[go: up one dir, main page]

KR100651270B1 - Molten Carbonate Fuel Cell Device - Google Patents

Molten Carbonate Fuel Cell Device Download PDF

Info

Publication number
KR100651270B1
KR100651270B1 KR1020060048849A KR20060048849A KR100651270B1 KR 100651270 B1 KR100651270 B1 KR 100651270B1 KR 1020060048849 A KR1020060048849 A KR 1020060048849A KR 20060048849 A KR20060048849 A KR 20060048849A KR 100651270 B1 KR100651270 B1 KR 100651270B1
Authority
KR
South Korea
Prior art keywords
air
combustor
water
fuel
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020060048849A
Other languages
Korean (ko)
Inventor
안국영
이영덕
이상민
김한석
임희천
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020060048849A priority Critical patent/KR100651270B1/en
Application granted granted Critical
Publication of KR100651270B1 publication Critical patent/KR100651270B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/144Fuel cells with fused electrolytes characterised by the electrolyte material
    • H01M8/145Fuel cells with fused electrolytes characterised by the electrolyte material comprising carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

개시된 용융탄산염 연료전지 장치는 연료와 물을 공급하는 연료물공급부와 연료물공급부로부터 연료와 물을 공급받아 수소가스가 발생되는 개질기와 개질기로부터 수소가스를 공급받아 탄산이온과 반응하여 물과 이산화탄소를 발생하는 양극부(Anode)와 양극부에서 반응하고 남은 수소가스를 연소하는 연소기와 연소기에 공기를 공급하는 공기유동부와 연소기를 통해 유입된 이산화탄소와 산소가 반응하여 탄산이온을 발생하여 양극부로 보내는 음극부(Cathode) 및 양극부와 음극부를 포함하며, 전기를 발생하는 전기발생부를 포함한다. 이와 같은 구성의 용융탄산염 연료전지 장치는 효율향상을 위해 설치된 압축기 및 터빈으로부터 공기를 공급받지 않고 별도의 공기유동부로부터 대기의 공기를 공급받아 별도로 압력 및 온도 등의 제어가 용이하게 되어 작동 및 제어의 단순화를 가져올 수 있다.The disclosed molten carbonate fuel cell apparatus is supplied with fuel and water to supply fuel and water, and receives fuel and water from a reformer that generates hydrogen gas and receives hydrogen gas from a reformer to react with carbonate ions to produce water and carbon dioxide. The anode and the anode react with the combustor that burns the remaining hydrogen gas, the air flow section that supplies air to the combustor, and the carbon dioxide and oxygen introduced through the combustor react to generate carbonate ions and send them to the anode section. It includes a cathode portion (Cathode) and the anode portion and the cathode portion, and includes an electricity generating portion for generating electricity. The molten carbonate fuel cell device configured as described above is operated and controlled by easily controlling pressure and temperature by receiving atmospheric air from a separate air flow unit without receiving air from a compressor and a turbine installed to improve efficiency. Can bring simplicity.

Description

용융탄산염 연료전지 장치{Apparatus for molten carbonate fuel cell}Apparatus for molten carbonate fuel cell

도 1은 본 발명의 바람직한 실시예에 따른 용융탄산염 연료전지 장치의 개략도이다.1 is a schematic diagram of a molten carbonate fuel cell device according to a preferred embodiment of the present invention.

<도면 주요부분에 대한 부호의 설명><Description of Symbols for Main Parts of Drawing>

100...용융탄산염 연료전지 장치 110...압축기Molten Carbonate Fuel Cell Apparatus

120...연료물공급부 130...제1열교환기120 fuel supply 130 first heat exchanger

140...개질기 151...양극부140 ... Modifier 151 ... Anode

153...음극부 155...전기발생부153 ... cathode part 155 ... electric generator part

160...연소기 170...공기유동부160.Combustion unit 170.Air flow section

175...제3열교환기 180...제2열교환기175 ... 3rd heat exchanger 180 ... 2nd heat exchanger

190...터빈190.Turbin

본 발명은 용융탄산염(Molten carbonate fuel cell; MCFC) 연료전지 장치에 관한 것으로서, 보다 상세하게는 작동 및 제어가 단순화된 용융탄산염 연료전지 장치에 관한 것이다.The present invention relates to a molten carbonate fuel cell (MCFC) fuel cell device, and more particularly to a molten carbonate fuel cell device with simplified operation and control.

일반적으로 연료전지는 수소 외에 메탄과 천연가스 등의 화석연료를 사용하는 기체연료와, 메탄올 및 히드라진과 같은 액체연료를 사용하는 것 등 여러 가지의 연료전지가 있고, 작동 온도에 따라 온도가 300℃ 정도 이하의 저온형, 300℃ 정도 이상의 고온형이 있다.In general, there are various fuel cells such as gaseous fuels using fossil fuels such as methane and natural gas in addition to hydrogen, and liquid fuels such as methanol and hydrazine. There are a low temperature type of about below degree, and a high temperature type of about 300 degreeC or more.

