[go: up one dir, main page]

KR100542659B1 - Flow image acquisition and velocity field measuring device using r-ray beam - Google Patents

Flow image acquisition and velocity field measuring device using r-ray beam Download PDF

Info

Publication number
KR100542659B1
KR100542659B1 KR1020030003039A KR20030003039A KR100542659B1 KR 100542659 B1 KR100542659 B1 KR 100542659B1 KR 1020030003039 A KR1020030003039 A KR 1020030003039A KR 20030003039 A KR20030003039 A KR 20030003039A KR 100542659 B1 KR100542659 B1 KR 100542659B1
Authority
KR
South Korea
Prior art keywords
ray
flow
velocity field
ray beam
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020030003039A
Other languages
Korean (ko)
Other versions
KR20040065846A (en
Inventor
이상준
백부근
김국배
김양민
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR1020030003039A priority Critical patent/KR100542659B1/en
Publication of KR20040065846A publication Critical patent/KR20040065846A/en
Application granted granted Critical
Publication of KR100542659B1 publication Critical patent/KR100542659B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/12Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a flowing fluid or a flowing granular solid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/507Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for determination of haemodynamic parameters, e.g. perfusion CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/508Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for non-human patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Vascular Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

본 발명은 PIV / PTV 속도장 측정기술과 방사광 x-ray 인-라인 홀로그래피 기술을 결합하여 물체 내부 비가시영역의 유체 유동이나 불투명 유체의 유동정보를 정량적으로 측정할 수 있도록 하기 위한 것으로, 본 발명은, 방사광 x-ray 빔을 방사하는 가속기와, 상기 가속기로부터 연속적으로 방사되는 x-ray 빔으로부터 필요한 x-ray 광량만이 시료를 투과할 수 있도록 빔 축 상에 설치되는 기계식 셔터와, 상기 x-ray 빔에 의해 투과되어질 시료가 놓여질 수 있도록 빔 축 상에 설치되는 마이크로 트래버스(micro-traverse)와, 상기 시료를 투과하면서 가시화된 x-ray 파장의 영상을 가시광선 대역의 영상으로 바꾸어 줄 수 있도록 상기 x-ray 빔의 광 축 상에 설치되는 신틸레이터(scintillator)와, 상기 신틸레이터에 맺힌 입자 영상을 획득할 수 있도록 빔 축과 수직하게 설치되는 CCD 카메라와, 상기 CCD 카메라의 영상을 모니터에 표시하기 위해 설치된 컴퓨터 장치와, 연속적으로 취득한 2장의 x-ray 유동 영상으로부터 정량적인 유동정보를 추출해 낼 수 있는 PIV/PTV 속도장 측정 기술을 포함하는 것을 특징으로 한다.The present invention is to combine the PIV / PTV velocity field measurement technology and the radiation x-ray in-line holography technology to quantitatively measure the flow information of the fluid in the invisible region or the opaque fluid inside the object. Is an accelerator for emitting an radiant light x-ray beam, a mechanical shutter mounted on the beam axis such that only the required amount of x-ray light can pass through the sample from the x-ray beam continuously emitted from the accelerator, and the x Micro-traverse installed on the beam axis to place the sample to be transmitted by the -ray beam, and the image of the visible x-ray wavelength while passing through the sample can be converted into a visible light band image A scintillator installed on the optical axis of the x-ray beam and a beam perpendicular to the beam axis to acquire an image of particles formed on the scintillator. Includes a CCD camera, a computer device installed to display images of the CCD camera on a monitor, and a PIV / PTV velocity field measurement technology capable of extracting quantitative flow information from two successive x-ray flow images. Characterized in that.

Description

x-ray 빔을 이용한 유동영상 취득 및 속도장 측정장치{APPARATUS FOR MEASURING OF FLOW IMAGE AND VELOCITY FIELD USING FOR X-RAY BEAM}Apparatus for acquiring the moving image and measuring the velocity field using x-ray beams {APPARATUS FOR MEASURING OF FLOW IMAGE AND VELOCITY FIELD USING FOR X-RAY BEAM}

도 1은 통상적인 PIV / PTV 기법의 개념도.1 is a conceptual diagram of a conventional PIV / PTV technique.

도 2는 통상적인 인-라인 홀로그래피(In-line holography) 방식의 x-ray 마이크로-이미징(micro-imaging) 기법의 개략도.2 is a schematic diagram of a conventional in-line holography x-ray micro-imaging technique.

도 3은 본 발명에 따른 x-ray 빔을 이용한 유동가시화 및 속도장 측정장치의 구성도.3 is a block diagram of a flow visualization and velocity field measuring apparatus using an x-ray beam according to the present invention.

도 4는 본 발명에 따른 x-ray 마이크로-이미징 기법으로 획득한 테프론 관 내부 유동의 입자영상을 보인 도면.Figure 4 is a view showing a particle image of the flow inside the Teflon tube obtained by the x-ray micro-imaging technique according to the present invention.

도 5는 본 발명에 따른 도 4로부터 PIV 기법을 사용하여 취득한 입자영상으로부터 구한 유동 내부 종방향 속도성분의 공간 분포 도면.5 is a spatial distribution diagram of flow inner longitudinal velocity components obtained from particle images acquired using the PIV technique from FIG. 4 according to the present invention.

도 6은 본 발명에 따른 속도장 결과 중 임의의 단면에서의 주유동 방향 속도성분 분포(profile)를 나타낸 그래프.6 is a graph showing the main flow direction velocity component profile in any cross section of the velocity field results according to the present invention.

도 7은 본 발명에 따른 프리지아 꽃의 줄기 내부 조직 및 조영제 유무에 따른 유동 영상의 차이를 보인 비교 도면.7 is a comparative view showing a difference in flow image according to the internal structure of the stem and contrast medium of the freesia flowers according to the present invention.

