[go: up one dir, main page]

KR100660389B1 - Biological Recovery Method of Phthalate Compound Using Wood Decay Bacteria - Google Patents

Biological Recovery Method of Phthalate Compound Using Wood Decay Bacteria Download PDF

Info

Publication number
KR100660389B1
KR100660389B1 KR1020050033997A KR20050033997A KR100660389B1 KR 100660389 B1 KR100660389 B1 KR 100660389B1 KR 1020050033997 A KR1020050033997 A KR 1020050033997A KR 20050033997 A KR20050033997 A KR 20050033997A KR 100660389 B1 KR100660389 B1 KR 100660389B1
Authority
KR
South Korea
Prior art keywords
phthalate
mushrooms
recovery method
wood
mushroom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
KR1020050033997A
Other languages
Korean (ko)
Other versions
KR20060112288A (en
Inventor
김명길
최돈하
이성숙
현 박
최준원
최인규
정의배
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020050033997A priority Critical patent/KR100660389B1/en
Publication of KR20060112288A publication Critical patent/KR20060112288A/en
Application granted granted Critical
Publication of KR100660389B1 publication Critical patent/KR100660389B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B3/00Devices or single parts for facilitating escape from buildings or the like, e.g. protection shields, protection screens; Portable devices for preventing smoke penetrating into distinct parts of buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/343Structures characterised by movable, separable, or collapsible parts, e.g. for transport
    • E04B1/344Structures characterised by movable, separable, or collapsible parts, e.g. for transport with hinged parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 목재부후균을 이용한 프탈레이트화합물의 생물학적 복구방법에 관한 것으로, 본 발명에 따른 목재부후균을 이용한 프탈레이트화합물의 생물학적 복구방법은 목재부후균, 바람직하게는 꽃구름버섯, 숲주름버섯, 큰껍질버섯 및 아교버섯으로 이루어진 그룹으로부터 하나 이상 선택되는 것을 특징으로 하는 목재부후균을 배양하여 이들이 생산하는 효소로부터 프탈레이트화합물을 분해하는 생물학적 복구방법에 관한 것이다.The present invention relates to a biological recovery method of the phthalate compound using wood fungi, the biological recovery method of the phthalate compound using wood fungi according to the present invention wood fungi, preferably flowering mushrooms, forest mushrooms, large It relates to a biological recovery method for culturing wood fungi characterized in that at least one selected from the group consisting of bark mushrooms and glue mushrooms to decompose phthalate compounds from the enzymes they produce.

본 발명에 따른 목재부후균을 이용한 프탈레이트화합물의 생물학적 복구방법은 내분비계 장애물질에 해당하는 프탈레이트화합물을 분해할 수 있으므로, 플라스틱 제품내 존재하는 프탈레이트화합물에 의하여 오염된 토양이나 수질 및 생물분해반응기에서의 생물학적 분해 및 복구법에 유용하다.The biological recovery method of the phthalate compound using wood fungi according to the present invention can decompose phthalate compounds corresponding to endocrine disruptors, so in soil or water contaminated with phthalate compounds present in plastic products Useful for biological degradation and repair of

목재부후균, 꽃구름버섯, 숲주름버섯, 큰껍질버섯, 아교버섯, 프탈레이트에스테르 Wood fungus, flowering cloud mushroom, forest mushroom, bark mushroom, glue mushroom, phthalate ester

Description

목재부후균을 이용한 프탈레이트화합물의 생물학적 복구방법{Bioremediation method of Phthalate Esters by Wood Rot Fungi}Bioremediation method of phthalate compound using wood fungus {Bioremediation method of Phthalate Esters by Wood Rot Fungi}

도 1은 프탈레이트화합물 중 디에틸프탈레이트(DEP), 디에틸헥실프탈레이트(DEHP), 디사이클로헥실프탈레이트(DCP) 및 벤질부틸프탈레이트(BBP)의 화학구조식을 나타낸다.1 shows chemical formulas of diethyl phthalate (DEP), diethylhexyl phthalate (DEHP), dicyclohexyl phthalate (DCP) and benzyl butyl phthalate (BBP) in phthalate compounds.