또한, 연료전지는 전해질의 종류에 따라 고분자 전해질 연료전지, 인산염 연료전지, 용융탄산염 연료전지, 고체산화물 연료전지 등으로 구분될 수 있다.In addition, the fuel cell may be classified into a polymer electrolyte fuel cell, a phosphate fuel cell, a molten carbonate fuel cell, and a solid oxide fuel cell according to the type of electrolyte.

이 중에서 용융탄산염 연료전지는 일반적으로 다공성 Ni연료극(Anode)과 NiO공기극(Cathode) 사이에 Li2CO3와 K2CO3의 혼합 용융탄산염 전해질을 함유하는 다공성의 LiAIO2매트릭스로 구성된다. The molten carbonate fuel cell is generally composed of a porous LiAIO 2 matrix containing a mixed molten carbonate electrolyte of Li 2 CO 3 and K 2 CO 3 between the porous Ni fuel anode and NiO cathode.

이러한 용융탄산염 연료전지는 그 동작온도가 600℃이상에서 700℃이하이다. 600℃이상의 동작온도로 작동하는 용융탄산염 연료전지는 중·대용량 전력용으로 사용된다. 그리고 수소가 주성분인 연료가스와 산소와 이산화탄소로 구성된 산화제가 각각 연료극과 공기극으로 공급되면 연료전지는 전기와 열 및 물을 생산한다.The molten carbonate fuel cell has an operating temperature of 600 ° C. or higher and 700 ° C. or lower. Molten carbonate fuel cells operating at operating temperatures above 600 ° C are used for medium and large capacity power. The fuel cell produces electricity, heat, and water when a fuel gas, mainly composed of hydrogen, and an oxidant composed of oxygen and carbon dioxide are supplied to the anode and the cathode, respectively.

전기와 열 및 물을 생산하는 용융탄산염 연료전지는 환경친화성 및 열병합 발전으로 대표되는 장점을 가져 병원, 호텔, 아파트 단지 등에 직접 설치하는 현장설치형 및 분산배치형 발전에서부터 기존 대형 화력 발전이나 원자력 발전을 대체하는 중앙집중형발전에 이르기까지 다양하게 적용된다.Molten carbonate fuel cells that produce electricity, heat, and water have the advantages of eco-friendliness and cogeneration, and can be installed directly in hospitals, hotels, and apartment complexes. This can be applied to a centralized generation that replaces

다양하게 적용되는 연료전지는 연료의 고갈에 따른 에너지 위기 극복 및 이산화탄소 등의 배출가스를 발산하는 일반 에너지 구동장치의 단점을 극복하여 열효 율성과 환경친화성이라는 장점 때문에 무공해 발전소 등의 용도로 세계 각국에서 개발 중이다. Fuel cells that are applied in various ways can overcome the energy crisis due to exhaustion of fuel and overcome the shortcomings of general energy driving devices that emit emissions such as carbon dioxide. In development.

특히, 용융탄산염 연료전지 중 에너지 효율을 높이기 위해 공기터빈을 이용하는 경우가 있는데, 이러한 종래의 용융탄산염 연료전지 장치는 압축기를 통해 가압되어 공급된 공기가 열교환기 등을 이용하여 가열되고, 터빈에서 일을 발생시킨 후, 압력이 낮아진 형태로 연소기와 전기 발생부로 이동된다.In particular, there is a case in which an air turbine is used to increase energy efficiency in the molten carbonate fuel cell. In the conventional molten carbonate fuel cell apparatus, the air pressurized through the compressor is heated by using a heat exchanger, and the like in a turbine. After generating, the pressure is moved to the combustor and the electricity generator in a lowered form.

터빈을 지난 공기가 연소기와 전기발생부에 공급되는 경우, 시동 초기나 정시에 터빈 출구부의 압력이 불안정한 경우가 발생하기도 하는데, 이러한 불안정한 압력변동은 압력에 매우 민감한 전기발생부에 영향을 미쳐 안정적인 작동을 불가능하게 하는 위험이 따르는 문제점이 있다.When the air passing through the turbine is supplied to the combustor and the electricity generator, the pressure at the turbine outlet may be unstable at the beginning or on time. This unstable pressure fluctuation affects the pressure generator which is very sensitive to the pressure, resulting in stable operation There is a problem with the risk of making this impossible.

즉, 터빈 출구의 작동시 압력(연료전지 장치 작동시 설계점 압력)은 터빈의 출구의 시동시 압력과 차이가 발생할 수 있으며, 터빈 출구의 압력변화로 인한 요동으로 연료전지 스택에 영향을 미쳐 연료전지 실링부의 누설이 발생할 가능성도 있는 문제점이 있다.의 경우 열효율은 향상되지만, 전기발생부의 경우 압력에 매우 민감하여 초기 시동뿐만 아니라, 운전시에도 안정적인 작동의 어려움이 따른다.That is, the pressure at the turbine outlet (design point pressure at the operation of the fuel cell device) may be different from the pressure at the turbine outlet, and the fuel cell stack may be affected by fluctuations caused by the change in pressure at the turbine outlet. There is also a problem that the leakage of the battery sealing part may occur. In the case of thermal efficiency is improved, but in the case of the electrical generator is very sensitive to the pressure, as well as the initial start-up, it is difficult to operate stable during operation.