도 8은 본 발명에 따른 가느다란 대나무 내부 도관에서의 유동영상을 보인 도면.8 is a view showing a flow image in the thin bamboo inner conduit according to the present invention.

도 9는 본 발명에 따른 쥐 귀에서의 혈관 유동 영상을 보인 도면.9 is a view showing a blood flow image in the rat ear according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 ; 가속기 2 ; 기계식 셔터 One ; Accelerator 2; Mechanical shutter

3 ; 신틸레이터 4 ; CCD 카메라 3; Scintillator 4; CCD camera

5 ; 주사기 펌프 10 ; 미세관(테프론 튜브)5; Syringe pump 10; Microtubules (Teflon Tubes)

본 발명은 서로 다른 두 가지 측정 기법인 PIV / PTV 속도장 측정기술과 방사광 x-ray 인-라인(in-line) 홀로그래피(Holography) 기술을 결합한 x-ray 빔을 이용한 유동영상 취득 및 속도장(Velocity field) 측정장치에 관한 것으로, 더욱 상세하게는 물체 내부 비가시영역의 유체 유동이나 불투명 유체의 유동정보를 정량적으로 측정할 수 있는 x-ray 빔을 이용한 유동영상 취득장치에 관한 것이다.The present invention provides a flow image acquisition and velocity field using an x-ray beam that combines two different measurement techniques, PIV / PTV velocity field measurement technology and radiated x-ray in-line holography technology. Velocity field) Measuring apparatus, and more particularly relates to a flow image acquisition device using an x-ray beam capable of quantitatively measuring the flow information of the fluid in the invisible region or the opaque fluid inside the object.

유동 속 입자(particle)들의 변위정보를 담고 있는 유동영상(flow image)을 화상처리하여 정량적인 속도장(Velocity field)을 구하는 입자영상 속도법은 정성적인 순간 유동정보를 제공할 뿐만 아니라 우수한 공간분해능을 갖는 정량적인 속도정보를 추출해 낼 수 있는 측정기법이다. 이와 같은 속도장 측정기법에는 입자영상속도계(PIV, particle image velocimetry)와 입자추적속도계(PTV, particle tracking velocimetry)의 2가지가 주로 사용되고 있다. PIV 방식은 유동영상의 조사구간(interrogating window)내 산란입자 영상들의 강도(intensity)분포에 대한 푸리에(Fourier) 변환이나 직접적인 상관계수를 계산함으로써 조사구간을 대표하는 평균속도를 구한다. 일반적으로 PIV 방식은 입자밀도가 큰 경우에 적용되며 조사구간의 대표 속도를 추출함으로써 정량적인 속도정보를 계산해낸다. 이에 반해, PTV 방식은 연속적으로 획득된 여러 장의 유동영상으로부터 각 입자위치를 추출한 후, 그 입자 하나하나를 추적(tracking)함으로써 입자의 변위정보를 구한다. PTV방식은 PIV기법의 조사구간 내 대표 속도가 아닌 각 입자들의 라그랑지안(Lagrangian) 속도벡터를 제공하며 속도측정의 방향 모호성(directional ambiguity)이 없는 반면, 각 입자의 화상이 분별 가능할 정도의 상대적으로 낮은 입자밀도를 갖는 경우에 유용하다. The particle image velocity method, which obtains a quantitative velocity field by processing a flow image containing displacement information of particles in a flow, provides not only qualitative instant flow information but also excellent spatial resolution. It is a measurement technique that can extract quantitative velocity information with Two kinds of velocity field measurement techniques are used, particle image velocimetry (PIV) and particle tracking velocimetry (PTV). The PIV method calculates Fourier transform or direct correlation coefficient for the intensity distribution of scattering particle images in the interrogating window of the flow image to calculate the average velocity representative of the irradiation interval. In general, the PIV method is applied when the particle density is large and quantitative velocity information is calculated by extracting the representative velocity of the irradiation section. On the other hand, the PTV method extracts each particle position from several consecutively obtained flow images, and then obtains particle displacement information by tracking each particle. The PTV method provides Lagrangian velocity vectors of the particles, which are not representative speeds in the irradiation section of the PIV technique, and there is no directional ambiguity in the velocity measurement, while the image of each particle is relatively low. It is useful when having a particle density.

x-ray의 인-라인 홀로그래피 기법은 x-ray 빔이 물체를 투과하면서 발생하는 위상대비(phase contrast)를 이용하는 가시화 방식이다. 이 방식은 물체 내부 구성물질의 성분에 크게 상관없이 구성 물질의 경계부분에서 위상차에 의해 나타나는 간섭무늬(interference pattern)로 물체 내부를 가시화하게 되며, 의료계에서 많이 사용되고 있는 소프트 x-ray를 이용한 흡수대비 방법보다 공간분해능이 훨씬 우수한 x-ray 영상을 얻을 수 있다. 이러한 장점은 방사광의 x-ray 빔이 소프트(soft) x-ray 보다 간섭성(coherence)이 우수하고 에너지 레벨이 상대적으로 높기 때문에 가능한 것이다. 본 발명기술에서 적용한 인-라인 홀로그래피 방식의 경우 간섭현상으로 물체 내부의 3차원 구조가 중첩되어 나타난 영상을 기록하기는 하지만 광학적 홀로그래피 기법에서 이야기하는 재생(reconstruction) 과정을 구축하게 되면 향후 3차원 공간 영상을 얻을 수 있다. 또한 관측 대상물을 회전시키면서 몇장의 x-ray 영상을 얻고 이들을 재생과정을 거쳐 물체 내부 3차원 구조를 단층(tomography) 촬영하는 것도 가능하다.In-line holography of x-rays is a visualization method that uses phase contrast that occurs when an x-ray beam passes through an object. This method visualizes the inside of the object by the interference pattern represented by the phase difference at the boundary of the material, regardless of the composition of the material inside the object, and the absorption contrast using soft x-ray which is widely used in the medical field. X-ray images with much better spatial resolution than the method can be obtained. This advantage is possible because the x-ray beam of radiant light has better coherence and relatively higher energy level than soft x-ray. In the case of the in-line holography method applied in the present technology, the image of the three-dimensional structure inside the object is recorded as an interference phenomenon, but if the reconstruction process described in the optical holography technique is established, the three-dimensional space in the future You can get a video. It is also possible to acquire several x-ray images while rotating the object and tomography the three-dimensional structure of the object through the reproduction process.