도 2는 디에틸프탈레이트(DEP), 디에틸헥실프탈레이트(DEHP), 디사이클로헥실프탈레이트(DCP) 및 벤질부틸프탈레이트(BBP)에 대한 공시균주의 저항성을 나타낸다.FIG. 2 shows the resistance of the test strain to diethylphthalate (DEP), diethylhexylphthalate (DEHP), dicyclohexylphthalate (DCP) and benzylbutylphthalate (BBP).

도 3은 디에틸프탈레이트(DEP), 디에틸헥실프탈레이트(DEHP), 디사이클로헥실프탈레이트(DCP) 및 벤질부틸프탈레이트(BBP)에 의한 락카제(Laccase)와 Mn-퍼옥시다제의 유도효과를 나타낸다.Figure 3 shows the induction effect of laccase and Mn-peroxidase by diethyl phthalate (DEP), diethylhexyl phthalate (DEHP), dicyclohexyl phthalate (DCP) and benzylbutyl phthalate (BBP) .

도 4는 디에틸프탈레이트(DEP), 디에틸헥실프탈레이트(DEHP), 디사이클로헥실프탈레이트(DCP) 및 벤질부틸프탈레이트(BBP)의 배양기간별 분해능을 나타낸다.Figure 4 shows the resolution of the diethyl phthalate (DEP), diethylhexyl phthalate (DEHP), dicyclohexyl phthalate (DCP) and benzyl butyl phthalate (BBP) for each culture period.

도 5는 디에틸프탈레이트(DEP), 디에틸헥실프탈레이트(DEHP), 디사이클로헥실프탈레이트(DCP) 및 벤질부틸프탈레이트(BBP)의 분해기작을 나타낸다.5 shows the decomposition mechanism of diethyl phthalate (DEP), diethylhexyl phthalate (DEHP), dicyclohexyl phthalate (DCP) and benzylbutyl phthalate (BBP).

도 6은 DEP에 대한 세포증식성 조사결과를 나타낸다.Figure 6 shows the results of cell proliferation for DEP.

도 7은 DEHP에 대한 세포증식성 조사결과를 나타낸다.Figure 7 shows the results of cell proliferation for DEHP.

도 8은 DCP에 대한 세포증식성 조사결과를 나타낸다.Figure 8 shows the results of cell proliferation investigation for DCP.

도 9는 BBP에 대한 세포증식성 조사결과를 나타낸다.Figure 9 shows the results of cell proliferation investigation for BBP.

도 10은 꽃구름버섯과 숲주름버섯에 의한 DCP와 그 분해산물에 대한 에스트로겐성을 나타낸다.Figure 10 shows the estrogen properties of DCP and its degradation products by the cloud mushroom and forest wrinkle mushroom.

도 11은 큰껍질버섯과 아교버섯에 의한 BBP와 그 분해산물에 대한 에스트로겐성을 나타낸다.Figure 11 shows the estrogen properties of BBP and its degradation products by the bark mushrooms and glue mushrooms.

본 발명은 목재부후균, 바람직하게는 꽃구름버섯, 숲주름버섯, 큰껍질버섯 및 아교버섯으로 이루어진 그룹으로부터 하나 이상 선택되는 것을 특징으로 하는 목재부후균을 배양하여 이들이 생산하는 효소로부터 프탈레이트화합물을 분해하는 생물학적 복구방법에 관한 것이다.The present invention is culturing wood fungi, preferably selected from the group consisting of wood fungi, preferably flowering mushrooms, forest wrinkle mushrooms, bark mushrooms and glue mushrooms phthalate compounds from the enzymes they produce It relates to a biological recovery method to decompose.