본 발명은 상기의 문제점을 해결하기 위하여 창출된 것으로서, 종래의 용융탄산염 연료전지 장치는 터빈으로부터 공기를 공급받아, 압력에 민감한 전기발생부에 영향을 미쳐 연료전지 장치 안정성에 위험이 따랐던 것과 달리, 압력 및 온도 등의 제어가 용이하여 작동이 안정적으로 개선된 용융탄산염 연료전지 장치를 제공 하는 것을 그 목적으로 한다.The present invention has been made to solve the above problems, the conventional molten carbonate fuel cell device is supplied with air from the turbine, affecting the pressure-sensitive electricity generating unit, unlike the risk of fuel cell device stability, It is an object of the present invention to provide a molten carbonate fuel cell device in which operation such as pressure and temperature is easily controlled and operation is stably improved.

부수적으로, 작동 및 제어의 단순화로 연료전지 장치 시동시 발생할 수 있는 오동작의 발생비율을 낮춘 용융탄산염 연료전지 장치를 제공하는 데 있다.Incidentally, the present invention provides a molten carbonate fuel cell device which has a low rate of occurrence of malfunctions that may occur when the fuel cell device is started by simplifying operation and control.

본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시예에 의해 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허 청구 범위에 나타낸 수단 및 조합에 의해 실현될 수 있다.Other objects and advantages of the invention will be described below and will be appreciated by the embodiments of the invention. In addition, the objects and advantages of the present invention can be realized by means and combinations indicated in the claims.

상기의 목적을 달성하기 위한 본 발명의 용융탄산염 연료전지 장치는, 연료와 물을 공급하는 연료물공급부와; 상기 연료물공급부로부터 연료와 물을 공급받아 수소가스가 발생되는 개질기와; 상기 개질기로부터 수소가스를 공급받아 탄산이온과 반응하여 물과 이산화탄소를 발생하는 양극부(Anode)와; 상기 양극부에서 반응하고 남은 수소가스를 연소하는 연소기와; 상기 연소기에 공기를 공급하는 공기유동부와; 상기 연소기를 통해 유입된 이산화탄소와 산소가 반응하여 탄산이온을 발생하여 양극부로 보내는 음극부(Cathode); 및 상기 양극부와 음극부를 포함하며, 전기를 발생하는 전기발생부를 구비한다.The molten carbonate fuel cell apparatus of the present invention for achieving the above object comprises a fuel water supply unit for supplying fuel and water; A reformer for receiving hydrogen gas and fuel from the fuel water supply unit; An anode part receiving hydrogen gas from the reformer and reacting with carbonate ions to generate water and carbon dioxide; A combustor configured to combust the remaining hydrogen gas after reacting at the anode portion; An air flow unit supplying air to the combustor; A cathode part (Cathode) which reacts with carbon dioxide and oxygen introduced through the combustor to generate carbonate ions and to the anode part; And an anode and a cathode, and including an electricity generator for generating electricity.

여기서, 상기 공기유동부는 송풍기일 수 있다.Here, the air flow unit may be a blower.

또한, 외부로부터 공기를 공급받아 공기를 압축하는 압축기와; 상기 압축기에서 압축된 공기와 상기 연료물공급부에서 물을 공급받아 상기 공기와 상기 물을 상기 음극부로부터 회수된 열을 이용하여 열교환하는 제1열교환기와; 상기 제1열교환기로부터 공기를 공급받고 상기 연소기로부터 공기와 이산화탄소를 공급받아 상 기 연소기로부터 발산된 열을 이용하여 상기 제1열교환기에서 열교환된 공기를 재 열교환하는 제2열교환기와; 상기 제2열교환기로부터 공기를 공급받는 터빈; 및 상기 터빈을 통과한 고열의 공기와 상기 공기 유동부로부터 공급되는 공기를 상호 열교환시켜 열을 회수하는 제3열교환기를 더 구비할 수 있다.In addition, the compressor receives air from the outside and compresses the air; A first heat exchanger receiving water compressed by the compressor and water from the fuel water supply unit and heat-exchanging the air and water using heat recovered from the cathode part; A second heat exchanger that receives air from the first heat exchanger, receives air and carbon dioxide from the combustor, and re-exchanges heat exchanged in the first heat exchanger using heat emitted from the combustor; A turbine supplied with air from the second heat exchanger; And a third heat exchanger configured to recover heat by mutually heat-exchanging high-temperature air passing through the turbine and air supplied from the air flow unit.

