KR100530369B1 - The injection system of nanoparticles bound antitumor agents - Google Patents
The injection system of nanoparticles bound antitumor agents Download PDFInfo
- Publication number
- KR100530369B1 KR100530369B1 KR10-2003-0031239A KR20030031239A KR100530369B1 KR 100530369 B1 KR100530369 B1 KR 100530369B1 KR 20030031239 A KR20030031239 A KR 20030031239A KR 100530369 B1 KR100530369 B1 KR 100530369B1
- Authority
- KR
- South Korea
- Prior art keywords
- hcl
- formula
- structural formula
- anticancer
- compound represented
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B33/00—Constructional parts, details or accessories not provided for in the other groups of this subclass
- G11B33/02—Cabinets; Cases; Stands; Disposition of apparatus therein or thereon
- G11B33/04—Cabinets; Cases; Stands; Disposition of apparatus therein or thereon modified to store record carriers
- G11B33/0405—Cabinets; Cases; Stands; Disposition of apparatus therein or thereon modified to store record carriers for storing discs
- G11B33/0411—Single disc boxes
- G11B33/0422—Single disc boxes for discs without cartridge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D33/00—Details of, or accessories for, sacks or bags
- B65D33/16—End- or aperture-closing arrangements or devices
- B65D33/25—Riveting; Dovetailing; Screwing; using press buttons or slide fasteners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D43/00—Lids or covers for rigid or semi-rigid containers
- B65D43/14—Non-removable lids or covers
- B65D43/16—Non-removable lids or covers hinged for upward or downward movement
- B65D43/162—Non-removable lids or covers hinged for upward or downward movement the container, the lid and the hinge being made of one piece
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
Abstract
본 발명은 항암물질에 나노입자를 결합시킨 주사 제형의 약물 시스템에 관한 것으로서, 더욱 상세하게는 기존의 항암물질에 실리카 나노입자를 결합시킨 유효약물을 합성하여 이를 암세포에 주사함으로써 실리카 나노입자에 의해 항암물질이 지지되어 정상세포에 약물이 확산되는 것을 방지하므로 항암 활성을 최대로 발휘할 수 있는 약물 시스템 및 항암제 조성물에 관한 것이다. The present invention relates to a drug system of an injection formulation in which nanoparticles are coupled to an anticancer substance, and more particularly, by synthesizing an effective drug combining silica nanoparticles to an existing anticancer substance and injecting the same into a cancer cell by silica nanoparticles. The present invention relates to a drug system and an anticancer composition capable of maximizing anticancer activity since the anticancer substance is supported to prevent the drug from being diffused into normal cells.
Description
본 발명은 항암물질에 나노입자를 결합시킨 주사 제형의 약물 시스템에 관한 것으로서, 더욱 상세하게는 기존의 항암물질에 실리카 나노입자를 결합시킨 유효약물을 합성하여 이를 암세포에 주사함으로써 실리카 나노입자에 의해 항암물질이 지지되어 정상세포에 약물이 확산되는 것을 방지하므로 항암 활성을 최대로 발휘할 수 있는 약물 시스템 및 항암제 조성물에 관한 것이다. The present invention relates to a drug system of an injection formulation in which nanoparticles are coupled to an anticancer substance, and more particularly, by synthesizing an effective drug combining silica nanoparticles to an existing anticancer substance and injecting the same into a cancer cell by silica nanoparticles. The present invention relates to a drug system and an anticancer composition capable of maximizing anticancer activity since the anticancer substance is supported to prevent the drug from being diffused into normal cells.
기존의 항암제는 종양세포 부위에 투여하여도 즉시 약물이 확산되어 다른 정상세포에도 영향을 주어 여러 가지 부작용을 유발시킬 수 있다. 따라서, 최근에는 이 부작용을 해결하기 위하여 항암제 전달 시스템 등이 개발되어 고분자를 혼합하여 사용함으로써 암 부위 외 다른 부위로의 약물 확산을 막아 종래 항암제의 여러 부작용을 줄이는 특허가 공개되어 있으나[국내 특허 공개번호 제 2002-23441호], 이온강도, pH에 대한 민감성 및 불안정성의 문제점이 있다.Existing anticancer drugs can spread to other tumor cells immediately even when administered to tumor cell sites, causing various side effects. Therefore, recently, anti-cancer drug delivery systems, etc. have been developed to solve this side effect, and use of a mixture of polymers prevents the spread of drugs to areas other than the cancer site, thereby reducing various side effects of conventional anti-cancer drugs. No. 2002-23441], ionic strength, pH sensitivity and instability problems.
또한, 리포좀을 이용하여 항암제를 전달하는 방법도 이미 공지되어 있으나[국내 특허 공개 번호 제 2001-24232호], 암세포뿐만 아니라 정상세포에도 공격하여 항암 활성이 최대로 발휘되지 못하는 문제점이 있다.In addition, a method for delivering an anticancer agent using liposomes is already known [Domestic Patent Publication No. 2001-24232], but there is a problem that anticancer activity is not exerted to the maximum by attacking not only cancer cells but also normal cells.
이에, 본 발명자들은 상기와 같은 문제점을 해결하기 위하여 연구한 결과, 기존의 항암물질에 실리카 나노입자를 결합시킨 유효약물을 치료하고자 하는 암세포에 주사하여 실리카 나노입자에 의해 항암물질이 고정되어 정상세포에 약물이 확산되는 것을 방지하여 항암 활성을 최대로 발휘할 수 있도록 약물 시스템을 개발함으로써 본 발명을 완성하게 되었다.Thus, the present inventors have studied to solve the above problems, as a result of injection into cancer cells to treat the effective drug to combine the silica nanoparticles with the existing anticancer substance by the anticancer substance is fixed by the silica nanoparticles normal cells The present invention has been completed by developing a drug system to prevent the drug from spreading to maximize the anticancer activity.
