상기한 제 2공정이 진행되고 연속하여 각 공정들이 교번으로 수행되는 것이다.Thereafter, the above-described second process is performed, and each process is performed alternately.

본 발명은 기계적 에너지의 손실을 줄일 수 있으므로 보다 저전력의 산소농축기의 개발이 가능해진다. 예를들면 흔히 사용되는 5LPM의 90%의 순도를 획득하기 위한 전력량도 기존의 6단계 방식에서는 460W 정도가 소비되는 반면, 본 발명을 이용한 공정으로는 380W의 전력으로도 생산이 가능하게 되는 것이다.The present invention can reduce the loss of mechanical energy, it is possible to develop a lower power oxygen concentrator. For example, the amount of power required to obtain 90% purity of the commonly used 5LPM is consumed about 460W in the conventional six-stage method, while the process using the present invention can be produced with power of 380W.

한편 본 발명은 IRS(Independent rinse and storage)타입(저장탱크,체크밸브,오리피스를 흡착케이스내에 포함한 타입)의 독립식 농축장치에서도 같은 방법을 적용한다.Meanwhile, the present invention applies the same method to an independent concentration apparatus of an independent rinse and storage (IRS) type (a type including a storage tank, a check valve, and an orifice in an adsorption case).

첨부 도면 도 6에 따른 산소농축장치의 작동을 설명한다.The operation of the oxygen concentrating device according to FIG. 6 will be described.

즉, 흡기필터(10),흡기 소음기(20),압축기(50)를 통해 외부공기를 가압하여 제 1솔레노이드밸브(40-1)를 거쳐 제 1흡착부(260-1)에 공급한다.That is, external air is pressurized through the intake filter 10, the intake silencer 20, and the compressor 50, and is supplied to the first adsorption unit 260-1 through the first solenoid valve 40-1.

흡기 필터와 흡기 소음기,압축기를 통해 가압된 공기는 제 1솔레노이드 밸브(40-1)를 거쳐 제 1흡착탑(260-1)에서 가압, 흡착이 진행된다.The air pressurized through the intake filter, the intake silencer, and the compressor is pressurized and adsorbed through the first solenoid valve 40-1 in the first adsorption tower 260-1.

이때 제 2흡착부(260-2)는 고압농축산소로서 세정이 이루어지며, 배출이 이루어진다.At this time, the second adsorption part 260-2 is cleaned as high-pressure concentrated oxygen, and discharged.

<제 2공정><The second process>

제 1흡착탑(260-1)에서 농축(가압)이 일정시간 진행된 후 생산산소를 얻고 나면 제 1, 제 2솔레노이드밸브(40-1)(40-2)를 동시에 열어 흡착탑(260-1)(260-2)하부를 연통시킨다. 솔레노이드밸브(40-1)(40-2)가 열려 흡착탑(60-1)(60-2)들 하단부에서 연통되면 제 1흡착탑(60-1)의 높은 압력의 가압산소가 흡착탑(60-2)으로 순간적으로 역류되어 양쪽 흡착탑의 압력은 순간적으로 같아진다. 이어서 제 2흡착탑은 압축기로 부터 압축공기를 공급받아 새로운 가압작동이 개시된다.After the concentration (pressurization) in the first adsorption tower 260-1 progresses for a certain period of time, after obtaining oxygen, the first and second solenoid valves 40-1 and 40-2 are simultaneously opened and the adsorption tower 260-1 ( 260-2) communicate with the lower part. When the solenoid valves 40-1 and 40-2 are opened and communicate with the lower ends of the adsorption towers 60-1 and 60-2, the high pressure pressurized oxygen of the first adsorption tower 60-1 is absorbed to the adsorption tower 60-2. Instantaneous backflow, the pressures of both adsorption towers are instantaneously equal. Subsequently, the second adsorption tower receives compressed air from the compressor to start a new pressurization operation.

상술한 바와같이 본 발명은 오리피스, 체크밸브 및 산소저장탱크를 내부에 구성한 3웨이 2포트의 솔레노이드 밸브에도 유용하게 적용되어 압축에너지를 줄이며 소음의 발생을 줄이게 되었다.As described above, the present invention is also usefully applied to a three-way, two-port solenoid valve having an orifice, a check valve, and an oxygen storage tank therein to reduce compression energy and reduce noise.