이하 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the ordinary or dictionary meanings, and the inventors properly define the concept of terms in order to explain their invention in the best way. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that it can.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the drawings shown in the drawings are only one of the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various modifications that can be replaced at the time of the present application It should be understood that there may be equivalents and variations.

도 1은 본 발명의 바람직한 실시예에 따른 용융탄산연 연료전지 장치의 개략도이다.1 is a schematic diagram of a molten carbonate fuel cell apparatus according to a preferred embodiment of the present invention.

도 1을 참조하면, 용융탄산염 연료장치(100)는 연료물공급부(120)와, 개질기(140)와, 양극부(151)와, 연소기(160)와, 공기유동부(170)와, 음극부(153) 및 전기발생부(155)를 구비한다.Referring to FIG. 1, the molten carbonate fuel device 100 includes a fuel water supply unit 120, a reformer 140, an anode unit 151, a combustor 160, an air flow unit 170, and a cathode. The unit 153 and the electricity generating unit 155 is provided.

더욱 구체적으로, 외부로부터 공기를 공급받아 공기를 압축하는 압축기(110) 를 구비할 수 있고, 연료와 물을 공급하는 연료물공급부(120)를 구비한다.More specifically, the compressor 110 may include a compressor 110 that compresses air by receiving air from the outside, and includes a fuel water supply unit 120 that supplies fuel and water.

상기 압축기(110)에서 압축된 공기와 상기 연료물공급부(120)에서 물·연료를 공급받아 상기 공기와 상기 물·연료를 상기 음극부(153)로부터 회수된 열을 이용하여 열교환하는 제1열교환기(130)를 구비할 수 있다.First heat exchange for receiving heat and fuel from the air compressed by the compressor 110 and the fuel water supply unit 120 to exchange heat between the air and the water and fuel using the heat recovered from the cathode unit 153. Group 130 may be provided.

그리고 제1열교환기(130)에서 온도가 열교환된 연료는 상기 개질기(140)로 유동하는데, 상기 개질기(140)는 상기 연료물공급부(120)로부터 천연가스, 메탄올, 석탄, 석유 등과 같은 연료와 물을 공급받아 수소가스를 발생시킨다. 발생된 수소가스는 상기 양극부(Anode)(151)로 유동되어 탄산이온과 반응하여 물과 이산화탄소를 발생한다.And the fuel heat-exchanged in the first heat exchanger 130 flows to the reformer 140, the reformer 140 and the fuel such as natural gas, methanol, coal, petroleum and the like from the fuel water supply unit 120 Water is supplied to generate hydrogen gas. The generated hydrogen gas flows to the anode 151 to react with carbonate ions to generate water and carbon dioxide.

여기서, 양극부 반응식은 H2 + CO3 2 - -> H2O + CO2 + 2e-이다.Here, the anode reaction scheme is H 2 + CO 3 2 - -> H 2 O + CO 2 + 2e - a.

상기 반응하고 남은 수소는 상기 양극부(151)를 통해 상기 연소기(160)로 유동하고, 유동된 물질이 상기 연소기(160)에서 연소된다. 여기서 연소과정에 필요한 공기를 공기유동부(170)로부터 공급받는다. 여기서 상기 공기유동부(170)는 송풍기인 것이 바람직하다.The hydrogen remaining after the reaction flows to the combustor 160 through the anode part 151, and the flowed material is combusted in the combustor 160. Here, the air necessary for the combustion process is supplied from the air flow unit 170. The air flow unit 170 is preferably a blower.

상기 송풍기는 압력에 따라 1000㎜Aq미만인 저압용 팬과 1000㎜Aq이상에서 10,000㎜Aq(Aqua)이하인 고압용의 블로어로 구분되어 있음은 물론이고, 상기 용융탄산염 연료전지 장치(100)의 필요 압력에 따라 선택적으로 장착될 수 있다.The blower is classified into a low pressure fan of less than 1000 mmAq and a blower for high pressure of less than 10,000 mmAq (Aqua), depending on the pressure, and the required pressure of the molten carbonate fuel cell device 100. Can be optionally mounted according to.

이러한 용융탄산염 연료전지 장치(100)는 종래의 용융탄산염 연료전지 장치보다 공기유동부가 더 구비되어 효율이 저하될 수 있으나, 그 효율감소는 1% 미만 으로 극히 미미하다. 종래 용융탄산염 연료전지 장치가 터빈으로부터 직접적으로 전기발생부에 공기를 공급하므로, 터빈출구의 압력변동으로 인해 압력에 민감한 전기발생부에 영향을 미쳐 연료전지 장치 안정성에 위험이 따랐던 것과 달리 송풍기와 같은 공기유동부(170)로부터 대기의 공기를 공급받아 별도로 압력 및 온도 등의 제어가 용이하게 됨으로써 작동 및 제어의 단순화를 가져올 수 있을 뿐만 아니라 연료전지 장치의 안정성을 가져올 수 있다.The molten carbonate fuel cell apparatus 100 may be further provided with an air flow unit than the conventional molten carbonate fuel cell apparatus, so that the efficiency may be lowered, but the efficiency decrease is extremely small, less than 1%. Conventional molten carbonate fuel cell device directly supplies air to the electricity generation unit from the turbine, so the pressure fluctuation of the turbine outlet affects the pressure sensitive electricity generation unit, unlike the risk of fuel cell device stability, such as a blower By receiving the air in the air from the air flow unit 170, it is easy to separately control the pressure and temperature, etc., which can bring about simplicity of operation and control as well as stability of the fuel cell device.