이와 같은 종래 기술에 따른 PIV / PTV 속도장 측정기법과 x-ray 인-라인 홀로그래피(in-line holography) 기술은 각각 독자적으로 우수한 기술이지만, 각각 다음과 같은 단점을 가지고 있다. 우선 PIV / PTV 속도장 측정기법의 경우, 주어진 유동에 대한 정량적 속도 측정은 가능하지만, 측정하고자 하는 유동 단면에서의 입자영상을 CCD 카메라와 같은 영상취득 장치로 얻어야 되므로 측정 대상이 반드시 투명해야 한다는 단점이 있다. 즉, 백색광이나 레이저와 같은 가시광선을 이용하는 PIV / PTV 기술로는 내부 유동이나 불투명한(opaque) 유체 유동을 측정하는 것이 불가능하다. 한편, x-ray in-line holography 기법은 x-ray의 투과력을 이용하여 불투명한 물체 내부를 가시화할 수는 있으나, 그 대상이 주로 고체(solid)로 된 물체 내부의 구조 연구에 효과적일 뿐, 물체 내부의 유동을 관찰하기에 부적합하다. 유동 내부에는 어떤 위상차나 밀도차를 만들어 낼 수 있는 것들이 없기 때문에, 위상대비 방식이나 흡수대비 방식, 어느 방식을 사용하더라도 마찬가지이다. 또한 현재까지 기존 x-ray 영상법으로 물체 내부 유동을 정량적으로 측정하고자 시도된 적이 없다. The conventional PIV / PTV velocity field measurement technique and x-ray in-line holography technique are excellent technologies, but each has the following disadvantages. First of all, in the case of PIV / PTV velocity field measurement technique, it is possible to measure quantitative velocity for a given flow, but the measurement target must be transparent because the particle image in the flow cross section to be measured must be acquired by an image acquisition device such as a CCD camera. There is this. That is, it is impossible to measure internal flow or opaque fluid flow with PIV / PTV technology using white light or visible light such as laser. On the other hand, the x-ray in-line holography technique can visualize the opaque object by using the x-ray transmittance, but it is only effective for studying the structure of the object inside the solid object, Not suitable for observing the flow inside an object. Since there is no phase or density difference inside the flow, the same is true for either phase contrast, absorption contrast, or both. In addition, no attempt has been made to quantitatively measure the flow in an object using conventional x-ray imaging.

따라서, 본 발명은 이와 같은 종래의 단점을 해소하기 위한 것으로, 개발된 지 얼마 되지 않을 뿐 아니라 연구 분야도 서로 다른 이 두 가지 측정 기법( PIV / PTV 속도장 측정기법과 방사광 x-ray in-line holography 기법)을 결합하여, 물체 내부 비가시영역의 유체 유동이나 불투명 유체의 유동정보를 정량적으로 측정할 수 있는 x-ray를 이용한 유동영상 취득장치를 제공하는 것을 목적으로 한다.Therefore, the present invention is intended to solve such a disadvantage, and it is not only recently developed but also two different measurement techniques (PIV / PTV velocity field measurement technique and radiated light x-ray in-line holography). It is an object of the present invention to provide a flow image acquisition device using x-ray which can quantitatively measure the flow of fluid in an invisible region or the flow of an opaque fluid inside an object.

이와 같은 목적을 달성하기 위한 본 발명은, 방사광 x-ray 빔을 방사하는 가속기와, 상기 가속기로부터 연속적으로 방사되는 x-ray 빔으로부터 필요한 x-ray 광량만이 시료를 투과할 수 있도록 빔 축 상에 설치되는 기계식 셔터와, 상기 x-ray 빔에 의해 투과되어질 시료가 놓여질 수 있도록 빔 축 상에 설치되는 마이크로 트래버스(micro-traverse)와, 상기 시료를 투과하면서 가시화된 x-ray 파장의 영상을 가시광선 대역의 영상으로 바꾸어 줄 수 있도록 상기 x-ray 빔의 광 축 상에 설치되는 신틸레이터와, 상기 신틸레이터에 맺힌 입자 영상을 획득할 수 있도록 빔 축과 수직하게 설치되는 CCD 카메라와, 상기 CCD 카메라의 영상을 모니터에 표시하기 위해 설치된 컴퓨터 장치와, 연속적으로 취득한 2장의 x-ray 유동영상으로부터 정량적인 유동정보를 추출해 낼 수 있는 PIV/PTV 속도장 측정기술을 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides an accelerator that emits an x-ray beam of radiation and an amount of x-ray light required from the x-ray beam continuously emitted from the accelerator so that only the necessary amount of x-ray light can pass through the sample. A mechanical shutter installed in the apparatus, a micro-traverse installed on the beam axis so that the sample to be transmitted by the x-ray beam is placed, and an image of the x-ray wavelength visualized while passing through the sample. A scintillator installed on an optical axis of the x-ray beam so as to be converted into an image of a visible light band, a CCD camera installed perpendicular to the beam axis so as to acquire a particle image formed on the scintillator, and P device capable of extracting quantitative flow information from two x-ray flow images acquired continuously and a computer device installed to display images from a CCD camera on a monitor IV / PTV velocity field measurement technology.