이와같이 본 발명 PSA고정을 이용한 산소농축방법은 복탑방식의 산소농축방법에 사용될 경우 두가지 효과를 얻을 수 있는데, 이는 고압 흡착탑과 저압 흡착탑 각각의 측면에서 볼 수 있다.As described above, the oxygen enrichment method using the PSA fixation of the present invention can obtain two effects when used in the double column type oxygen enrichment method, which can be seen from the sides of the high pressure adsorption tower and the low pressure adsorption tower.

첫째, 세정후 저압상태가 된 흡착탑은 다시 흡착이 가능한 압력까지 가압하기 전에 고압의 흡착탑으로 부터 균등화점까지 유입되는 시간을 크게 단축하여 압축기를 작동시킴으로써 기존PSA 공정에 비해 에너지가 절감되는 효과를 갖는다.First, the adsorption tower, which is in a low pressure state after cleaning, has an effect of reducing energy compared to the existing PSA process by operating the compressor by greatly shortening the inflow time from the high pressure adsorption tower to the equalization point before pressurizing to the pressure at which adsorption is possible again. .

둘째, 고압작동의 흡착탑이 원료산소를 농축하는 동안 저압의 흡착탑은 빠르게 세정과 배출로 이어지면서 보다 낮은 압력으로 배출이 되어 배출소음이 적어지는 효과도 있다.Second, while the adsorption tower of the high pressure operation concentrates the raw material oxygen, the low pressure adsorption tower is rapidly discharged at a lower pressure while leading to cleaning and discharge, thereby reducing the emission noise.

또한, 흡착탑의 상층부는 항상 고농도산소만이 배출되도록 하는 것이어서 종래 이 흡착탑 상부에서 일부산소를 역류시켜 균등화를 이룸으로써 생산산소의 일부 손실이 발생되었으나, 본 발명은 지속적인 원료산소의 생산이 흡착탑 상부를 통하여 이루어짐에 따라 압축기를 통한 압축시의 기계적 작동에 따른 압축에너지를 보다 적은 전력으로 작동하게 되어도 종래와 같은 유량 대비 산소 순도를 높인 산소를 얻을 수 있다.In addition, since the upper part of the adsorption tower always discharges only high concentration of oxygen, the oxygen is partially reversed at the upper part of the adsorption tower to achieve equalization, but some loss of production oxygen is generated. As a result of this, even when the compression energy according to the mechanical operation during the compression through the compressor is operated at a lower power, it is possible to obtain oxygen with increased oxygen purity compared to the flow rate as in the prior art.

도 1은 종래 산소농축방법을 실시하기 위한 장치예를 나타내는 전체구성도,1 is an overall configuration diagram showing an example of a device for performing a conventional oxygen concentration method;

도 2는 종래 산소농축방법의 압력변동과정을 나타내는 그래프,Figure 2 is a graph showing the pressure fluctuation process of the conventional oxygen concentration method,

도 3은 본 발명 산소농축방법을 실시하기 위한 장치예를 나타내는 전체 구성도,3 is an overall configuration diagram showing an example of a device for implementing the oxygen concentration method of the present invention,

도 4는 본 발명 산소농축방법의 압력변동과정을 나타내는 그래프,4 is a graph showing the pressure fluctuation process of the present invention oxygen concentration method,

도 5a, 도 5b,도 5c는 본 발명 산소농축방법의 압력변동 과정을 단계별로 나타내는 작용설명의 개략도,5A, 5B, and 5C are schematic views illustrating the operation of each step of the pressure fluctuation process of the oxygen concentration method of the present invention;

도 6은 본 발명 산소농축방법이 구현된 단탑식 산소농축장치의 전체 구성도.Figure 6 is an overall configuration diagram of a single-top oxygen concentrator device implemented oxygen concentration method of the present invention.