따라서, 본 발명은 항암효과가 우수한 새로운 주사 제형의 약물 시스템 및 이의 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a drug system of a new injection formulation having excellent anticancer effect and a method for preparing the same.
본 발명은 다음 구조식 1로 표시되는 바와 같이, 항암활성을 가지는 항암물질부와 항암물질이 암세포에 고정되도록 지지하는 특성이 있어 항암활성을 최대로 발휘하도록 하는 세포부착부 및 상기 항암물질부와 세포부착부를 연결하는 가교부로 이루어진 주사 제형의 약물 시스템 및 이의 제조방법을 그 특징으로 한다.The present invention, as shown in the following Structural Formula 1, the cell attachment portion and the anti-cancer substance portion and the cell to exhibit the anti-cancer activity to maximize the anti-cancer substance portion and the anti-cancer substance is fixed to the cancer cells having anticancer activity It is characterized by a drug system of the injection formulation consisting of a crosslinking portion connecting the attachment portion and a method for preparing the same.
[구조식 1][Formula 1]
또한, 항암 물질부를 제외한 다음 구조식 4로 표시되는 화합물로 이루어진 약물 시스템 및 이의 제조방법을 포함한다.In addition, the drug system consisting of the compound represented by the following structural formula 4 except for the anti-cancer substance portion and a method for preparing the same.
[구조식 4][Structure 4]
이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.
본 발명에 따른 약물 시스템은 크게 세 부분으로 나눌 수 있으며, 구조는 다음 구조식 1과 같다.Drug system according to the present invention can be divided into three parts, the structure is shown in the following structural formula (1).
구조식 1Structural Formula 1
상기 구조식 1과 같이, 나노입자로 구성된 세포부착부, 가교부 및 항암물질부로 나누어지며, 가교부는 세포부착부와 항암물질 부분을 제외한 부분으로 암세포로 유효약물이 전달되기까지 상기 나노입자와 항암물질을 연결하는 가교역할을 한다. 이는 항암물질내의 기능기에 따라 달라지며, 화학식은 (X는 O, NH, S, 또는 COO를 나타낸다)이다. 이때, 세포부착부는 실리카, 알루미나, TiO2 중에서 선택된 것으로, 5 ∼ 900 nm인 것이 바람직하며, 그 이유는 나노입자의 크기가 5 nm 미만이면 세포 내에서 나노입자가 이동할 위험이 있고 900 nm를 초과하면 너무 성글게 세포 내에 존재하기 때문이다.As shown in Structural Formula 1, it is divided into a cell attachment part, a crosslinking part, and an anticancer material part consisting of nanoparticles. It acts as a crosslinking link. It depends on the functional groups in the anticancer substance, (X represents O, NH, S, or COO). In this case, the cell attachment part is selected from silica, alumina, and TiO 2 , preferably 5 to 900 nm, because when the size of the nanoparticles is less than 5 nm, there is a risk of movement of the nanoparticles in the cell and exceeds 900 nm. This is because it is too sparsely present in the cell.
상기 약물 시스템의 제조방법을 상세히 설명하면 다음과 같다.The preparation method of the drug system is described in detail as follows.
우선, 하이드록시기, 아미노기, 티올기 및 카르복시기 중에서 선택된 활성기가 존재하는 항암물질과, 3-(트리에톡시실릴)프로필 이소시아네이트를 반응시켜 다음 구조식 2로 표시되는 화합물을 합성한다. 이때, 항암물질로는 우라실(Uracil), 5-플루오로우라실(5-Fluorouracil), 테가퍼(Tegafur), 비노엘바인 비타르트레이트(Vinorelbine bitartrate), 메토트렉세이트(Methotrexate), 카르보플라틴(Carboplatine), 시스플라틴(Cisplatine), 옥살리플라틴(Oxaliplatine), 시토신 아라비노사이드ㆍHCl(cytocine arabinosideㆍHCl), 미톡산트론ㆍHCl(MitoxantroneㆍHCl), 타목시펜 시트레이트(Tamoxifen Citrate), 니무스틴ㆍHCl(NimustineㆍHCl), 다우노루비신ㆍHCl(DaunorubicinㆍHCl), 에피루비신ㆍHCl(EpirubicinㆍHCl), 아이다루비신ㆍHCl(IdarubicinㆍHCl), 독소루비신ㆍHCl(DoxorubicineㆍHCl), 독시플루리딘(Doxifludine), 다카르바진(Dacarbazine), 티오구아닌(Thioguanine), 포르메스탄(Formestane), 레우프로렐린 아세테이트(Leuprorelin acetate), 레우프롤라이드(Leuprolide). 클로람부실(Chlorambucil), 부수판(Busufan), 메게스테롤 아세테이트(Megesterol acetate), 트레티노인(Tretinoin), 빈블라스틴 설페이트(Vinblastine sulfate), 빈크리스틴 설페이트(Vincristine sulfate), 테니포사이드(Teniposide), 에토포사이드ㆍHCl(EtoposideㆍHCl) 카르무스틴(Carmustine(BCNU)), 로무스틴(Lomustine(CCNU)), 에스트라무스틴(Estramustine), 라니무스틴(Ranimustine), 사이타라빈(Cytarabine), 사이클로포스파마이드ㆍHCl(CyclophosphamideㆍHCl), 비칼타마이드(Bicaltamide), 아이포스파마이드(Ifosfamide), 플루타마이드(Flutamide), 멜팔란(Melphalan), 도세탁셀(Docetaxel), 파실리탁셀(Paclitaxel), 닥티모마이신(Dactimomycin), 머캡토퓨린(Mercaptopurine), 6-머캡토퓨린(6-Mercaptopurine), 알데스루킨(Aldesleukin), 히드록시우레아(Hydroxyurea), 토포테칸ㆍHCl(TopotecanㆍHCl), 