본 발명에 따르면, 시료가 미세관인 경우, 미세관 내 유량을 조절할 수 있도록 주사기 펌프가 연결 설치되는 것을 특징으로 한다.According to the present invention, when the sample is a microtubule, it is characterized in that the syringe pump is connected to be installed to adjust the flow rate in the microtubule.

본 발명의 상기 목적과 여러 가지 장점은 이 기술 분야에 숙련된 사람들에 의해 첨부된 도면을 참조하여 아래에 기술되는 발명의 바람직한 실시예로부터 더욱 명확하게 될 것이다.The above objects and various advantages of the present invention will become more apparent from the preferred embodiments of the invention described below with reference to the accompanying drawings by those skilled in the art.

이하, 첨부된 도면을 참조하여 본 발명의 일실시예를 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention.

도 1은 통상적인 디지털 화상처리를 이용한 PIV / PTV 속도장 측정기법의 기본원리를 나타낸 것이다. 즉, 유동 내부에 놓인 입자들의 영상을 짧은 시간간격(Δt) 사이에 연속적으로 측정하고, 이들을 디지털 화상처리하여 시간간격 Δt 사이에 취득한 2장의 입자영상으로부터 구한 입자 변위(displacement)들을 시간간격 Δt로 나누어 순간 속도장을 구하게 된다.Figure 1 shows the basic principle of the PIV / PTV velocity field measurement technique using a conventional digital image processing. That is, the particle displacements obtained from the two particle images acquired between the time intervals Δt by continuously measuring the images of the particles placed in the flow between the short time intervals Δt and digitally processed them are determined by the time interval Δt. Divide into the instant velocity field.

한편, 도 2는 통상적인 인-라인 홀로그래피(in-line holography) 방식의 x-ray micro-imaging 기법의 개략도로서, 방사광 x-ray를 이용하여 물체 내부의 미세구조를 가시영역에서 획득(detection)할 수 있는 영상(imaging) 기법을 보여준다. 여기서 x-ray '마이크로-이미징'이라 함은 가속기에서 인-라인 홀로그래피 방식으로 x-ray 이미징하는 빔 라인의 실험장비가 미세 영역을 관찰할 수 있도록 구성되어 있기 때문에 '마이크로-이미징'이라는 용어를 쓰고 있다. 즉, 눈으로 바로 보이지 않는 불투명한 유동(비가시영역의 유동)을 투과시키기 위해 방사광 x-ray를 사용하였으며, 투과된 비가시영역의 x-ray를 가시화하기 위해 인-라인 홀로그래피 기법을 사용하였다. 인-라인 홀로그래피 기법이란 도 2와 같이 x-ray의 진행 방향과 시편, 감지기(detector)를 같은 방향으로 배치한 상태에서 시편 내부를 가시화 할 수 있는 기술이다. 현재 병원에서 인체를 대상으로 사용되고 있는 x-ray 촬영기법은 x-ray가 물체를 투과하면서 투과되는 정도를 흡수대비(absorption contrast)로 물체를 가시화한 것이다. x-ray의 흡수대비 방법으로 획득한 영상(필름)을 보면, 뼈와 같이 흡수율이 높은 고체의 경우는 필름에 노광이 적게 되어 희게 나오고, 흡수율이 낮은 인체 조직의 경우는 필름을 많이 노광시켜 검게 나온다. On the other hand, Figure 2 is a schematic diagram of a conventional in-line holography (x-ray micro-imaging) technique, by using the radiation x-ray to detect the microstructure inside the object in the visible region (detection) Demonstrate imaging techniques that can be done. Here, the term 'micro-imaging' is referred to as 'micro-imaging' because the experimental equipment of the beam line that performs x-ray imaging in the in-line holography method of the accelerator is configured to observe the minute region. Writing. In other words, X-rays were used to transmit opaque flows (invisible region flows) that were not immediately visible, and in-line holography was used to visualize x-rays of transmitted invisible regions. . In-line holography is a technique that can visualize the inside of the specimen in a state in which the direction of the x-ray, the specimen, and the detector are arranged in the same direction as shown in FIG. 2. The x-ray imaging technique currently used in the human body in a hospital is to visualize the object by the absorption contrast (absorption contrast) the extent to which the x-ray is transmitted through the object. In the image (film) obtained by the absorption contrast method of x-ray, solids with high absorption rate such as bones are less exposed to the film and whiten. Comes out.