내분비계 장애물질로 분류되는 프탈레이트화합물은 플라스틱 산업에 널리 사용되는 관계로 최근에 들어 관심이 높아가고 있다. 국내에서도 주로 오염된 토양이나 수질에서의 우선 순위, 모니터링, 내분비 교란 정도 측정 방법, 내분비계 작용을 판정하는 스크리닝법 개발 등에 관한 연구가 이루어지고 있으나 직접적으로 내 분비계 장애물질을 분해하는 기술 개발에 대한 연구는 매우 미비한 실정이다.Phthalates, which are classified as endocrine barriers, are widely used in the plastics industry, and thus, recently, interest has increased. In Korea, research is mainly conducted on the development of screening methods to determine the priority, monitoring, endocrine disruption, and endocrine disruption in contaminated soil or water quality. The research is very poor.

오염 또는 기피물질 처리를 위한 미생물 이용 또는 향상 공정은 총칭적으로 생물학적 복구법(bioremediation)이라는 표제 아래 최근 관심의 초점이 되고 있는데, 내분비계 장애물질의 분해 기술 개발에 대한 생물학적 연구는 주로 박테리아 등을 이용한 연구가 주를 이루고 있다. 그 예로 노닐페놀(nonylphenol), 가스상태 스티렌(styrene)을 백색부후균을 이용하여 분해를 시도하거나, 그람 음성 호기성 박테리아(gram-negative aerobic bacteria)가 비스페놀-A(bisphenol-A)를 분해하고, 스핑고모나스 속(Sphingomonas sp.)이 에너지원과 탄소원으로 노닐페놀(nonylphenol)을 이용한다는 보고도 있다.The use or enhancement of microorganisms for the treatment of contaminated or repellent materials has become a hot topic of recent interest under the generic name bioremediation. Biological studies on the development of endocrine disrupting technologies have mainly focused on bacteria and the like. The research used is dominant. For example, nonylphenol and gaseous styrene can be decomposed using white fungus, or gram-negative aerobic bacteria decompose bisphenol-A. Sphingomonas sp. Has been reported to use nonylphenol as an energy and carbon source.

그러나 이들 난분해성물질 분해에 있어서 박테리아 외의 다른 미생물에 의해서는 연구가 활발하지 않는 실정이다. 따라서 산업적 잠재력을 가지고 있는 리그닌 분해균과 그들의 효소를 이용해 내분비계 장애물질과 같은 난분해성 물질의 분해에 대한 연구에 관심이 모아지고 있다. 특히, 프탈레이트류 중에서도 디부틸프탈레이트(dibutylphthalate)에 대한 연구로는 슈도모나스 슈도알칼리게네스(Pseudomonas pseudoalcaligenes)에 의해 프탈릭 산(phthalic acid)으로 분해산물을 얻었다는 보고도 있다. 그러나 목재 내 난분해 물질인 리그닌을 분해시키는 백색 부후균 등의 목재부후균을 이용한 생물학적 분해는 미진한 실정이다.However, in the degradation of these hardly decomposable substances, research by the microorganisms other than bacteria is not active. Therefore, attention has been focused on the decomposition of hardly decomposable substances such as endocrine disruptors using lignin degrading bacteria and their enzymes having industrial potential. In particular, among the phthalates, dibutylphthalate has been reported to be obtained by decomposing the product into phthalic acid by Pseudomonas pseudoalcaligenes. However, biological degradation using wood fungi, such as white fungi, which degrades lignin, a wood-degradable substance in wood, is insufficient.