또한, 공기유동부(170)로부터 배출되는 공기의 유량과 압력을 임의로 조절할 수 있어 용융탄산염 연료전지 장치 음극부(153)로 공급되는 가스를 일정하게 공급할 수 있을 뿐만 아니라 양극부(151)에서 배출된 가스와 공기유동부(170) 공기의 혼합도 원할히 할 수 있다.In addition, the flow rate and pressure of the air discharged from the air flow unit 170 can be arbitrarily adjusted, so that the gas supplied to the molten carbonate fuel cell device negative electrode unit 153 can be constantly supplied as well as discharged from the positive electrode unit 151. Mixing of the gas and the air of the air flow unit 170 may also be smooth.

부수적으로, 작동 및 제어의 단순화로 연료전지 장치 시동시 발생할 수 있는 오동작의 발생비율을 낮출 수 있게 된다.Incidentally, the simplification of operation and control makes it possible to lower the rate of occurrence of malfunctions that may occur at the start of the fuel cell device.

그리고 상기 제1열교환기(130)로부터 공기를 공급받고 상기 연소기(160)로부터 공기와 이산화탄소를 공급받아 상기 연소기(160)로부터 발산된 열을 이용하여 상기 제1열교환기(130)에서 열교환된 공기를 재 열교환하는 제2열교환기(180)를 구비할 수 있다. 여기서 이산화탄소는 상기 연소기에서 연소 후 발생한 것과 양극부에서 발생된 것이다.In addition, the air is supplied from the first heat exchanger 130, the air and carbon dioxide are supplied from the combustor 160, and the air heat-exchanged in the first heat exchanger 130 using heat emitted from the combustor 160. It may be provided with a second heat exchanger 180 for heat exchange again. Here, carbon dioxide is generated after combustion in the combustor and generated in the anode portion.

그리고 상기 연소기(160)를 통해 유입된 공기가 상기 제2열교환기(180)를 통해 상기 음극부(Cathode)(153)로 유동된다. In addition, the air introduced through the combustor 160 flows to the cathode 153 through the second heat exchanger 180.

또한, 상기 양극부(151)와 상기 음극부(153)를 복수개 적층하여 내포하는 상 기 전기발생부(155)를 구비한다. 상기 전기발생부(155)는 상기 양극부(151)에서 분리된 수소이온과 전자가 상기 양극부(153)의 공기 중 산소와 반응하여 물과 전기가 발생한다. In addition, the positive electrode unit 151 and the negative electrode unit 153 is provided with a plurality of electrical generators 155 to be stacked. The electricity generating unit 155 generates water and electricity by reacting hydrogen ions and electrons separated from the anode unit 151 with oxygen in the air of the anode unit 153.

그리고 상기 전기발생부(155)의 음극부(153)로 산화제가 공급된다. 이러한 음극부(153)에서는 산소가 환원되며, 반응에서 생성된 탄산이온을 전해질에 제공한다. 즉, 음극부(153)는 음극으로부터 외부회로를 통해 전달된 전자를 산소에 제공하고 생성된 탄산이온을 전해질에 전도하는 역할을 한다.The oxidant is supplied to the cathode 153 of the electricity generator 155. In the cathode portion 153, oxygen is reduced, and the carbonate generated in the reaction is provided to the electrolyte. That is, the cathode portion 153 serves to supply the electrons transferred from the cathode through the external circuit to the oxygen and to conduct the generated carbonate ions to the electrolyte.

여기서 음극부 반응식은 1/2O2 + CO2 + 2e- -> CO3 2 -이다.Where cathodic reaction formula is 1 / 2O 2 + CO 2 + 2e - -> CO 3 2 - a.

또한, 상기 전기발생부(155)의 양극부(151)에서는 전기 화학적 산화반응이 일어난다. 아울러 전기발생부(155)는 전해질 매트릭스(미도시)를 구비할 수 있는데, 상기 전해질 매트릭스는 두 전극의 합선을 막는 전기 부도체의 역할과 탄산이온을 양극에서 음극으로 전달하는 통로역할을 한다. 그리고 연료기체와 산화기체의 상호교통을 방지하는 역할과 전지 몸체사이의 기체누설을 막는 씰(Seal)역할도 한다.In addition, an electrochemical oxidation reaction occurs at the anode portion 151 of the electricity generating portion 155. In addition, the electricity generating unit 155 may include an electrolyte matrix (not shown). The electrolyte matrix serves as an electrical insulator that prevents short circuit between two electrodes and serves as a passage for transferring carbonate ions from the positive electrode to the negative electrode. It also serves to prevent the intercommunication between fuel gas and oxidant gas, and to prevent gas leakage between the cell body.