x-ray의 인-라인 홀로그래피 기법은 x-ray가 물체를 투과하면서 발생하는 위상대비(phase contrast)를 이용하는 가시화 방식이다. 이 방식은 물체 내부 구성물질의 성분에 크게 상관없이 구성 물질의 경계부분에서 위상차에 의해 나타나는 간섭무늬(interference pattern)로 물체 내부를 가시화하게 되며, 의료계에서 많이 사용되고 있는 소프트 x-ray를 이용한 흡수대비 방법보다 공간분해능이 훨씬 우수한 x-ray 영상을 얻을 수 있다. 이러한 장점은 방사광의 x-ray 빔이 소프트(soft) x-ray 보다 간섭성(coherence)이 우수하고 에너지 레벨이 상대적으로 높기 때문에 가능한 것이다. 본 발명기술에서 적용한 인-라인 홀로그래피 방식의 경우 간섭현상으로 물체 내부의 3차원 구조가 중첩되어 나타난 영상을 기록하기는 하지만 광학적 홀로그래피 기법에서 이야기하는 재생(reconstruction) 과정을 구축하게 되면 향후 3차원 공간 영상을 얻을 수 있다. 또한 관측 대상물을 회전시키면서 몇장의 x-ray 영상을 얻고 이들을 재생과정을 거쳐 물체 내부 3차원 구조를 단층(tomography) 촬영하는 것도 가능하다.In-line holography of x-rays is a visualization method that uses phase contrast that occurs when an x-ray passes through an object. This method visualizes the inside of the object by the interference pattern represented by the phase difference at the boundary of the material, regardless of the composition of the material inside the object, and the absorption contrast using soft x-ray which is widely used in the medical field. X-ray images with much better spatial resolution than the method can be obtained. This advantage is possible because the x-ray beam of radiant light has better coherence and relatively higher energy level than soft x-ray. In the case of the in-line holography method applied in the present technology, the image of the three-dimensional structure inside the object is recorded as an interference phenomenon, but if the reconstruction process described in the optical holography technique is established, the three-dimensional space in the future You can get a video. It is also possible to acquire several x-ray images while rotating the object and tomography the three-dimensional structure of the object through the reproduction process.

본 발명은 이 두 가지 측정 기법(PIV / PTV 속도장 측정기법과 방사광 x-ray 인-라인 홀로그래피 기법)을 결합한 것으로 물체 내부 비가시영역의 유체 유동이나 불투명 유체의 유동정보를 정량적으로 측정할 수 있다. The present invention combines these two measurement techniques (PIV / PTV velocity field measurement technique and radiated light x-ray in-line holography technique) to quantitatively measure the flow information of the fluid in the invisible region or the opaque fluid inside the object. .

본 발명 기술의 가능성 및 신뢰성을 확인하기 위해, 가속기의 x-ray 마이크로-이미징(micro-imaging)기법과 PIV 속도장 측정기법을 함께 사용하여 불투명한 미세관 내부 유동의 속도장을 측정하였다. In order to confirm the feasibility and reliability of the present technology, the velocity field of the opaque microtubular flow was measured using a combination of the accelerator x-ray micro-imaging technique and the PIV velocity field measurement technique.

도 3에 x-ray 빔을 이용한 유동영상 취득 및 PIV 속도장 측정장치의 구성도를 나타내었다. 우선 가속기(1)에서 나온 x-ray 빔이 불투명한 미세관(10)의 내부 유동을 지나게 되면서 미세관(10)의 내부구조 및 유동 입자에 의해 위상대비가 발생하게 되고, 이것은 일종의 크리스탈(crystal)인 신틸레이터(scintillator;3)에 바로 도달하게 된다. 이 신틸레이터(3)는 x-ray 파장의 영상을 가시광선 대역(band)의 영상으로 바꾸어 주는 역할을 한다. 신틸레이터(3)에 맺힌 입자 영상을 마이크로스코프(microscope)가 장착된 CCD 카메라(4)로 획득하게 되는데, 이것이 바로 x-ray 입자영상이다. 이때, CCD 카메라(4)는 x-ray 축과 수직하게 구성되는데, 이는 x-ray로부터 CCD 카메라(4)를 보호하기 위함이다.  3 is a block diagram of a flow image acquisition and PIV velocity field measuring apparatus using an x-ray beam. First, as the x-ray beam from the accelerator 1 passes through the internal flow of the opaque microtube 10, phase contrast is generated by the internal structure of the microtube 10 and the flowing particles, which is a kind of crystal. Is directly reached to the scintillator (3). The scintillator 3 converts an image of an x-ray wavelength into an image of a visible light band. Particle images formed on the scintillator 3 are acquired by a CCD camera 4 equipped with a microscope, which is an x-ray particle image. At this time, the CCD camera 4 is configured perpendicular to the x-ray axis, in order to protect the CCD camera 4 from the x-ray.

기계식 셔터(mechanical shutter;2)를 설치하지 않으면 강한 x-ray 빔에 의해 유체나 물체 내부에 기포가 발생하게 되어 실험 중에 발견하게 되어 이 장치를 설치하였다. If a mechanical shutter (2) is not installed, bubbles are generated inside a fluid or an object by a strong x-ray beam, which is found during the experiment.

PIV 속도장 측정기술을 사용하려면 이중노출기법이 필요하기 때문에 본 실험에서는 기계식 셔터(2)(노출시간:20msec, 지연시간:10msec)와 CCD 카메라(4)를 동기(Synchronization)시켜 2장의 x-ray 영상을 연속으로 취득하였다. In order to use the PIV velocity measurement technology, the double exposure technique is required. In this experiment, the mechanical shutter 2 (exposure time: 20 msec, delay time: 10 msec) and the CCD camera 4 are synchronized to obtain two x- Ray images were acquired continuously.