※ 도면의 주요부분에 대한 부호설명※ Explanation of Codes on Major Parts of Drawings

10 : 흡기 필터 20 : 흡기 소음기10: intake filter 20: intake silencer

30 : 배기 소음기 40-1, 40-2: 3/2 솔레노이드 밸브30: exhaust silencer 40-1, 40-2: 3/2 solenoid valve

50 : 공기 압축기 60-1, 60-2, 260-1, 260-2 : 흡착탑50: air compressor 60-1, 60-2, 260-1, 260-2: adsorption tower

70 : 압력 조절기 80 : 니들밸브70: pressure regulator 80: needle valve

90 : 오리피스 95 : 체크 밸브90: orifice 95: check valve

100 : 저장 탱크 110 : 제어수단100: storage tank 110: control means

Claims (4)

공기압축기를 통해 외부공기를 가압공급하고, 일측 흡착탑은 이 가압된 공기를 가압시켜 질소를 흡착시킴과 아울러 타측 흡착탑은 감압상태에서 상부 혹은 하부에서 충압시켜 질소를 배출토록하는 과정을 밸브로서 교번작동시켜 산소를 농축시키는 방법에 있어서,The outside air is pressurized and supplied through the air compressor, and one adsorption tower pressurizes the pressurized air to adsorb nitrogen, and the other adsorption tower alternately operates as a valve to pressurize the upper or lower part under reduced pressure to discharge nitrogen. In the method of concentrating oxygen, 가압과 감압이 교번/작동하는 복탑방식의 흡착탑에서 가압과 감압의 압력차가 최대가 되었을 때 두개의 흡착탑 하부를 연통시켜 흡착탑 내부 압력을 균등화하도록 한 것을 특징으로 하는 압력순환흡착을 이용한 산소농축방법.An oxygen enrichment method using pressure circulation adsorption, characterized in that the pressure in the adsorption tower is equalized by communicating two lower parts of the adsorption tower when the pressure difference between the pressure and the pressure decreases in the double column type adsorption tower in which pressure and pressure are alternated / operating. 대기중의 공기를 흡입/압축하기 위한 압축기(50)와, 흡입공기중의 질소를 흡착하고 산소를 농축하기 위한 복수의 흡착탑(60-1)(60-2)과, 이 흡착탑(60-1)(60-2)에 압축기로 부터의 압축기공기를 가압시킴과 동시에 감압시키기 위한 절환밸브들과, 복수의 흡착탑(60-1)(60-2)중 어느 하나의 흡착탑이 질소흡착이되면서 감압상태가 되면 흡착된 질소를 세정/배출하기 위하여 가압상태의 흡착탑에서 일부 농축산소를 공급하여 상부 균압이 이루어지는 오리피스(90)와, 농축된 산소가 저장됨과 동시에 산소의 순도를 일정하게 유지되도록 하는 저장탱크(100)와, 농축된 산소가 소정압이 되면 자동적으로 저장시킴과 아울러 저장탱크의 농축산소가 역류되는 것을 방지하는 체크밸브(90-1)(90-2)로 이루어지는 압력순환흡착을 이용한 복탑방식의 산소농축장치에 있어서,A compressor 50 for sucking / compressing air in the atmosphere, a plurality of adsorption towers 60-1 and 60-2 for adsorbing nitrogen in the intake air and concentrating oxygen, and the adsorption tower 60-1 (2) switching valves for pressurizing the compressor air from the compressor and reducing the pressure at the same time, and the adsorption tower of any one of the plurality of adsorption towers (60-1) (60-2) receives nitrogen adsorption In order to clean / discharge the adsorbed nitrogen, the concentrated orifice 90 is supplied from the pressurized adsorption column in order to purge and discharge the adsorbed nitrogen, and the concentrated oxygen is stored and the oxygen is stored at the same time. Using