게다가, 용융탄산염 연료전지 장치(100)는 터빈(190)을 구비할 수 있다. 상기 제1열교환기(130)로부터 이동된 공기가 상기 제2열교환기(180)에서 이동된 공기와 상호 열교환 되어 상기 터빈(190)으로 이동된다.In addition, the molten carbonate fuel cell device 100 may include a turbine 190. The air moved from the first heat exchanger 130 is mutually heat exchanged with the air moved from the second heat exchanger 180 to be moved to the turbine 190.

뿐만 아니라 상기 터빈(190)을 통과한 고열의 공기와 상기 공기 유동부(170) 로부터 공급되는 공기를 상호 열교환시켜 열을 회수하는 제3열교환기(175)를 구비할 수 있다.In addition, a third heat exchanger 175 may be provided to recover heat by mutually heat-exchanging the high-temperature air passing through the turbine 190 and the air supplied from the air flow unit 170.

여기서 상기 터빈(190)으로부터 배출된 공기는 연소기(160)로 공급되지 않고 상기 제3열교환기(175)를 통하여 외부로 배출됨으로써 연료전지와 터빈을 별도로 운전하게 되어 상기 용융탄산염 연료전지 장치의 안정적인 운행을 할 수 있다.In this case, the air discharged from the turbine 190 is not supplied to the combustor 160, but is discharged to the outside through the third heat exchanger 175 to separately operate the fuel cell and the turbine, thereby stably maintaining the molten carbonate fuel cell device. Can operate.

아울러, 상기 압축기와 상기 터빈은 축으로 직·간접적으로 연결되어 있을 수 있으며, 도 1에 도시된 바와 같이 서로 분리되어 각각 압축기는 모터(M)를 터빈은 발전기(G)를 구비할 수도 있다.In addition, the compressor and the turbine may be connected directly or indirectly to the shaft, as shown in Figure 1 are separated from each other, the compressor may be provided with a motor (M), respectively, the turbine may include a generator (G).

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이에 의해 한정되지 않으며 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto and is described by the person of ordinary skill in the art and below. Various modifications and variations are possible without departing from the scope of the appended claims.

상술한 바와 같이 본 발명의 용융탄산염 연료전지 장치는 다음과 같은 효과를 제공한다.As described above, the molten carbonate fuel cell apparatus of the present invention provides the following effects.

종래의 용융탄산염 연료전지 장치는 터빈을 통해 공기를 공급받아, 압력에 민감한 전기발생부에 영향을 미쳐 연료전지 장치 안정성에 위험이 따랐지만, 본 발명은 송풍기와 같은 공기유동부가 구비되어 공기공급부와 압축기/터빈이 분리됨으로써, 압력 및 온도 등의 제어가 용이하게 되어 작동 및 제어의 단순화를 가져올 수 있을 뿐만 아니라 오동작의 발생비율을 낮추어 주므로 연료전지 장치의 안정성 도 가져온다. Conventional molten carbonate fuel cell device is supplied with air through a turbine, affecting the pressure-sensitive electricity generating unit has a risk in the stability of the fuel cell device, the present invention is provided with an air flow unit such as a blower air supply unit and As the compressor / turbine is separated, it is easy to control pressure and temperature, thereby simplifying operation and control as well as lowering the occurrence rate of malfunction, thereby bringing stability of the fuel cell apparatus.

Claims (3)