본 실험에서 측정영역(field of view)의 크기는 1.5mm x 1.5mm이었고 주사기 펌프(syringe pump;5)로 유량을 조절하면서 내경이 0.75mm인 불투명한 테프론 튜브(10) 내부로 유체를 흘려보냈다. 미세관(10) 내부 유동의 평균 유속은 약 4.91mm/sec이었다. 추종입자로는 알루미나(Al2O3, 밀도:3.95g/cm 3 , 직경:3㎛)를 사용하였고 작동유체로는 점도와 밀도가 물보다 높은 글리세린(밀도:1.26g/cm3)을 이용하여 알루미나가 중력의 영향을 가능한 적게 받도록 하였다. 실험 과정에서 액체유동의 경우, 기포나 알루미나 등 유체와 밀도차가 상대적으로 크게 나는 것이 깨끗한 x-ray 입자영상을 얻는데 유리하였으며, 병원에서 사용하는 조영제(contrast medium)를 첨가하면 보다 효과적이었다. 도 4는 x-ray 마이크로-이미징 기법으로 취득한 미세관 내부의 x-ray 입자영상으로, x-ray의 투과력을 이용하여 획득한 불투명한 테프론(teflon)재질의 미세관(10) 내부 유동의 입자영상을 보여준다. In this experiment, the size of the field of view was 1.5 mm x 1.5 mm and the fluid was flowed into the opaque Teflon tube 10 having an internal diameter of 0.75 mm while controlling the flow rate with a syringe pump (5). . The average flow velocity of the flow inside the microtubule 10 was about 4.91 mm / sec. As the following particles, alumina (Al 2 O 3 , density: 3.95 g / cm 3 , diameter: 3 μm) was used, and as a working fluid, glycerin (density: 1.26 g / cm 3 ) having a higher viscosity and density than water was used. The alumina was then subjected to gravity as little as possible. In the case of the liquid flow, the relatively large difference in density from the fluid such as bubbles or alumina was advantageous for obtaining a clear x-ray particle image, and the addition of contrast medium used in the hospital was more effective. FIG. 4 is an x-ray particle image inside a microtubule obtained by an x-ray micro-imaging technique. Particles of a flow inside the microtubule 10 made of an opaque teflon material obtained by using the penetrating power of the x-ray. Show the video.

도 5는 취득한 입자영상으로부터 구한 유동 내부 종방향 속도성분의 공간 분포를 보여주고 있는 것으로, 획득한 x-ray 입자영상인 도 4로부터 PIV 기법을 사용하여 획득한 불투명한 미세관 내부의 주유동방향의 정량적인 속도장 결과를 보여준다.FIG. 5 shows the spatial distribution of the flow longitudinal longitudinal component obtained from the acquired particle image, and the main flow direction inside the opaque microtubule obtained using the PIV technique from FIG. Shows the quantitative velocity field results of.

도 6은 속도장 결과 중 임의의 단면에서의 주유동 방향 속도 분포(profile)를 보여준다. 즉, x-ray PIV 기법으로 구한 PIV 속도장 결과 도 5로부터 도출한 임의의 한 수평선(horizontal line)을 따른 위치에서의 정량적인 속도분포를 보여준다. 여기서 보면 유속분포는 미세관 중심을 기준으로 대칭적인 분포를 가지며, 완전히 발달된 관 흐름의 유동을 잘 보여주고 있다. 또한 튜브 외벽으로 접근할수록 점성효과가 증가하여 유속이 점차 감소하며 중심부에서 가장 빠른 속도값을 가진다. (여기서 r0는 capillary tube의 직경, V0는 최대 속도)6 shows the main flow direction velocity profile in any cross section of the velocity field results. That is, the PIV velocity field obtained by the x-ray PIV technique shows a quantitative velocity distribution at a position along any horizontal line derived from FIG. 5. In this case, the velocity distribution has a symmetrical distribution with respect to the center of the microtubule and shows the well-developed flow of the tube flow. In addition, the more viscous effect increases as the tube approaches the outer wall, the flow rate gradually decreases and has the fastest velocity in the center. Where r 0 is the diameter of the capillary tube and V 0 is the maximum velocity

도 7(a)는 본 발명기술로 획득한 프리지아 꽃의 줄기 내부 도관(vascular tissue)을 x-ray 영상기법으로 찍은 결과로 도관의 기본적인 조직을 확인할 수 있다. 도 7(b)는 프리지아 줄기 내부에 조영제(contrast medium)를 투여했을 때의 영상으로, 도관을 따라 조영제가 흘러가면서 흡수대비에 의해 물관 부위가 주위보다 더욱 짙어져 식물 내부 도관의 위치와 도관 내부 유동흐름을 보다 뚜렷하게 볼 수 있다. 여기서 조영제란 병원의 x선 검사 시 혈관과 같은 조직 구조를 뚜렷이 보기 위해 주입하는 바륨 따위의 방사선을 통과시키지 않는 물질을 말한다. 도 8은 가느다란 대나무 가지 내부를 찍은 영상으로 도관을 따라 흘러가는 유체유동을 (사상 최초로) 직접 확인할 수 있었다. 여기서 물이 있는 부분과 없는 부분의 경계면에서는 위상차가 크기 때문에 도관 속의 액체 흐름의 유동 영상을 깨끗하게 얻을 수 있었다. 도 9는 살아있는 쥐의 귓불(earlobe) 내부 미세 혈관과 혈액 영상을 보여 준다. FIG. 7 (a) shows the basic structure of the catheter as a result of x-ray imaging of the vascular tissue of the stem of the freesia flower obtained by the present invention. Figure 7 (b) is an image when the contrast medium (contrast medium) is administered to the inside of the freesia stem, as the contrast agent flows along the conduit, the water pipe region becomes darker than the surroundings due to absorption contrast, the position of the internal conduit and the inside of the conduit You can see the flow more clearly. Here, the contrast agent refers to a substance that does not pass radiation such as barium injected to clearly see tissue structures such as blood vessels during x-ray examination in a hospital. 8 is an image of the inside of the thin bamboo branch was able to directly check the fluid flow flowing through the conduit (first ever). Here, the phase difference is large at the interface between the water part and the water part, so that a clear image of the flow of the liquid in the conduit can be obtained. Figure 9 shows the earlobe internal microvascular and blood images of live mice.

이상, 상기 내용은 본 발명의 바람직한 일실시예를 단지 예시한 것으로 본 발명의 당업자는 본 발명의 요지를 변경시킴이 없이 본 발명에 대한 수정 및 변경을 가할 수 있음을 인지해야 한다. In the above description, it should be understood that those skilled in the art can only make modifications and changes to the present invention without changing the gist of the present invention as it merely illustrates a preferred embodiment of the present invention.