목재부후균은 강한 폴리머인 리그닌을 공격하여 분해시키는 퍼옥시다제(peroxidase)와 폴리페놀 옥시다제(polyphenol oxidase) 등을 분비하므로 현재의 생물학적 복구법의 주요 초점이 되고 있다. 상기 리그닌 분해 효소는 폴리머를 분 해시키는 양상이 비특이성(non-specific)으로 리그닌과 유사한 구조를 가지는 난분해성(recalcitrant) 화합물인 클로리네이티드 페놀(chlorinated phenol), 폴리클로리네이티드 바이페닐(polychlorinated biphenyl, PCB), DDT, 다이옥신(dioxins), 폴리아로마틱 하이드로카본(polyaromatic hydrocarbons, PAH), 니트로톨루어네(nitrotoluenes) 등의 분해를 가능하게 한다.Wood fungi secrete peroxidase and polyphenol oxidase, which attack and degrade lignin, a strong polymer, and thus become a major focus of current biological repair methods. The lignin degrading enzyme is a non-specific chlorinated phenol, polychlorinated biphenyl, which is a non-specific recalcitrant compound having a structure similar to that of lignin. polychlorinated biphenyl (PCB), DDT, dioxins, polyaromatic hydrocarbons (PAH), and nitrotoluenes.

그러나, 꽃구름버섯, 숲주름버섯, 큰껍질버섯 및 아교버섯 등의 목재부후균에 의해 내분비계 장애물질인 프탈레이트화합물을 분해하는 방법에 대하여 개발된 예가 없으므로, 본 발명에서는 목재부후균 중 플라스틱 가소제인 프탈레이트화합물에 대한 분해능을 갖는 균주를 선발하여 분해력 및 저항성을 분석하고 에스트로겐성에 대한 저감효과를 규명하여 내분비계 장애물질에 대한 분해기술을 확립하여 본 발명을 완성하기에 이르렀다.However, there is no example developed for the method of decomposing endocrine-caused phthalate compounds by wood fungi, such as flowering mushrooms, forest fungi, bark mushrooms and glue mushrooms, in the present invention, plastic plasticizer among wood fungi By selecting a strain having a resolution to the phosphorus phthalate compound to analyze the resolution and resistance, and to find the effect of reducing the estrogens to establish the decomposition technology for endocrine disruptors to complete the present invention.

본 발명의 목적은 프탈레이트화합물을 포함하는 플라스틱 가소제에서 유출되어 오염된 토양, 수질 및 생물분해반응기에서의 프탈레이트화합물의 생물학적 분해 및 복구법으로 이용될 수 있도록, 목재부후균, 바람직하게는 꽃구름버섯, 숲주름버섯, 큰껍질버섯 및 아교버섯을 배양하여 이들이 생산하는 효소로부터 프탈레이트화합물을 분해하는 생물학적 복구방법을 제공하는 것이다.An object of the present invention is wood fungus, preferably cloud mushroom, so that it can be used as a biodegradation and recovery method of phthalate compounds in contaminated soil, water quality and biodegradation reactor by spilling out of plasticizer containing phthalate compounds. To provide a biological recovery method for culturing forest wrinkle mushrooms, bark mushrooms and glue mushrooms to decompose phthalate compounds from the enzymes they produce.

상기 목적을 달성하기 위하여, 본 발명은 목재부후균을 배양하여 이들이 생산하는 효소로부터 프탈레이트화합물을 분해하는 생물학적 복구방법을 특징으로 한다. 상기 목재부후균은 바람직하게는 꽃구름버섯, 숲주름버섯, 큰껍질버섯 및 아교버섯으로 이루어진 그룹으로부터 하나 이상 선택되는 것을 특징으로 한다.In order to achieve the above object, the present invention is characterized by a biological recovery method of culturing wood fungi to decompose phthalate compounds from the enzymes they produce. The wood fungus is preferably characterized in that at least one selected from the group consisting of flowering mushrooms, forest wrinkle mushrooms, bark mushrooms and glue mushrooms.

본 발명은 프탈레이트화합물을 이용하는 플라스틱 가소제로 사용하는 산업에서 유출되어 오염된 토양, 수질 및 생물분해반응기에서의 프탈레이트화합물의 생물학적 분해 및 복구법에 관한 것이다.The present invention relates to a biodegradation and recovery method of phthalate compounds in contaminated soil, water quality and biodegradation reactor in the industry used as plastic plasticizers using phthalate compounds.