pressure circulation adsorption consisting of the tank 100 and check valves 90-1 and 90-2 for automatically storing the concentrated oxygen at a predetermined pressure and preventing backflow of concentrated oxygen in the storage tank. In the double column type oxygen concentrating device, 상기 압축기로 흡입되는 공기를 여과하기 위한 흡기필터(10)와, 흡입 기체의 소음을 감소시키는 흡기소음기(20)와, 토출되는 산소의 압력이 정압이 되도록 조절/유지하기 위한 압력조절기(70)와, 유출되는 농축산소의 유량변화를 나타내기 위한 유량계(80)와, 질소 배출시 발생되는 소음을 방지하기 위한 배기소음기(20)와, 배출공기를 이용한 압력 균등화 및 기계적 에너지를 회수하기 위하여 상기 절환밸브 대신 흡착탑(60-1)(60-2)하부에 설치되는 3포트 2웨이 솔레노이드밸브(40-1)(40-2)와, 상기 흡착탑(60-1)(60-2)으로 압축공기를 공급함과 동시에 흡착질소를 배출함에 있어서 가압과 감압을 교대로 하되 가압과 감압의 압력차가 최대가 되었을 때 복수의 흡착탑 하부가 연통되도록 상기 솔레노이드밸브(40-1)(40-2)를 개폐시켜 흡착탑 내부 압력을 균등화하도록 하기 위한 제어부(110)를 구비하는 것을 특징으로 하는 압력순환흡착을 이용한 산소농축장치.An intake filter 10 for filtering the air sucked into the compressor, an intake silencer 20 for reducing the noise of the intake gas, and a pressure regulator 70 for adjusting / maintaining the pressure of the discharged oxygen to become a constant pressure And, the flow meter 80 for indicating a flow rate change of the concentrated oxygen flowing out, the exhaust silencer 20 for preventing noise generated when nitrogen is discharged, and the switching to recover pressure equalization and mechanical energy using exhaust air. Instead of a valve, a three-port two-way solenoid valve 40-1 or 40-2 installed under the adsorption tower 60-1 or 60-2 and compressed air to the adsorption tower 60-1 or 60-2. While supplying the gas and discharge the adsorbed nitrogen, the pressure and the pressure are alternately alternately, and the solenoid valves 40-1 and 40-2 are opened and closed so that a plurality of adsorption tower lower parts communicate when the pressure difference between the pressure and the pressure is maximized. To equalize the pressure inside the adsorption tower Oxygen concentration apparatus using a pressure swing adsorption, characterized in that it comprises a control unit 110 for. 삭제delete 삭제delete
KR10-2002-0020176A 2002-04-12 2002-04-12 Gas concentrating Method and apparatus for use of Pressure Swing Adsorption Ceased KR100491684B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR10-2002-0020176A KR100491684B1 (en) 2002-04-12 2002-04-12 Gas concentrating Method and apparatus for use of Pressure Swing Adsorption
US10/411,229 US6811590B2 (en) 2002-04-12 2003-04-11 Gas concentrating method and apparatus using pressure swing adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0020176A KR100491684B1 (en) 2002-04-12 2002-04-12 Gas concentrating Method and apparatus for use of Pressure Swing Adsorption