알트레타민(Altretamine), 메드록시프로게스테론 아세테이트(Medroxyprogesterone acetate), 폴리사카라이드 K(Polysaccharide K), 폴리사카라이드 펠리누스 린테우스(Polysaccharide phellinus Linteus), 폴리펩타이드(Polypeptide), 테가푸르 + 우라실 머스타드(Tegafur + Uracil Mustard), BCG 스트레인 타이스(BCG strain Tice), 인터페론 감마(Interferon γ), DNA 재조합 인터페론 알파(DNA recombinant Interferon α), L-아스파라지네이즈(L-Asparaginase), 베툴린산(Betulinic acid), 캄프토데신(Camptothecin), 콜키세인(Colchiceine), 아이리노테칸(Irinotecan), 라파콜(Lapachol), 포도필로톡신(Podophyllotoxin), 탁솔(Taxol), 테니포사이드(Teniposide), 빈블라스틴(Vinblastine), 빈크리스틴(Vincristine) 및 에토포사이드(Etoposide) 등이 바람직하다.First, a compound represented by the following structural formula 2 is synthesized by reacting an anticancer substance having an active group selected from a hydroxyl group, an amino group, a thiol group, and a carboxy group with 3- (triethoxysilyl) propyl isocyanate. At this time, as an anticancer substance, Uracil, 5-Fluorouracil, Tegafur, Vinoelbine bitartrate, Methotrexate, Carboplatine ), Cisplatin, Oxaliplatine, Cytosine arabinoside HCl, Mitoxantrone HCl, Tamoxifen Citrate, Nimustine HCl, Nimustine HCl), DaunorubicinHCl (DaunorubicinHCl), EpirubicinHCl (EpirubicinHCl), IdarubicinHCl, IdarubicinHCl, DoxorubicinHCl (DoxorubicineHCl), Doxyfluidine (Doxifludine), Dacarbazine, Thioguanine, Formestane, Leuprorelin acetate, Leuprolide. Chlorambucil, Busufan, Megesterol acetate, Tretinoin, Vinblastine sulfate, Vincristine sulfate, Tenniposide, Eto Ectoside HCl Carmustine (BCNU), Lomustine (CCNU), Estramustine, Ranimustine, Cytarabine, Cyclophos Pyamide-HCl (Cyclophosphamide / HCl), Bicaltamide, Iphosamide (Ifosfamide), Flutamide, Melphalan, Docetaxel, Pacitaxel, Paclitaxel, Doc Dactimomycin, Mercaptopurine, 6-Mercaptopurine, Aldesleukin, Hydroxyurea, Topotecan HCl, Altre Altretamine, Medroxyprogesterone Acetate (Medrox) yprogesterone acetate, Polysaccharide K, Polysaccharide Phellinus Linteus, Polypeptide, Tegafur + Uracil Mustard, BCG strain Tice, Interferon γ, DNA recombinant Interferon alpha, L-Asparaginase, Betulinic acid, Camptothecin, Colchiceine ), Irinotecan, Lapachol, Ladochol, Podophyllotoxin, Taxol, Teneniposide, Vinblastine, Vincristine and Etoposide Etc. are preferable.
[구조식 2][Formula 2]
상기 구조식 2에서, X는 O, NH, S, 또는 COO를 나타낸다.In Formula 2, X represents O, NH, S, or COO.
이렇게 합성된 화합물(구조식 2로 표시되는 화합물)에 세포부착용 나노입자를 형성시키기 위해 물을 첨가 반응시켜 다음 구조식 3으로 표시되는 화합물을 합성함으로써 약물 시스템을 제조한다[반응식 1 및 반응식 2 참조].The drug system is prepared by synthesizing the compound represented by the following Structural Formula 3 by adding water to the compound synthesized as described above (compound represented by Structural Formula 2) to form nanoparticles for cell adhesion (see Scheme 1 and Scheme 2).
또한, 상기 구조식 2로 표시되는 화합물을 합성한 후 이 화합물과 테트라에톡시실란을 1 : 1 몰비로 다음 구조식 3으로 표시되는 화합물을 합성할 수 있으며 이때 구조식 3으로 표시되는 화합물을 암세포에 직접 주사하면 나노입자에 의해 항암물질이 암세포에 고정된다.In addition, after synthesizing the compound represented by the formula 2 and the compound and tetraethoxysilane in a 1: 1 molar ratio can be synthesized the compound represented by the following formula 3, wherein the compound represented by the formula 3 directly injected into cancer cells The anti-cancer substance is fixed to cancer cells by nanoparticles.
구조식 3Structural Formula 3
상기 구조식 3에서, X는 O, NH, S, 또는 COO를 나타낸다.In Structural Formula 3, X represents O, NH, S, or COO.
상기 반응식 1의 두 번째 반응단계에서 항암물질이 결합된 트리에톡시실린 물질은 물과 반응하여 항암물질이 결합된 나노입자를 형성하는데, 이때 물의 양을 1 ∼ 30 몰 사이에서 조절함으로써 나노입자의 크기를 5 ∼ 900 nm로 조절할 수 있다.In the second reaction step of Scheme 1, the triethoxysilin material in which the anticancer substance is bound reacts with water to form nanoparticles in which the anticancer substance is bound, wherein the amount of water is controlled between 1 and 30 moles of nanoparticles. The size can be adjusted from 5 to 900 nm.