플라스틱제품 가소제인 프탈레이트화합물은 호르몬계와 생식기에 이상을 보이는 내분비계 장애물질이며, 상기 프탈레이트화합물은 바람직하게는 프탈레이트에스테르이며, 그 예로서 디에틸프탈레이트(diethylphthalate, DEP), 디에틸헥실프탈레이트(diethylhexylphthalate, DEHP), 디사이클로헥실프탈레이트(dicyclohexylphthalate, DCP) 및 벤질부틸프탈레이트( benzylbutylphthalate, BBP) 등이 있고, 각각의 화학구조식은 도 1과 같다.      Phthalate compounds, which are plasticizers for plastic products, are endocrine disruptors that show abnormalities in the hormone system and genital organs. The phthalate compounds are preferably phthalate esters. For example, diethylphthalate (DEP), diethylhexylphthalate, DEHP), dicyclohexylphthalate (DCP) and benzylbutylphthalate (BBP), and the like, and the chemical formulas of each are shown in FIG. 1.

본 발명자들은 국립산림과학원 미생물화학실 기보유균주 84종과 임산버섯 31종 중 프탈레이트류 함유농도 200ppm에서 저항성을 보이는 우수 균주를 선발한 결과, 아교버섯(Phlebia tremellosa), 겨울우산버섯(Polyporus brumalis), 꽃구름버섯(Stereum hirsutum), 숲주름버섯(Agaricus silvaticus), 큰껍질버섯(Lopharia mirabilis), 큰이빨버섯(Basidioradulum molare), 벽돌빛잔나비버섯(Heterobasidium insulare)이 선발되어 이들 균주를 공시균주로 사용하였다.
본 발명의 명세서 및 도면에서 필요한 경우에는 위의 아교버섯은 「아교」로, 겨울우산버섯은 「겨울우산」」또는 「POB」으로, 꽃구름버섯은 「꽃구름」으로, 숲주름버섯은 「숲주름」또는 「숲」으로, 큰껍질버섯은 「큰껍질」또는 「LOM」로, 큰이빨버섯은 「큰이빨」로, 벽돌빛잔나비버섯은 「벽돌빛잔나비」로 각각 약칭된다.
The present inventors selected excellent strains showing resistance to phthalate-containing concentrations of 200ppm among 84 species of cultivated strains of the National Forest Research Institute of Microbial Chemistry and 31 kinds of forest mushrooms, Phlebia tremellosa, Polylacticus mushroom (Polyporus brumalis), Flower cloud mushrooms (Stereum hirsutum), forest wrinkle mushrooms (Agaricus silvaticus), bark mushrooms (Lopharia mirabilis), big tooth mushrooms (Basidioradulum molare), and brick beetle butterfly (Heterobasidium insulare) were selected and used as the strain It was.
Where necessary in the specification and drawings of the present invention, the above glue mushrooms are "glue", the winter umbrella is "winter umbrella" or "POB", the flower cloud is "petal cloud", the forest wrinkle is " It is abbreviated as "wood wrinkle" or "forest", big husk mushroom is "big shell" or "LOM", big tooth mushroom is "big teeth", and brick moth butterfly is abbreviated as "brick moth butterfly".

대상물질 각각에 대하여 대조구, 농도 50, 100, 200, 300, 500mg/ℓ를 함유한 맥아추출 아가(malt extract agar, MEA) 배지에서 1차 선발균을 접종하여 10일간 30℃에서 배양하면서 1, 3, 5, 7, 10일로 생장환을 측정하여 각 균주의 저항성을 측정하였다.      For each of the target substances, inoculated with the primary starter in malt extract agar (MEA) medium containing 50, 100, 200, 300 and 500 mg / l of control, and incubated at 30 ° C for 10 days. Growth strains were measured for 3, 5, 7, and 10 days to determine the resistance of each strain.