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR2020020015549U Division KR200287409Y1 (en) 2002-05-21 2002-05-21 Gas concentrating apparatus for use of Pressure Swing Adsorption

Publications (2)

Publication Number Publication Date
KR20020048327A KR20020048327A (en) 2002-06-22
KR100491684B1 true KR100491684B1 (en) 2005-05-30

Family

ID=27726004

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0020176A Ceased KR100491684B1 (en) 2002-04-12 2002-04-12 Gas concentrating Method and apparatus for use of Pressure Swing Adsorption

Country Status (2)

Country Link
US (1) US6811590B2 (en)
KR (1) KR100491684B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234531A1 (en) * 2022-05-31 2023-12-07 한온시스템 주식회사 Oxygen generator
KR20240070143A (en) * 2022-11-14 2024-05-21 (주) 선바이오투 System and method for refining high purity

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190175A (en) * 2001-11-15 2003-07-08 Cordis Neurovascular Inc Aneurysm neck cover for sealing aneurysm
KR20040021138A (en) * 2002-09-02 2004-03-10 삼성전자주식회사 Oxygen generator
WO2004087300A1 (en) * 2003-02-18 2004-10-14 Jej Co., Ltd. Gas concentration method and its apparatus
FR2858606B1 (en) * 2003-08-04 2006-01-20 Air Liquide AUTONOMOUS OXYGEN GENERATOR
JP2007508052A (en) 2003-10-07 2007-04-05 アイノゲン、インコーポレイテッド Portable gas separation system
US7135059B2 (en) 2003-10-07 2006-11-14 Inogen, Inc. Portable gas fractionalization system
US7066985B2 (en) * 2003-10-07 2006-06-27 Inogen, Inc. Portable gas fractionalization system
US20050072423A1 (en) 2003-10-07 2005-04-07 Deane Geoffrey Frank Portable gas fractionalization system
US7025329B2 (en) * 2004-04-30 2006-04-11 Sequal Technologies, Inc. Needle valve for flow control
US7171963B2 (en) * 2005-02-09 2007-02-06 Vbox, Incorporated Product pump for an oxygen concentrator
US7766010B2 (en) 2005-02-09 2010-08-03 Vbox, Incorporated Method of controlling the rate of oxygen produced by an oxygen concentrator
US7431032B2 (en) * 2005-02-09 2008-10-07 Vbox Incorporated Low power ambulatory oxygen concentrator
US8020553B2 (en) * 2005-02-09 2011-09-20 Vbox, Incorporated Ambulatory oxygen concentrator containing a three phase vacuum separation system
US20060174875A1 (en) * 2005-02-09 2006-08-10 Vbox, Incorporated Ambulatory oxygen concentrator containing a power pack
US7121276B2 (en) * 2005-02-09 2006-10-17 Vbox, Incorporated Personal oxygen concentrator
US7954490B2 (en) 2005-02-09 2011-06-07 Vbox, Incorporated Method of providing ambulatory oxygen
US7604005B2 (en) 2005-02-09 2009-10-20 Vbox Incorporated Adsorbent cartridge for oxygen concentrator
US7866315B2 (en) 2005-02-09 2011-01-11 Vbox, Incorporated Method and apparatus for controlling the purity of oxygen produced by an oxygen concentrator
US7288189B2 (en) * 2005-02-11 2007-10-30 Bonifer Jeffery P Multi-faceted intake filter for an aquarium
KR100520904B1 (en) * 2005-02-16 2005-10-11 (주)엘티오투 The true form structure for oxygen occurrence equipment
US7686870B1 (en) 2005-12-29 2010-03-30 Inogen, Inc. Expandable product rate portable gas fractionalization system
KR100679175B1 (en) * 2006-01-26 2007-02-06 주식회사 옥서스 Gas concentration method and apparatus with sequential upper equalization and upper and lower complex equalization processes
US7771511B2 (en) * 2006-08-28 2010-08-10 Ric Investments, Llc Oxygen concentration system and method
US7588749B2 (en) * 2007-03-29 2009-09-15 Minimus Spine, Inc. Apparatus, method and system for delivering oxygen-ozone
US7722698B2 (en) 2008-02-21 2010-05-25 Delphi Technologies, Inc. Method of determining the purity of oxygen present in an oxygen-enriched gas produced from an oxygen delivery system
US8075676B2 (en) 2008-02-22 2011-12-13 Oxus America, Inc. Damping apparatus for scroll compressors for oxygen-generating systems
US8695600B2 (en) 2009-07-22 2014-04-15 Vbox, Incorporated Method of separating and distributing oxygen
US8500879B2 (en) * 2011-03-14 2013-08-06 Metran Co., Ltd. Oxygen concentrator
CN103418208B (en) * 2013-08-15 2015-07-22 湖北和远气体股份有限公司 Pressure equalizing control method for air purifier
US11247015B2 (en) 2015-03-24 2022-02-15 Ventec Life Systems, Inc. Ventilator with integrated oxygen production
US10315002B2 (en) 2015-03-24 2019-06-11 Ventec Life Systems, Inc. Ventilator with integrated oxygen production
US10773049B2 (en) 2016-06-21 2020-09-15 Ventec Life Systems, Inc. Cough-assist systems with humidifier bypass
CN107473185A (en) * 2017-09-30 2017-12-15 武汉美氧科技有限公司 The air inlet denitrogen system and its control method of a kind of oxygenerator
CA3100163A1 (en) 2018-05-13 2019-11-21 Samir Saleh AHMAD Portable medical ventilator system using portable oxygen concentrators
US11229763B2 (en) * 2018-12-05 2022-01-25 Aires Medical LLC Mechanical ventilator with oxygen concentrator
CN113776622B (en) * 2021-08-07 2024-06-25 中国船舶重工集团公司第七一九研究所 Automatic blowdown and liquid level measurement device of underwater dirt storage tank

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR840005356A (en) * 1982-07-27 1984-11-12 스즈끼 가나오 How to remove nitrogen gas from N₂ and CO, or a mixture of N₂, CO and CO
JPS63103805A (en) * 1986-10-20 1988-05-09 Nippon Sanso Kk Production of nitrogen by pressure swing adsorption process
JPS63107805A (en) * 1986-10-27 1988-05-12 Nippon Sanso Kk Nitrogen production method using pressure swing adsorption method
US5486226A (en) * 1992-12-09 1996-01-23 The Boc Group Plc Separation of gaseous mixtures