상술한 바와 같이, 본 발명에 따르면 x-ray의 투과특성과 디지털 화상처리기술을 결합한 유동영상 취득 기술과 영상에 근거한 정량적인 속도장(Velocity field) 측정기법으로 내부가 보이지 않는 물체나 생체 내부의 미세 유동을 해석할 수 있다. 따라서, 내부가 보이지 않는 물체나 생체 내부 유동의 가시화나 정량적 속도장 측정에 적용할 수 있으며, 내부가 보이는 유체 유동에도 적용할 수 있다. 또한, 상(Phase)이 다른 유체가 혼합된 다상유동의 해석에도 유용하다. As described above, according to the present invention, a fluid image acquisition technique combining a transmission characteristic of x-ray and a digital image processing technique and a quantitative velocity field measurement technique based on an image may be used. Microfluidic flow can be analyzed. Therefore, the present invention can be applied to the visualization of bodily internal flow or measurement of quantitative velocity field, and to the fluid flow in which the interior is visible. It is also useful for the analysis of multiphase flows in which fluids with different phases are mixed.                     

본 발명은 더 나아가 혈액과 같은 불투명한 유체의 유동해석, 내부가 보이지 않는 물체 내부 유동해석, 식물이나 곤충, 동물, 인체 내부 유동해석 등에 응용할 수 있다. The present invention can be further applied to flow analysis of an opaque fluid such as blood, flow analysis inside an invisible object, flow analysis in plants, insects, animals, and the human body.

Claims (5)

방사광 x-ray 빔을 방사하는 가속기와, An accelerator that emits radiant light x-ray beams, 상기 가속기로부터 연속적으로 방사되는 x-ray 빔으로부터 필요한 x-ray 광량만이 시료를 투과할 수 있도록 빔 축 상에 설치되는 기계식 셔터와, A mechanical shutter mounted on the beam axis so that only the required amount of x-ray light can pass through the sample from the x-ray beam continuously radiated from the accelerator; 상기 x-ray 빔에 의해 투과되어질 시료가 놓여질 수 있도록 빔 축 상에 설치되는 마이크로 트래버스(micro-traverse)와, A micro-traverse installed on the beam axis so that the sample to be transmitted by the x-ray beam is placed; 상기 시료를 투과하면서 가시화된 x-ray 파장의 영상을 가시광선 대역의 영상으로 바꾸어 줄 수 있도록 빔 축 상에 설치되는 신틸레이터와, A scintillator installed on the beam axis to change the visualized x-ray wavelength image into a visible light band while passing through the sample; 상기 신틸레이터에 맺힌 입자 영상을 획득할 수 있도록 빔 축과 수직하게 설치되는 CCD 카메라와, A CCD camera installed perpendicular to the beam axis to acquire particle images formed on the scintillator; 상기 CCD 카메라의 영상을 모니터에 표시하기 위해 설치된 컴퓨터 장치로 구성되며,Comprising a computer device installed to display the image of the CCD camera on the monitor, 상기 기계식 셔터와 상기 CCD 카메라를 동기시켜 연속으로 2장의 x-ray 유동 영상을 취득하고, PIV/PTV 속도장 측정기술을 이용하여 상기 취득된 2장의 x-ray 유동 영상으로부터 정량적인 유동정보를 추출하는 것을 Synchronize the mechanical shutter and the CCD camera to acquire two x-ray flow images in succession, and extract quantitative flow information from the two x-ray flow images acquired using PIV / PTV velocity field measurement technology. To do 특징으로 하는 x-ray 빔을 이용한 유동영상 취득 및 속도장 측정장치.Flow image acquisition and velocity field measuring apparatus using x-ray beam. 제 1 항에 있어서, 상기 시료가 미세관인 경우, 상기 미세관 내 작동유체의 유량을 조절할 수 있도록 주사기 펌프가 연결 설치되는 것을The method of claim 1, wherein when the sample is a microtubule, the syringe pump is connected to be installed to control the flow rate of the working fluid in the microtubule 특징으로 하는 x-ray 빔을 이용한 유동영상 취득 및 속도장 측정장치.Flow image acquisition and velocity field measuring apparatus using x-ray beam. 제 2 항에 있어서, 상기 미세관내 작동유체는 글리세린을 사용하는 것을According to claim 2, wherein the microtubule working fluid to use the glycerin 특징으로 하는 x-ray 빔을 이용한 유동영상 취득 및 속도장 측정장치.Flow image acquisition and velocity field measuring apparatus using x-ray beam. 제 2 항에 있어서, 상기 미세관내 작동유체의 유동을 위한 추종입자로서 알루미나 입자를 사용하는 것을The method of claim 2, wherein the use of alumina particles as the following particles for the flow of the working fluid in the microtubules 특징으로 하는 x-ray 빔을 이용한 유동영상 취득 및 속도장 측정장치.Flow image acquisition and velocity field measuring apparatus using x-ray beam. 제 2 항에 있어서, 상기 미세관내 작동유체에는 조영제가 첨가되는 것을The method of claim 2, wherein the contrast medium is added to the working fluid in the microtubule 특징으로 하는 x-ray 빔을 이용한 유동영상 취득 및 속도장 측정장치.Flow image acquisition and velocity field measuring apparatus using x-ray beam.
KR1020030003039A 2003-01-16 2003-01-16 Flow image acquisition and velocity field measuring device using r-ray beam Expired - Fee Related KR100542659B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030003039A KR100542659B1 (en) 2003-01-16 2003-01-16 Flow image acquisition and velocity field measuring device using r-ray beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030003039A KR100542659B1 (en) 2003-01-16 2003-01-16 Flow image acquisition and velocity field measuring device using r-ray beam