또한, 상기 반응식 2의 두 번째 반응단계에서 세포부착용 나노입자를 형성시키기 위해 사용되는 용매로 테트라에톡시실란, 아세토니트릴, 디메틸설폭사이드 등이 이용되며, 또한 반응물질로 물이 이용되는데, 상기 구조식 2로 표시되는 화합물과 테트라에톡시실란의 비율과 물의 양을 각각 1 ~ 30몰 사이에서 조절함으로써 5 ~ 900 nm 크기의 나노입자를 만들 수 있다. 상기 반응 촉매로서 NH4OH 또는 산을 사용할 수 있으며, 이때 사용되는 산으로는 CH3COOH 등 약산이 바람직하다. 그러나, 이러한 촉매 없이도 실리카 나노입자가 서서히 형성된다.In addition, tetraethoxysilane, acetonitrile, dimethyl sulfoxide, and the like are used as a solvent used to form the cell adhesion nanoparticles in the second reaction step of Scheme 2, and water is used as a reaction material. By controlling the ratio of the compound represented by 2 and the tetraethoxysilane and the amount of water, respectively, between 1 and 30 moles, nanoparticles having a size of 5 to 900 nm can be produced. NH 4 OH or an acid may be used as the reaction catalyst, and as the acid used, a weak acid such as CH 3 COOH is preferable. However, even without this catalyst, silica nanoparticles are slowly formed.
한편, 상기 구조식 1의 약물 시스템에서 항암물질부를 제외한 다음 구조식 4의 화합물을 다음 반응식 3과 같이, 3-(트리에톡시실릴)프로필 이소시아네이트를 물과 직접 반응시켜 -CH2CH2CH2NHCOOH 기가 존재하는 실리카 나노입자를 만들 수 있으며 나노입자의 크기는 물의 몰수에 따라 5 ∼ 900 nm로 조절할 수 있다.Meanwhile, in the drug system of Formula 1, except for the anticancer substance, the compound of Formula 4 is reacted with 3- (triethoxysilyl) propyl isocyanate directly with water to form a -CH 2 CH 2 CH 2 NHCOOH group as shown in Scheme 3 below. Silica nanoparticles can be produced and the size of the nanoparticles can be adjusted to 5 to 900 nm depending on the number of moles of water.
[구조식 4][Structure 4]
이렇게 제조된 약물 시스템은 기존의 항암물질에 나노입자를 함께 결합시켜 암세포에 직접 주사시켜 실리카 나노입자에 의해 항암물질이 고정되어 정상세포에 약물이 확산되는 것을 방지하여 항암효과를 극대화시킨 새로운 약물 시스템으로, 일반적인 암세포 성장 억제에 매우 유용함을 확인하였다. 또한, 항암물질부를 제외한 약물 시스템 역시 항암 효과를 나타냄을 확인하였다.The drug system thus prepared is a new drug system that maximizes the anticancer effect by combining nanoparticles with existing anticancer substances and injecting them directly into cancer cells, thereby preventing the diffusion of drugs into normal cells by fixing the anticancer substances by silica nanoparticles. As a result, it was confirmed that it is very useful for suppressing general cancer cell growth. In addition, it was confirmed that the drug system except for the anticancer substance also shows anticancer effects.
상기 유효성분의 유효투여량은 환자의 나이, 신체적 조건, 몸무게 등에 의해 다양화될 수 있지만, 일반적으로 1 내지 100 mg/kg(몸무게)/1일 범위 내에서 투여된다. 그리고, 1일 유효투여량 범위 내에서 하루에 한번 또는 하루에 여러 번 나누어 투여한다.The effective dose of the active ingredient may vary depending on the age, physical condition, weight, etc. of the patient, but is generally administered within the range of 1 to 100 mg / kg (weight) / day. In addition, the dose is administered once a day or divided several times a day within the effective dosage range per day.
삭제delete
이하, 본 발명은 다음 실시예에 의거하여 더욱 상세히 설명하겠는바, 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples, but the present invention is not limited thereto.
실시예 1: 실리카 나노입자의 합성(산성용액에서)Example 1 Synthesis of Silica Nanoparticles (in Acid Solution)
테트라에톡시실란(0.1 mole)을 무수에탄올(40 ㎖)에 녹인 후 0.1 N HCl(5.0 ㎖)을 가한 후 24시간 38 ℃로 가열한 후 상온으로 냉각하였다. 진한 염산(12N) 10 ㎖을 다시 가한 후 24시간 교반하였다. 용액을 냉각한 후 원심분리기(10000 rpm)로 나노입자를 수집하였다[수율 90% >, BET = 1234 m2/g, SEM = 7∼20 nm].Tetraethoxysilane (0.1 mole) was dissolved in anhydrous ethanol (40 mL), 0.1 N HCl (5.0 mL) was added thereto, and then heated to 38 ° C. for 24 hours, followed by cooling to room temperature. 10 ml of concentrated hydrochloric acid (12N) was added again, followed by stirring for 24 hours. After cooling the solution, the nanoparticles were collected by centrifugation (10000 rpm) [yield 90%>, BET = 1234 m 2 / g, SEM = 7-20 nm].
실시예 2: 실리카 나노입자의 합성(중성용액에서)Example 2 Synthesis of Silica Nanoparticles (in Neutral Solution)
테트라에톡시실란(0.1 mole)을 무수에탄올(40 ㎖)에 녹인 후 증류수(5.0 ㎖)을 가한 후 24시간 38 ℃로 가열한 후 상온으로 냉각하였다. 용액을 냉각한 후 원심분리기(10000 rpm)로 나노입자를 수집하였다[수율 90% >, BET = 1234 m2/g, SEM = 7∼20 nm].Tetraethoxysilane (0.1 mole) was dissolved in anhydrous ethanol (40 mL), distilled water (5.0 mL) was added thereto, and then heated to 38 ° C. for 24 hours, followed by cooling to room temperature. After cooling the solution, the nanoparticles were collected by centrifugation (10000 rpm) [yield 90%>, BET = 1234 m 2 / g, SEM = 7-20 nm].