연료와 물을 공급하는 연료물공급부와;A fuel water supply unit supplying fuel and water; 상기 연료물공급부로부터 연료와 물을 공급받아 수소가스가 발생되는 개질기와;A reformer for receiving hydrogen gas and fuel from the fuel water supply unit; 상기 개질기로부터 수소가스를 공급받아 탄산이온과 반응하여 물과 이산화탄소를 발생하는 양극부(Anode)와;An anode part receiving hydrogen gas from the reformer and reacting with carbonate ions to generate water and carbon dioxide; 상기 양극부에서 반응하고 남은 수소가스를 연소하는 연소기와;A combustor configured to combust the remaining hydrogen gas after reacting at the anode portion; 상기 연소기에 공기를 공급하는 공기유동부와;An air flow unit supplying air to the combustor; 상기 연소기를 통해 유입된 이산화탄소와 산소가 반응하여 탄산이온을 발생하여 양극부로 보내는 음극부(Cathode); 및A cathode part (Cathode) which reacts with carbon dioxide and oxygen introduced through the combustor to generate carbonate ions and to the anode part; And 상기 양극부와 음극부를 포함하며, 전기를 발생하는 전기발생부를 구비하고,Comprising the positive and negative portions, and having an electricity generating portion for generating electricity, 외부로부터 공기를 공급받아 공기를 압축하는 압축기와;A compressor for compressing air by receiving air from the outside; 상기 압축기에서 압축된 공기와 상기 연료물공급부에서 물을 공급받아 상기 공기와 상기 물을 상기 음극부로부터 회수된 열을 이용하여 열교환하는 제1열교환기와;A first heat exchanger receiving water compressed by the compressor and water from the fuel water supply unit and heat-exchanging the air and water using heat recovered from the cathode part; 상기 제1열교환기로부터 공기를 공급받고 상기 연소기로부터 공기와 이산화탄소를 공급받아 상기 연소기로부터 발산된 열을 이용하여 상기 제1열교환기에서 열교환된 공기를 재 열교환하는 제2열교환기와;A second heat exchanger that receives air from the first heat exchanger, receives air and carbon dioxide from the combustor, and re-exchanges heat exchanged in the first heat exchanger using heat emitted from the combustor; 상기 제2열교환기로부터 공기를 공급받아 구동되는 터빈; 및A turbine driven by receiving air from the second heat exchanger; And 상기 터빈을 통과한 고열의 공기와 상기 공기 유동부로부터 공급되는 공기를 상호 열교환시켜 열을 회수하는 제3열교환기를 더 구비하는 것을 특징으로 하는 용융탄산염 연료전지 장치.And a third heat exchanger for recovering heat by mutually exchanging heat of high-temperature air passing through the turbine and air supplied from the air flow unit. 제 1항에 있어서,The method of claim 1, 상기 공기유동부는 송풍기인 것을 특징으로 하는 용융탄산염 연료전지 장치.The molten carbonate fuel cell device, characterized in that the air flow is a blower. 삭제delete
KR1020060048849A 2006-05-30 2006-05-30 Molten Carbonate Fuel Cell Device Expired - Fee Related KR100651270B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060048849A KR100651270B1 (en) 2006-05-30 2006-05-30 Molten Carbonate Fuel Cell Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060048849A KR100651270B1 (en) 2006-05-30 2006-05-30 Molten Carbonate Fuel Cell Device

Publications (1)

Publication Number Publication Date
KR100651270B1 true KR100651270B1 (en) 2006-11-30

Family

ID=37714096

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060048849A Expired - Fee Related KR100651270B1 (en) 2006-05-30 2006-05-30 Molten Carbonate Fuel Cell Device

Country Status (1)

Country Link
KR (1) KR100651270B1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100490A1 (en) * 2011-12-27 2013-07-04 포스코에너지 주식회사 Fuel cell hybrid system
KR101358095B1 (en) * 2011-09-28 2014-02-05 한국기계연구원 Fuel cell hybrid system
US9038579B2 (en) 2011-05-11 2015-05-26 Korea Institute Of Machinery & Materials Fuel cell-engine hybrid system
US9077006B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9077008B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
CN114762156A (en) * 2019-12-18 2022-07-15 三菱重工业株式会社 Pressurized air supply system and method for starting pressurized air supply system
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell
US12334607B2 (en) 2019-11-26 2025-06-17 ExxonMobil Technology and Engineering Company Fuel cell assembly with external manifold for parallel flow
US12355085B2 (en) 2018-11-30 2025-07-08 ExxonMobil Technology and Engineering Company Cathode collector structures for molten carbonate fuel cell
US12374703B2 (en) 2018-11-30 2025-07-29 ExxonMobil Technology and Engineering Company Flow field baffle for molten carbonate fuel cell cathode