도 2는 프탈레이트화합물에 대한 공시균주의 저항성을 나타낸 것으로서, DEP에서는 두 균주 모두 300ppm 농도까지 완전히 균사가 피복하였으며 500ppm 농도에서는 제한적 생장을 하였으나 10일 후에는 완전히 균사가 피복하였다. DEHP의 저항성 조사는 모든 농도에서 꽃구름버섯과 겨울우산버섯 모두 완전히 균사가 피복하였으며 500ppm의 고농도에서도 생장이 우수한 것으로 나타났다. DCP에는 숲주름버섯과 꽃구름버섯이, BBP에는 농도에 따라 제한적으로 성장하였으나 아교버섯과 큰껍질버섯 모두 완전히 균사가 피복하였다.     Figure 2 shows the resistance of the test strains to the phthalate compound, both strains were completely mycelium covered up to 300ppm concentration in DEP and limited growth at 500ppm concentration, but was completely coated after 10 days. DEHP's resistance test showed that the mycelium and winter umbrella were completely covered with mycelia at all concentrations and showed good growth even at high concentrations of 500 ppm. In the DCP, forest mushrooms and flowering mushrooms grew, and in BBP, the growth was limited depending on the concentration. However, both the mushrooms and the bark mushrooms were completely covered with mycelia.

4종의 대상물질에 대한 저항성 조사 후에 우수한 저항성을 보이는 2균주씩을 선발하여 쉘로우 정치배양(Shallow stationary culture, SSC) 배지에서 각 균주의 균사 생장이 최고조에 달한 후에 각 대상물질의 농도가 동일 액체배지 상에서 100μM이 되도록 첨가하여 30℃에서 정치배양하였다. 배양기간별 분해능과 효소 역가 및 효소 유도효과를 조사하기 위하여, 각 대상물질을 첨가하지 않은 상태에서 1, 4, 7일간 배양을 하고, 상기 7일간 배양한 배지에 각 대상물질을 첨가한 후 계속하여 0, 1, 3, 7, 12일간 배양한 후, 상기 각각의 배지 여과액을 0.45μm 마이크로필터를 이용하여 여과한 후 망간 퍼옥시다제(manganese peroxidase, MnP), 및 락카제(laccase)의 역가를 측정하였다. MnP의 역가는 ABTS (0.08g/ℓ), H2O2 (0.1mM), MnSO4 (0.2 mM), 및 0.2M 락테이트 버퍼 (pH 4.5) 용액을 이용하여 측정하였으며 조효소액을 제일 나중에 첨가하여 측정을 개시하였다. 락카제(Laccase)의 역가의 경우는 ABTS (0.8g/ℓ) 및 0.1M 소디움 락테이트 버퍼(sodium lactate buffer) 만을 이용하였다. MnP와 락카제(laccase)의 역가는 ABTS의 ε414= 36,000M-1cm-1을 적용하여 계산하였다.      After investigating the resistance of the four target substances, two strains showing excellent resistance were selected, and the concentration of each target substance was the same in the shallow stationary culture (SSC) medium after the highest mycelial growth. Add to 100 μM in phase and incubated at 30 ℃. In order to investigate the resolution, enzyme titer, and enzyme induction effect of each culture period, the cells were cultured for 1, 4, 7 days without the addition of each target substance, and each target substance was added to the culture medium for 7 days. After incubation for 0, 1, 3, 7, and 12 days, the respective media filtrates were filtered using a 0.45 μm microfilter, followed by titer of manganese peroxidase (MnP), and laccase. Was measured. Titers of MnP were measured using ABTS (0.08 g / L), H 2 O 2 (0.1 mM), MnSO 4 (0.2 mM), and 0.2 M lactate buffer (pH 4.5) solutions and the last addition of the crude enzyme solution initiated the measurement. It was. In the case of laccase titer, only ABTS (0.8 g / L) and 0.1 M sodium lactate buffer were used. The titer of MnP and laccase was calculated by applying ε414 = 36,000M-1cm-1 of ABTS.