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3659399A (en) * 1970-06-29 1972-05-02 Air Technologies Inc Fractionation by adsorption
GB1449864A (en) * 1973-10-24 1976-09-15 Boc International Ltd Adsorption system
ZA811931B (en) * 1980-03-31 1982-05-26 African Oxygen Ltd Process and apparatus for the separation of gaseous mixture
US4349357A (en) * 1980-06-23 1982-09-14 Stanley Aviation Corporation Apparatus and method for fractionating air and other gaseous mixtures
US4376640A (en) * 1981-12-10 1983-03-15 Calgon Corporation Repressurization of pressure swing adsorption system
JP2683806B2 (en) * 1988-03-17 1997-12-03 住友精化株式会社 Concentrated oxygen recovery method
DE3830506A1 (en) * 1988-09-08 1990-03-15 Bergwerksverband Gmbh METHOD FOR THE EXTRACTION OF NITROGEN FROM OXYGEN AND NITROGEN-CONTAINING GAS MIXTURES BY MEANS OF PRESSURE-CHANGE ADDITIONING ON CARBON MOLECULAR SCREENS
US5137549A (en) * 1988-10-14 1992-08-11 Vbm Corporation Two stage super-enriched oxygen concentrator
EP0380723B1 (en) * 1989-02-01 1994-04-06 Kuraray Chemical Co., Ltd. Process for separating nitrogen gas by pressure swing adsorption system
US5183483A (en) * 1991-08-21 1993-02-02 Healthdyne, Inc. Pneumatic circuit control for pressure swing adsorption systems
US5258056A (en) * 1991-09-27 1993-11-02 The Boc Group, Inc. PSA system with product turndown and purity control
EP0609620B1 (en) * 1993-01-30 1999-02-10 The BOC Group plc Gas separation
US5711787A (en) * 1995-11-22 1998-01-27 Praxair Technology, Inc. Oxygen recovery pressure swing adsorption process
GB9524721D0 (en) * 1995-12-02 1996-01-31 Normalair Garrett Ltd Molecular sieve type gas separation apparatus
US5858063A (en) * 1997-06-03 1999-01-12 Litton Systems, Inc. Oxygen concentrator with beds' duty cycle control and self-test
US5871564A (en) * 1997-06-16 1999-02-16 Airsep Corp Pressure swing adsorption apparatus
US6514319B2 (en) * 1999-12-09 2003-02-04 Questair Technologies Inc. Life support oxygen concentrator
US6558451B2 (en) * 2000-05-10 2003-05-06 Airsep Corporation Multiple bed pressure swing adsorption method and apparatus
US6527831B2 (en) * 2000-12-29 2003-03-04 Praxair Technology, Inc. Argon purification process
US6527830B1 (en) * 2001-10-03 2003-03-04 Praxair Technology, Inc. Pressure swing adsorption process for co-producing nitrogen and oxygen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR840005356A (en) * 1982-07-27 1984-11-12 스즈끼 가나오 How to remove nitrogen gas from N₂ and CO, or a mixture of N₂, CO and CO
JPS63103805A (en) * 1986-10-20 1988-05-09 Nippon Sanso Kk Production of nitrogen by pressure swing adsorption process
JPS63107805A (en) * 1986-10-27 1988-05-12 Nippon Sanso Kk Nitrogen production method using pressure swing adsorption method
US5486226A (en) * 1992-12-09 1996-01-23 The Boc Group Plc Separation of gaseous mixtures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234531A1 (en) * 2022-05-31 2023-12-07 한온시스템 주식회사 Oxygen generator
KR20240070143A (en) * 2022-11-14 2024-05-21 (주) 선바이오투 System and method for refining high purity
WO2024106584A1 (en) * 2022-11-14 2024-05-23 (주)선바이오투 High-purity purification system and high-purity purification method
KR102730651B1 (en) 2022-11-14 2024-11-15 (주)선바이오투 System and method for refining high purity

Also Published As

Publication number Publication date
US6811590B2 (en) 2004-11-02
KR20020048327A (en) 2002-06-22
US20030192431A1 (en) 2003-10-16