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9038579B2 (en) 2011-05-11 2015-05-26 Korea Institute Of Machinery & Materials Fuel cell-engine hybrid system
KR101358095B1 (en) * 2011-09-28 2014-02-05 한국기계연구원 Fuel cell hybrid system
US9435230B2 (en) 2011-12-27 2016-09-06 Posco Energy Co., Ltd. Fuel cell hybrid system
KR101352198B1 (en) * 2011-12-27 2014-01-16 포스코에너지 주식회사 Fuel cell hybrid system
CN104170139A (en) * 2011-12-27 2014-11-26 Posco能源公司 Fuel cell hybrid system
WO2013100490A1 (en) * 2011-12-27 2013-07-04 포스코에너지 주식회사 Fuel cell hybrid system
US9786939B2 (en) 2013-03-15 2017-10-10 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9923219B2 (en) 2013-03-15 2018-03-20 Exxonmobile Research And Engineering Company Integrated operation of molten carbonate fuel cells
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9178234B2 (en) 2013-03-15 2015-11-03 Exxonmobil Research And Engineering Company Integrated power generation using molten carbonate fuel cells
US9257711B2 (en) 2013-03-15 2016-02-09 Exxonmobil Research And Engineering Company Integrated carbon capture and chemical production using fuel cells
US9263755B2 (en) 2013-03-15 2016-02-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9343764B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in methanol synthesis
US9343763B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells for synthesis of nitrogen compounds
US9362580B2 (en) 2013-03-15 2016-06-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in a refinery setting
US9419295B2 (en) 2013-03-15 2016-08-16 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells at a reduced electrical efficiency
US9077008B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9455463B2 (en) 2013-03-15 2016-09-27 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9520607B2 (en) 2013-03-15 2016-12-13 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells with fermentation processes
US9553321B2 (en) 2013-03-15 2017-01-24 Exxonmobile Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US10676799B2 (en) 2013-03-15 2020-06-09 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9647284B2 (en) 2013-03-15 2017-05-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9650246B2 (en) 2013-03-15 2017-05-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US9735440B2 (en) 2013-03-15 2017-08-15 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US10093997B2 (en) 2013-03-15 2018-10-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9077006B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9941534B2 (en) 2013-03-15 2018-04-10 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9077005B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US10283802B2 (en) 2013-09-30 2019-05-07 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US12355085B2 (en) 2018-11-30 2025-07-08 ExxonMobil Technology and Engineering Company Cathode collector structures for molten carbonate fuel cell
US12374703B2 (en) 2018-11-30 2025-07-29 ExxonMobil Technology and Engineering Company Flow field baffle for molten carbonate fuel cell cathode
US12095129B2 (en) 2018-11-30 2024-09-17 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11616248B2 (en) 2018-11-30 2023-03-28 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11843150B2 (en) 2018-11-30 2023-12-12 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11888199B2 (en) 2019-11-26 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US12334607B2 (en) 2019-11-26 2025-06-17 ExxonMobil Technology and Engineering Company Fuel cell assembly with external manifold for parallel flow
US12347910B2 (en) 2019-11-26 2025-07-01 ExxonMobil Technology and Engineering Company Fuel cell power plant with a racked fuel cell module
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
CN114762156A (en) * 2019-12-18 2022-07-15 三菱重工业株式会社 Pressurized air supply system and method for starting pressurized air supply system
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell

Similar Documents

Publication Publication Date Title
KR100651270B1 (en) Molten Carbonate Fuel Cell Device
Lanzini et al. Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells
KR101352198B1 (en) Fuel cell hybrid system
US7846599B2 (en) Method for high temperature fuel cell system start up and shutdown
KR20060044624A (en) Integrated Fuel Cell-Gas Turbine Systems
WO2010044113A1 (en) Apparatus and method for capturing carbon dioxide from combustion exhaust gas and generating electric energy by means of mcfc systems
JP2007287580A (en) Power generation equipment
JP6320204B2 (en) Fuel cell heating apparatus, heating method, and fuel cell apparatus including the same
KR101028850B1 (en) Compact Solid Oxide Fuel Cell System
KR20170132421A (en) Fuel-cell system
JPS6280968A (en) fuel cell power plant
KR100405142B1 (en) Electric power system for Fuel Cell generation
JP2013521601A (en) Method and apparatus for preventing anodic oxidation
KR102457726B1 (en) Off-gas Combustion System For SOFC
TWI797800B (en) Fuel cell power generation system, and control method for fuel cell power generation system
JP3246515B2 (en) Fuel cell system
KR100623942B1 (en) Molten Carbonate Fuel Cell System
CN114122460A (en) SOFC energy system
CN114730895A (en) Fuel cell system and control method thereof
CN112164817A (en) Solid oxide fuel cell power generation system
CN115428201A (en) Fuel cell power generation system
KR20010056025A (en) Apparatus of starting a fuel cell power generation system
KR20210083030A (en) Fuel cell system for building
JP3928675B2 (en) Combined generator of fuel cell and gas turbine
JP5134186B2 (en) Combined power generation system using solid oxide fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

A302 Request for accelerated examination
PA0302 Request for accelerated examination

St.27 status event code: A-1-2-D10-D17-exm-PA0302

St.27 status event code: A-1-2-D10-D16-exm-PA0302

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

R15-X000 Change to inventor requested

St.27 status event code: A-3-3-R10-R15-oth-X000

R16-X000 Change to inventor recorded

St.27 status event code: A-3-3-R10-R16-oth-X000

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

E13-X000 Pre-grant limitation requested

St.27 status event code: A-2-3-E10-E13-lim-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

FPAY Annual fee payment

Payment date: 20121023

Year of fee payment: 7

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

FPAY Annual fee payment

Payment date: 20130904

Year of fee payment: 8

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 8

FPAY Annual fee payment

Payment date: 20140917

Year of fee payment: 9

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 9

FPAY Annual fee payment

Payment date: 20150909

Year of fee payment: 10

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 10

FPAY Annual fee payment

Payment date: 20160907

Year of fee payment: 11

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 11

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

FPAY Annual fee payment

Payment date: 20170907

Year of fee payment: 12

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 12

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 13

FPAY Annual fee payment

Payment date: 20190909

Year of fee payment: 14

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 14

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 15

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 16

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 17

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 18

PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20241123

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20241123