도 3은 DEP, DEHP, DCP 및 BBP 첨가에 의한 락카제 및 Mn-퍼옥시다제의 유도효과를 나타내고 있는 그래프이다. 도 3에 나타난 바와 같이 락카제(Laccase)와 Mn-P의 효소 유도효과의 경향은 유사하였는데, 아교버섯의 경우 대상물질이 BBP일 때에는 계속 증가하는 경향을 보였으나 DEP일 때에는 낮은 역가를 보여 대상물질에 대한 특이성을 보였다. 대상물질이 DCP인 경우 첨가 직후에 숲주름버섯과 꽃구름버섯의 역가는 증가하다 감소하였다.3 is a graph showing the induction effect of laccase and Mn-peroxidase by the addition of DEP, DEHP, DCP and BBP. As shown in FIG. 3, laccase and Mn-P showed similar trends in the enzymatic induction effect. Glue mushroom showed a tendency to increase when the target material was BBP, but showed low titer when DEP. Specificity was shown for the material. In the case of DCP, the titer of forest wrinkle mushroom and flowering cloud mushroom increased and decreased immediately after addition.

대상물질에 대한 분해능을 알아보기 위하여 여과액을 헥산(hexane)과 에틸아세테이트(ethylacetate)로 추출하여 워터스 대칭 컬럼(Waters symmetric column)을 이용하여 HP 1100 시리즈 HPLC로 정량분석을 하여 분해율을 조사하였다. 분석 조건은 유속 0.6㎖/min, 용매는 CH3CN : 물 = 80 : 20(v/v)로 하였으며 이소크래틱(isocratic) 조건으로 분석하였다. 대상물질의 분해기작을 구명하기 위하여 헥산(hexane)과 에틸아세테이트(ethylacetate)로 추출한 액을 N,0-비스(트리메틸실릴) 트리플루오로아세타미드(N,O-bis(trimethylsilyl) trifluoroacetamide)로 유도체화시켜 60℃에서 1시간 반응시킨 다음 GC/MS (Shimadzu HiCap-CBP1-M25-025 column, 25m, 0.25㎛, 0.25mm)를 이용하여 분석하였다.
GC 분석조건은 헬륨을 캐리어 기체(carrier gas)로 유속 1.0㎖/min, 인젝터(injector) 270℃, 검출(detection) 285℃, 오븐 온도는 80℃에서 5분간 유지, 8℃/min으로 160℃까지 상승 후 5분간 유지, 다시 5℃/min으로 280℃까지 상승 후 5분간 유지되는 프로그램을 이용하여 분석하였다. GC 컬럼으로부터 유출된 시료(effluent)는 직접 MS로 연결되었으며 스펙트라는 EI 모드, 70eV 이온화 에너지, 2초간 50~800amu 스캔을 하여 얻었다. 얻어진 스펙트라의 분해산물 분석은 MS 시스템에 내장된 질량 스펙트라 라이브러리(mass spectra library, Wiley Registry of Mass Spectra Data, 6th ed.)와 비교하여 확인하였다.
To determine the resolution of the target material, the filtrate was extracted with hexane and ethylacetate and quantitatively analyzed by HP 1100 series HPLC using a Waters symmetric column to investigate the degradation rate. Analysis conditions were flow rate 0.6ml / min, solvent was CH3CN: water = 80: 20 (v / v) was analyzed under isocratic (isocratic) conditions. Derived solution of hexane and ethylacetate to N, 0-bis (trimethylsilyl) trifluoroacetamide (N, O-bis (trimethylsilyl) trifluoroacetamide) The mixture was reacted at 60 ° C. for 1 hour and analyzed using GC / MS (Shimadzu HiCap-CBP1-M25-025 column, 25 m, 0.25 μm, 0.25 mm).
GC analysis conditions were helium as carrier gas, flow rate 1.0ml / min, injector 270 ℃, detection 285 ℃, oven temperature at 80 ℃ for 5 minutes, 160 ℃ at 8 ℃ / min After rising to 5 minutes, again 5 ℃ / min at 280 ℃ after using the program maintained for 5 minutes was analyzed. The sample (effluent) from the GC column was directly connected to MS, and the spectra were obtained by EI mode, 70 eV ionization energy, and 50 ~ 800 amu scan for 2 seconds. Decomposition product analysis of the obtained spectra was confirmed by comparing with the mass spectra library (Wyley Registry of Mass Spectra Data, 6th ed.) Built in the MS system.