실시예 3: 실리카 나노입자의 합성(염기성용액에서)Example 3: Synthesis of Silica Nanoparticles (in Basic Solution)
수산화암모늄(15 ㎖,29%), 증류슈(129 ㎖), 무수에탄올(330 ㎖)을 서로 녹인 다음 3-(트리에톡시실릴)프로필 이소 시아네이트(0.1 mole)를 즉시 위 용액에 가한 다음 상온에서 24시간 교반하였다. 그런 다음 테트라에톡시실란(0.1 mole)을 위 용액에 가한 다음 상온에서 저어주면 7 ∼ 20 nm의 입자가 형성되었다[수율 90% >, SEM = 7∼20 nm].Ammonium hydroxide (15 mL, 29%), distilled shoe (129 mL), anhydrous ethanol (330 mL) were dissolved in each other, and 3- (triethoxysilyl) propyl isocyanate (0.1 mole) was immediately added to the solution. Stir at room temperature for 24 hours. Then, tetraethoxysilane (0.1 mole) was added to the above solution and then stirred at room temperature to form particles of 7-20 nm [yield 90%>, SEM = 7-20 nm].
실시예 4: 항암제(히드록시우레아)가 결합된 실리카 나노입자의 합성Example 4 Synthesis of Silica Nanoparticles Containing Anticancer Agent (Hydroxyurea)
3-(트리에톡시실릴)프로필 이소 시아네이트(0.025 mole)을 무수 THF(20 ㎖)에 녹인 후 상온에서 교반하면서, 히드록시우레아(0.025 mole)을 무수 THF에 녹인 후, 위 반응물질에 적가하면서 상온에서 교반하였다. 약 38 ℃에서 24시간 교반하여 상기 구조식 2의 물질을 얻었다(수율 90%>). 그 후 증류수(23 ㎖), THF(25 ㎖)을 가한 다음, 상온에서 교반하여 상기 구조식 3의 물질을 합성하였다[수율 90% >, SEM = 25 nm, IR(KBr): O-H(3400 cm-1, s), sat.C-H(2900 cm-1, m), C=O(1700 cm-1, s)].After dissolving 3- (triethoxysilyl) propyl isocyanate (0.025 mole) in anhydrous THF (20 mL) and stirring at room temperature, hydroxyurea (0.025 mole) was dissolved in anhydrous THF and added dropwise to the above reaction material. While stirring at room temperature. Stirring at about 38 ℃ for 24 hours to obtain the material of formula 2 (yield 90%>). Then distilled water (23 ㎖), THF (25 ㎖) the added, then the mixture was stirred at room temperature to synthesize the material of the Structure 3 [yield: 90%>, SEM = 25 nm , IR (KBr): OH (3400 cm - 1 , s), sat. CH (2900 cm −1 , m), C═O (1700 cm −1 , s)].
실시예 5: 항암제(6-머캡토퓨린)가 결합된 실리카 나노입자의 합성Example 5 Synthesis of Silica Nanoparticles Conjugated with Anticancer Agent (6-Mercaptopurine)
3-(트리에톡시실릴)프로필 이소 시아네이트(0.04 mole)을 아세톤(35 ㎖)에 녹인 후 상온에서 교반하면서, 6-머캡토퓨린·H2O(0.04 mole)을 아세톤에 녹인 후, 위 반응물질에 적가하면서 상온에서 교반하였다. 약 100 ℃에서 24시간 교반하여 상기 구조식 2의 물질을 얻었다(수율 90% >). 그 후 증류수(18 ㎖), 아세톤(20 ㎖)을 가한 다음, 상온에서 교반하여 상기 구조식 3의 물질을 합성하였다[수율 90% >, SEM = 50 nm, IR(KBr): N-H(3400 cm-1, s), sat.C-H(2900 cm-1, s), C=O(1600 cm-1, s)].After dissolving 3- (triethoxysilyl) propyl isocyanate (0.04 mole) in acetone (35 ml) and stirring at room temperature, 6-mercaptopurine-H 2 O (0.04 mole) was dissolved in acetone, and then Stir at room temperature with dropwise addition to the reaction. Stirring at about 100 ℃ for 24 hours to obtain the material of formula 2 (yield 90%>). Distilled water (18 mL) and acetone (20 mL) were then added, followed by stirring at room temperature to synthesize the material of Structural Formula 3 [yield 90%>, SEM = 50 nm, IR (KBr): NH (3400 cm −). 1 , s), sat. CH (2900 cm −1 , s), C═O (1600 cm −1 , s)].
실시예 6: 항암제(시토신 아라비노사이드·HCl)가 결합된 실리카 나노입자의 합성Example 6: Synthesis of Silica Nanoparticles Conjugated with Anticancer Agent (Cytocin Arabinoside-HCl)
3-(트리에톡시실릴)프로필 이소 시아네이트(0.0036 mole)을 DMSO(20 ㎖)에 녹인 후 상온에서 교반하면서, 시토신 아라비노사이드·HCl(0.0036 mole)을 DMSO에 녹인 후, 위 반응물질에 적가하면서 상온에서 교반하였다. 약 100 ℃에서 24시간 교반하여 상기 구조식 2의 물질을 얻었다(수율 90% >). 그 후 증류수(3.2 ㎖), DMSO(10 ㎖)을 가한 다음, 테트라에톡시실란(0.0036 mole)을 가한 후 상온에서 교반하여 상기 구조식 3의 물질을 합성하였다[수율 90% >, SEM = bulk, IR(KBr): N-H(3400 cm-1, m), sat.C-H(2900 cm-1, m)].After dissolving 3- (triethoxysilyl) propyl isocyanate (0.0036 mole) in DMSO (20 mL) and stirring at room temperature, cytosine arabinoside-HCl (0.0036 mole) was dissolved in DMSO, Stir at room temperature with dropwise addition. Stirring at about 100 ℃ for 24 hours to obtain the material of formula 2 (yield 90%>). Distilled water (3.2 mL) and DMSO (10 mL) were added, followed by addition of tetraethoxysilane (0.0036 mole), followed by stirring at room temperature to synthesize the material of Structural Formula 3 [yield 90%>, SEM = bulk, IR (KBr): NH (3400 cm −1 , m), sat. CH (2900 cm −1 , m)].