Similar Documents

Publication Publication Date Title
KR100491684B1 (en) Gas concentrating Method and apparatus for use of Pressure Swing Adsorption
JP3492869B2 (en) Single bed pressure swing adsorption method for oxygen recovery from air
US5137549A (en) Two stage super-enriched oxygen concentrator
EP0758625B1 (en) Method of recovering oxygen-rich gas
JP4895467B2 (en) Oxygen concentration method and oxygen concentration apparatus
KR200287409Y1 (en) Gas concentrating apparatus for use of Pressure Swing Adsorption
CN117942706A (en) Device system and method for preparing oxygen by rapid variable-pressure vacuum adsorption
JP3867229B2 (en) Gas separation device
JP2006015221A (en) Gas separation device
JPH11267439A (en) Gas separation and gas separator for performing same
JPH01184016A (en) gas separation equipment
KR100619290B1 (en) Medium and low purity gas concentrator
KR100715532B1 (en) Oxygen generator with auxiliary oxygen generator
JP3895037B2 (en) Low pressure oxygen enrichment method
KR200296848Y1 (en) oxygen concentrator
KR100715016B1 (en) Medium and low purity oxygen concentrator
JPH10194708A (en) Oxygen enricher
KR100614850B1 (en) Low concentration oxygen concentration method
KR102616452B1 (en) Moisture and Nitrogen Adsorption Integrated PSA Oxygen Generator
KR200413456Y1 (en) Medium and low purity oxygen concentrator
KR100710288B1 (en) Oxygen generator
JPH0731826A (en) Gas concentrator
JPH11347336A (en) Small-size gas separation device
JP5112839B2 (en) Oxygen concentrator
KR100360835B1 (en) A continuous oxygen concentrator with 3 tower-2 compressor and the method thereof

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20020412

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20040623

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20041022

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20040623

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

AMND Amendment
J201 Request for trial against refusal decision
PJ0201 Trial against decision of rejection

Patent event date: 20041122

Comment text: Request for Trial against Decision on Refusal

Patent event code: PJ02012R01D

Patent event date: 20041022

Comment text: Decision to Refuse Application

Patent event code: PJ02011S01I

Appeal kind category: Appeal against decision to decline refusal

Decision date: 20050414

Appeal identifier: 2004101005450

Request date: 20041122

PB0901 Examination by re-examination before a trial

Comment text: Amendment to Specification, etc.

Patent event date: 20041122

Patent event code: PB09011R02I

Comment text: Request for Trial against Decision on Refusal

Patent event date: 20041122

Patent event code: PB09011R01I

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20050120

Patent event code: PE09021S01D

B701 Decision to grant
PB0701 Decision of registration after re-examination before a trial

Patent event date: 20050414

Comment text: Decision to Grant Registration

Patent event code: PB07012S01D

Patent event date: 20041231

Comment text: Transfer of Trial File for Re-examination before a Trial

Patent event code: PB07011S01I

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20050518

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20050519

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
J204 Request for invalidation trial [patent]
PJ0204 Invalidation trial for patent

Patent event date: 20060213

Comment text: Request for Trial

Patent event code: PJ02042R01D

Patent event date: 20050518

Comment text: Registration of Establishment

Patent event code: PJ02041E01I

Appeal kind category: Invalidation

Request date: 20060213

Decision date: 20060630

Appeal identifier: 2006100000346

J301 Trial decision

Free format text: TRIAL DECISION FOR INVALIDATION REQUESTED 20060213

Effective date: 20060630

PJ1301 Trial decision

Patent event code: PJ13011S05D

Patent event date: 20060703

Comment text: Trial Decision on Invalidation (Patent, Utility Model, Industrial Design)

Appeal kind category: Invalidation

Request date: 20060213

Decision date: 20060630

Appeal identifier: 2006100000346

J2X1 Appeal (before the patent court)

Free format text: INVALIDATION

PJ2001 Appeal

Patent event date: 20060703

Comment text: Trial Decision on Invalidation (Patent, Utility Model, Industrial Design)

Patent event code: PJ20011S05I

Appeal kind category: Invalidation

Decision date: 20070510

Appeal identifier: 2006200006709

Request date: 20060731

EXTG Ip right invalidated
PC2102 Extinguishment
J302 Written judgement (patent court)

Free format text: JUDGMENT (PATENT COURT) FOR INVALIDATION REQUESTED 20060731

Effective date: 20070510

PJ1302 Judgment (patent court)

Patent event date: 20070625

Comment text: Written Judgment (Patent Court)

Patent event code: PJ13021S01D

Request date: 20060731

Decision date: 20070510

Appeal identifier: 2006200006709

Appeal kind category: Invalidation