Publications (2)

Publication Number Publication Date
KR20040065846A KR20040065846A (en) 2004-07-23
KR100542659B1 true KR100542659B1 (en) 2006-01-11

Family

ID=37355923

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030003039A Expired - Fee Related KR100542659B1 (en) 2003-01-16 2003-01-16 Flow image acquisition and velocity field measuring device using r-ray beam

Country Status (1)

Country Link
KR (1) KR100542659B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071112B1 (en) * 2008-12-23 2011-10-07 한국기초과학지원연구원 Control on the density of multi-grains during solidification in Al-based alloys
WO2016043471A1 (en) * 2014-09-15 2016-03-24 기초과학연구원 Microscope measurement device and method using x-ray holography for large-area sample

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227621B2 (en) * 2004-08-30 2007-06-05 Postech Foundation System for visualizing flow and measuring velocity field using X-ray particle image velocimetry
KR100778369B1 (en) * 2005-04-11 2007-11-22 고려대학교 산학협력단 Diagnosis of Microscopic Pathological Changes of Blood Vessels Using Non-monochrome Radiation X-ray Microscopy
AU2010295229B2 (en) * 2009-09-16 2015-07-16 4DMedical Limited Particle image velocimetry suitable for X-ray projection imaging
US9025849B2 (en) 2009-09-16 2015-05-05 Monash University Partical image velocimetry suitable for X-ray projection imaging
EP3131468B1 (en) 2014-04-15 2020-10-07 4DMedical Limited Method of imaging
US11723617B2 (en) 2016-02-03 2023-08-15 4DMedical Limited Method and system for imaging
CN112730875B (en) * 2021-03-31 2021-06-29 中国空气动力研究与发展中心高速空气动力研究所 Shutter integrated device, control system and time sequence control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071112B1 (en) * 2008-12-23 2011-10-07 한국기초과학지원연구원 Control on the density of multi-grains during solidification in Al-based alloys
WO2016043471A1 (en) * 2014-09-15 2016-03-24 기초과학연구원 Microscope measurement device and method using x-ray holography for large-area sample

Also Published As

Publication number Publication date
KR20040065846A (en) 2004-07-23

Similar Documents

Publication Publication Date Title
US5912945A (en) X-ray compass for determining device orientation
EP3047796B1 (en) Method and system for image processing of intravascular hemodynamics
KR100542659B1 (en) Flow image acquisition and velocity field measuring device using r-ray beam
US20060044548A1 (en) System for visualizing flow and measuring velocity field using X-ray particle image velocimetry
CN109662735B (en) Method for measuring skin blood perfusion
JP2011523862A (en) System, method and computer-accessible medium for tracking blood vessel movement during microscopic examination of a three-dimensional coronary artery
JP2018501940A (en) Diffuse acoustic confocal imaging device
US9901312B2 (en) Medical instrument for use with a phase contrast imaging and X-ray recording system with phase contrast imaging
Solano et al. An experimental and theoretical approach to the study of the photoacoustic signal produced by cancer cells
Rossow et al. Spatiotemporal image correlation spectroscopy measurements of flow demonstrated in microfluidic channels
US8401611B2 (en) Apparatus and method for imaging tissue
KR100807964B1 (en) X-ray exposure control device of motor rotation drive method
Lee et al. Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows
RU2113820C1 (en) Method and computer tomograph for performing medical intrascopy
KR100601037B1 (en) Velocity field measurement system using clinical X-ray
Fomin et al. New possibilities of investigating blood flow in soft tissues of the mouth
Brunker et al. Pulsed photoacoustic Doppler flow measurements in blood-mimicking phantoms
CN107669245A (en) A kind of multifunctional array optical coherence tomography probe
Cunningham et al. A new system for quantitative arterial imaging and blood flow measurements
CN115227383A (en) Detecting and Visualizing Air Bubbles Forming in Medical Procedures Using Schlieren Images
Kyoden et al. In vivo visualization method by absolute blood flow velocity based on speckle and fringe pattern using two-beam multipoint laser Doppler velocimetry
KR102392593B1 (en) Multi-modal endoscopy system comprising radiation image
Nita et al. PRELIMINARY TESTS FOR SPECKLE-BASED X-RAY PHASE-CONTRAST IMAGING: OPTIMIZATION
Brown et al. Imaging of the scattering of high-intensity focused ultrasonic waves at artificial bone replicas
US20240389861A1 (en) Wide-field photoacoustic (pa) imaging system

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

D13-X000 Search requested

St.27 status event code: A-1-2-D10-D13-srh-X000

D14-X000 Search report completed

St.27 status event code: A-1-2-D10-D14-srh-X000

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

AMND Amendment
P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E601 Decision to refuse application
PE0601 Decision on rejection of patent

St.27 status event code: N-2-6-B10-B15-exm-PE0601

J201 Request for trial against refusal decision
PJ0201 Trial against decision of rejection

St.27 status event code: A-3-3-V10-V11-apl-PJ0201

AMND Amendment
P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

PB0901 Examination by re-examination before a trial

St.27 status event code: A-6-3-E10-E12-rex-PB0901

B701 Decision to grant
PB0701 Decision of registration after re-examination before a trial

St.27 status event code: A-3-4-F10-F13-rex-PB0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R14-asn-PN2301

FPAY Annual fee payment

Payment date: 20120511

Year of fee payment: 8

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 8

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

FPAY Annual fee payment

Payment date: 20131231

Year of fee payment: 9

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 9

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R14-asn-PN2301

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 10

FPAY Annual fee payment

Payment date: 20151224

Year of fee payment: 11

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 11

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 12

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 12

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20180105

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20180105

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000