실시예 7: 항암제(시클로포스포마이드·HCl)가 결합된 실리카 나노입자의 합성Example 7 Synthesis of Silica Nanoparticles Conjugated with Anticancer Agent (Cyclophosphonide-HCl)
3-(트리에톡시실릴)프로필 이소 시아네이트(0.02 mole)을 DMSO(20 ㎖)에 녹인 후 상온에서 교반하면서, 시클로포스파마이드·H2O(0.01 mole)을 DMSO에 녹인 후, 위 반응물질에 적가하면서 상온에서 교반하였다. 약 80 ℃에서 24시간 교반하여 상기 구조식 2의 물질을 얻었다(수율 90% >). 그 후 증류수(9 ㎖), DMSO(10 ㎖)을 가한 다음, 상온에서 교반하여 상기 구조식 3의 물질을 합성하였다[수율 90% >, SEM = 25 nm, IR(KBr): N-H(3400 cm-1, m), sat.C-H(2900 cm-1, m)].After dissolving 3- (triethoxysilyl) propyl isocyanate (0.02 mole) in DMSO (20 ml) and stirring at room temperature, cyclophosphamide-H 2 O (0.01 mole) was dissolved in DMSO, followed by reaction Stir at room temperature with dropwise addition to the material. Stirring at about 80 ℃ for 24 hours to obtain the material of formula 2 (yield 90%>). Distilled water (9 mL) and DMSO (10 mL) were then added, followed by stirring at room temperature to synthesize the material of Structural Formula 3 [yield 90%>, SEM = 25 nm, IR (KBr): NH (3400 cm −). 1 , m), sat. CH (2900 cm −1 , m)].
실시예 8: 항암제(우라실)가 결합된 실리카 나노입자의 합성Example 8 Synthesis of Silica Nanoparticles Containing Anticancer Agent (Uracil)
3-(트리에톡시실릴)프로필 이소 시아네이트(0.05 mole)을 DMSO(30 ㎖)에 녹인 후 상온에서 교반하면서, 우라실(0.05 mole)을 DMSO에 녹인 후, 위 반응물질에 적가하면서 상온에서 교반하였다. 약 80 ℃에서 교반하여 상기 구조식 2의 물질을 얻었다(수율 90% >). 그 후 증류수(18 ㎖), DMSO(20 ㎖)을 가한 다음, 상온에서 교반하여 상기 구조식 3의 물질을 합성하였다[수율 90% >, SEM = 25nm, IR(KBr): N-H(3100 cm-1, s), sat.C-H(2900 cm-1, s), C=O(1700 cm-1, s), C=N(1650 cm-1, s)].Dissolve 3- (triethoxysilyl) propyl isocyanate (0.05 mole) in DMSO (30 mL) and stir at room temperature, while dissolving uracil (0.05 mole) in DMSO and stir at room temperature dropwise to the reaction product It was. Stirring at about 80 ° C afforded the material of formula 2 (yield 90%>). Distilled water (18 mL) and DMSO (20 mL) were added, followed by stirring at room temperature to synthesize the material of Structural Formula 3 [yield 90%>, SEM = 25 nm, IR (KBr): NH (3100 cm -1). , s), sat.CH (2900 cm −1 , s), C═O (1700 cm −1 , s), C = N (1650 cm −1 , s)].
실시예 9: -CHExample 9: -CH 22 CHCH 22 CHCH 22 NHCOOH가 결합된 실리카 나노입자의 합성Synthesis of NHCOOH-bound Silica Nanoparticles
3-(트리에톡시실릴)프로필 이소시아네이트(0.05 mole)를 DMSO(30 ㎖)에 녹인 후 상온에서 교반하였다. 그 후 증류수(18 ㎖), DMSO(20 ㎖)을 가한 다음, 상온에서 교반하여 -CH2CH2CH2NHCOOH가 결합된 다음 구조식 4의 실리카 나노입자를 합성하였다[수율 90% >, SEM=50nm, IR(KBr): sat.C-H(2900 cm-1, m), C=N(1650 cm-1, m), C=O(1600 cm-1, m)].[구조식 4] 상기 구조식 4에서, 상기 실리카 나노입자는 트리에톡시실릴기이다.3- (triethoxysilyl) propyl isocyanate (0.05 mole) was dissolved in DMSO (30 mL) and stirred at room temperature. Distilled water (18 mL) and DMSO (20 mL) were added thereto, followed by stirring at room temperature to combine -CH 2 CH 2 CH 2 NHCOOH to synthesize silica nanoparticles of Structural Formula 4 [yield 90%>, SEM = 50 nm, IR (KBr): sat.CH (2900 cm −1 , m), C = N (1650 cm −1 , m), C═O (1600 cm −1 , m)]. In Structural Formula 4, the silica nanoparticles are triethoxysilyl groups.
실시예 10: 주사제 제조Example 10 Injection Preparation
A: 히드록시우레아(0.013 mole)를 DMSO(15 ㎖)에 녹였다 A: hydroxyurea (0.013 mole) was dissolved in DMSO (15 mL).
B: 3-(트리에톡시실릴)프로필 이소시아네이트(0.013 mole)를 DMSO(15 ㎖)에 녹였다. B: 3- (triethoxysilyl) propyl isocyanate (0.013 mole) was dissolved in DMSO (15 mL).
C: DMSO(10 ㎖) / H2O(10 ㎖)C: DMSO (10 mL) / H 2 O (10 mL)
A와 B를 먼저 혼합 후 C와 섞어 환부에 주사 A and B mixed first, then mixed with C and injected into affected area
실시예 11: 주사제 제조Example 11: Injection Preparation
A: 시클로포스파마이드·HCl(0.0036 mole)을 아세토니트릴(15 ㎖)에 녹였다. A: Cyclophosphamide-HCl (0.0036 mole) was dissolved in acetonitrile (15 mL).
B: 3-(트리에톡시실릴)프로필 이소시아네이트(0.0072 mole)를 DMSO(15 ㎖)에 녹였다. B: 3- (triethoxysilyl) propyl isocyanate (0.0072 mole) was dissolved in DMSO (15 mL).
C: DMSO(1.0 ㎖) / H2O(1.0 ㎖)C: DMSO (1.0 mL) / H 2 O (1.0 mL)
A와 B를 먼저 혼합 후 C와 섞어 환부에 주사 A and B mixed first, then mixed with C and injected into affected area
실시예 12: 주사제 제조Example 12 Injection Preparation
A: 우라실(0.0089 mole)을 DMSO(15 ㎖)에 녹였다. A: Uracil (0.0089 mole) was dissolved in DMSO (15 mL).
B: 3-(트리에톡시실릴)프로필 이소시아네이트(0.0089 mole)를 DMSO(15 ㎖)에 녹였다. B: 3- (triethoxysilyl) propyl isocyanate (0.0089 mole) was dissolved in DMSO (15 mL).
C: DMSO(4 ㎖) / H2O(3 ㎖)C: DMSO (4 mL) / H 2 O (3 mL)
A와 B를 먼저 혼합 후 C와 섞어 환부에 주사 A and B mixed first, then mixed with C and injected into affected area
실시예 13: 독성시험Example 13: Toxicity Test
본 발명에 따른 항암제에 대하여 독성실험을 다음과 같이 수행하였다. Toxicity test was performed as follows for the anticancer agent according to the present invention.
상기 실시예 4 ~ 8에서 합성된 물질 각각을 증류수에 용해하고 물로 희석한 후 이를 마우스(군당 10마리)에 각각 100 ㎎/㎏을 투여한 다음 7일간 관찰하였으나 사망하는 쥐는 없었다.Each of the materials synthesized in Examples 4 to 8 was dissolved in distilled water, diluted with water, and then administered to the mice (10 mice per group) at 100 mg / kg, respectively, and observed for 7 days, but no rats died.
시험예: 항암 효과 확인Test Example: Confirmation of Anticancer Effect
상기 실시예 4 ∼ 9에서 얻은 새로운 항암물질을 암세포 주위에 주사하여 세포증식율(%)을 다음 표 1 내지 표 6에 나타내었다.The new anticancer substances obtained in Examples 4 to 9 were injected around cancer cells to show the cell growth rate (%) in Tables 1 to 6 below.
A549: 폐암세포A549: lung cancer cells
SK-OV-3: 자궁암세포 SK-OV-3: Uterine Cancer Cells
SK-MEL-2: 피부암세포 SK-MEL-2: skin cancer cells
XF498: 중추신경계암세포 XF498: central nervous system cancer cells
HCT15: 결장암세포 HCT15: Colon Cancer Cell
(상기 표에서 농도가 증가함에 따라 값이 적어지는 것을 볼 수 있는데 이때 이 값은 +100 ∼ -100의 범위를 가지고 있다. 여기서 값이 +100이면 원래 샘플의 값을 나타내고, 100 보다 크면 세포가 증식됨을 나타낸다. 또한, 값이 -100이면 세포가 전부 죽었음(100%)을 나타낸다.)(In the above table, you can see that the value decreases as the concentration increases, and this value has a range of +100 to -100. If the value is +100, it indicates the value of the original sample. Also, a value of -100 indicates that all cells are dead (100%).)
상기 표 1 ∼ 표 6에서와 같이, 본 발명에 따른 약물 시스템는 항암효과가 우수하였음을 확인할 수 있었다.As shown in Table 1 to Table 6, the drug system according to the present invention was confirmed that the anticancer effect was excellent.
이상에서 설명한 바와 같이, 본 발명에 따른 약물 시스템은 기존 항암물질에 지지체 역할을 하는 나노입자를 함께 결합시켜 암세포에 직접 주사시킴으로써 항암물질이 나노입자에 의해 암세포에 고정화되어 정상세포에 약물이 확산되는 것을 방지하므로 치료하고자하는 암세포 부위에서 항암 효과를 최대로 발휘할 수 있도록 개발된 것이다.As described above, the drug system according to the present invention binds nanoparticles serving as supporters to existing anticancer substances and directly injects them into cancer cells, whereby the anticancer substances are immobilized to the cancer cells by the nanoparticles, thereby spreading drugs to normal cells. It is developed to maximize the anti-cancer effect in the cancer cell area to be treated to prevent.
Claims (13)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR20020029341 | 2002-05-27 | ||
| KR1020020029341 | 2002-05-27 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20030091678A KR20030091678A (en) | 2003-12-03 |
| KR100530369B1 true KR100530369B1 (en) | 2005-11-22 |
Family
ID=32384530
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR10-2003-0031239A Expired - Fee Related KR100530369B1 (en) | 2002-05-27 | 2003-05-16 | The injection system of nanoparticles bound antitumor agents |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR100530369B1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58118520A (en) * | 1982-01-09 | 1983-07-14 | Hidematsu Hirai | Antitumor proteinic complex and preparation thereof |
| JPS62116522A (en) * | 1985-11-15 | 1987-05-28 | Chugai Pharmaceut Co Ltd | Antitumor agent |
| EP0577215A1 (en) * | 1992-07-01 | 1994-01-05 | NanoSystems L.L.C. | Surface modified anticancer nanoparticles |
| US6328967B1 (en) * | 1998-03-12 | 2001-12-11 | Allergenics, Inc. | Delivery system to modulate immune response |
-
2003
- 2003-05-16 KR KR10-2003-0031239A patent/KR100530369B1/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58118520A (en) * | 1982-01-09 | 1983-07-14 | Hidematsu Hirai | Antitumor proteinic complex and preparation thereof |
| JPS62116522A (en) * | 1985-11-15 | 1987-05-28 | Chugai Pharmaceut Co Ltd | Antitumor agent |
| EP0577215A1 (en) * | 1992-07-01 | 1994-01-05 | NanoSystems L.L.C. | Surface modified anticancer nanoparticles |
| US6328967B1 (en) * | 1998-03-12 | 2001-12-11 | Allergenics, Inc. | Delivery system to modulate immune response |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20030091678A (en) | 2003-12-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE69734607T2 (en) | LONG-ACTING MEDICAMENTS AND MEDICAMENTS CONTAINING THEM | |
| DE60131177T2 (en) | DEVELOPABLE POLYACETAL POLYMERS | |
| DE3885317T2 (en) | Macromolecular platinum anti-tumor compounds. | |
| DE69730352T2 (en) | METHOD FOR PRODUCING A MEDICAMENT COMPLEX | |
| CN102120036B (en) | Nano micelle of biodegradable macromolecular-bonding Pt(IV) anti-cancer medicament and preparation method thereof | |
| CN111437258B (en) | Antitumor nanoadjuvant based on cross-linked biodegradable polymer vesicles and its preparation method and application | |
| TW201221132A (en) | Cyclodextrin-based polymers for therapeutics delivery | |
| EP1965769A2 (en) | Protein-based delivery system for overcoming resistance in tumour cells | |
| CN109789221A (en) | Escalating dose findings in controlled-release PTH compounds | |
| CN106265510A (en) | Multistage target polymer micelle of pH trigger-type release and preparation method thereof in a kind of tumor cell | |
| EP1835888B1 (en) | Cholanic acid-chitosan complex forming self-aggregates and preparation method thereof | |
| KR101725240B1 (en) | DUAL STIMULI-RESPONSIVE CORE-SHELL MAGNETIC NANOPARTICLE HAVING UV-LIGHT RESPONSIVITY AND pH-RESPONSIVITY, AND DRUG DELIVERY COMPISING THE SAME | |
| WO1991012817A1 (en) | Novel insulin compositions | |
| KR100418916B1 (en) | Process for Preparing Sustained Release Form of Micelle Employing Conjugate of Anticancer Drug and Biodegradable Polymer | |
| CN113499447B (en) | CRGD-quaternized chitosan oligosaccharide modified ES2 peptide-methotrexate conjugate, and preparation method and application thereof | |
| CN101426529A (en) | PEG-poly(ortho ester) graft copolymers and pharmaceutical compositions | |
| KR20170095811A (en) | Pharmaceutical preparation of comptothecin-containing polymer derivateive | |
| KR20180014042A (en) | Cross-linked hyaluronic acid for delivering drugs and pharmaceutical preparations using the same | |
| EP4421162A1 (en) | AUTOIMMUNE DISEASE THERAPEUTIC AGENT INCLUDING OLIGONUCLEOTIDE THAT SELECTIVELY BINDS TO IFN-gamma, AND SAID OLIGONUCLEOTIDE | |
| DE60128011T2 (en) | DISPENSING SYSTEM FOR ANTINEOPLASTIC MEDICAMENTS BASED ON DENDRITIC POLYMERS | |
| EP1466614B1 (en) | Polypeptide, the conjugate thereof containing doxorubicine and a pharmaceutical composition based thereon | |
| CN101384276A (en) | Method for preparing insulin preparation for oral using | |
| KR100530369B1 (en) | The injection system of nanoparticles bound antitumor agents | |
| CA2761752A1 (en) | Polycationic amphiphilic cyclooligosaccharides and the use thereof as molecular transporters | |
| EP0616813B1 (en) | Antitumor mitoxantrone polymeric compositions |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| R15-X000 | Change to inventor requested |
St.27 status event code: A-3-3-R10-R15-oth-X000 |
|
| R16-X000 | Change to inventor recorded |
St.27 status event code: A-3-3-R10-R16-oth-X000 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| E13-X000 | Pre-grant limitation requested |
St.27 status event code: A-2-3-E10-E13-lim-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 7 |
|
| FPAY | Annual fee payment |
Payment date: 20121107 Year of fee payment: 8 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 8 |
|
| FPAY | Annual fee payment |
Payment date: 20131015 Year of fee payment: 9 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 9 |
|
| FPAY | Annual fee payment |
Payment date: 20141107 Year of fee payment: 10 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 10 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| FPAY | Annual fee payment |
Payment date: 20151116 Year of fee payment: 11 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 11 |
|
| FPAY | Annual fee payment |
Payment date: 20161112 Year of fee payment: 12 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 12 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| LAPS | Lapse due to unpaid annual fee | ||
| PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20171116 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20171116 |