도 4는 DEP, DEHP, DCP 및 BBP의 배양기간별 분해능을 나타내고 있다. DEP에 대한 HPLC 정량 분석에 의한 분해율을 조사한 결과, 겨울우산버섯은 60%, 아교버섯은 16% 분해되었고, DEHP는 겨울우산버섯의 경우 22%, 꽃구름버섯은 49% 분해되었고, DCP는 꽃구름버섯과 숲주름버섯 모두 90% 이상 분해되었고, BBP는 큰껍질버섯은 90%, 아교버섯은 86%의 분해율을 보여 목질분해미생물에 의한 프탈레이트화합물의 분해율이 매우 높음을 알 수 있었다.      Figure 4 shows the resolution by the culture period of DEP, DEHP, DCP and BBP. As a result of analyzing the degradation rate by HPLC quantitative analysis of DEP, winter umbrella was 60% degraded, glue was 16% degraded, DEHP was digested 22% at winter umbrella and 49% at cloud mushroom, DCP was flower Both cloud mushrooms and forest mushrooms were decomposed more than 90%, BBP showed 90% degradation of bark mushrooms and 86% of glue mushrooms, indicating that the degradation rate of phthalate compounds by wood microorganisms was very high.

GC-Mass로 분석한 DEP와 DEHP 및 DCP의 분해 기작은 프탈레이트와 에스테르 결합된 부분이 절단되어 최종 산물로 프탈레이트가 검색되었고, BBP의 경우는 벤질알콜이 검색되었다.(도 5)
본 연구에서는 Soto등의 방법과 같이 에스트로겐 작용물질로서 알려져 있는 17β-estradiol를 양성대조물질로서 사용하여 사람 유방암세포인 MCF-7세포의 증식에 미치는 영향을 검토하였다.
- 시험물질인 DCP, BBP, DEHP, DEP를 최초로 200 ppm으로 첨가된 상태에서 다양한 균사체로 각각 1일, 3일, 7일, 12, 19, 21일 후의 배양액을 채취하여 MCF-7 세포배양 시 첨가하여 6일간 배양 후 세포증식 및 표적유전자의 발현 양으로 분해된 물질의 생물학적 활성을 측정하였다.
Decomposition mechanisms of DEP and DEHP and DCP analyzed by GC-Mass was the phthalate and ester-bonded portion was cleaved and phthalate was detected as the final product, benzyl alcohol was detected in the case of BBP (Fig. 5).
In this study, the effect of 17β-estradiol, known as an estrogen agonist, on the proliferation of human breast cancer cells, MCF-7 cells, was investigated.
-When cultured MCF-7 cells with DCP, BBP, DEHP, and DEP added at 200 ppm for the first time, the culture medium after 1 day, 3 days, 7 days, 12, 19, 21 days was collected with various mycelia. After 6 days of incubation, the biological activity of the degraded material was measured by the amount of cell proliferation and expression of the target gene.

대상물질 및 분해산물에 대한 독성 및 안전성 평가를 위해 세포증식성 시험은 5% FBS DMEM배지를 제조하여 오염을 확인한 후, 배양된 세포를 회수하기 위한 0.25% 트립신용액과 0.2% EDTA를 각각 조제한 후 MCF(Michigan Cancer Foundation)-7 cell을 피펫팅한 후, 세포수를 계측하였다. 5% 활성탄을 첨가하여 표시된 지점까지 증류수를 넣고 상하로 뒤집으면서 잘 흔들어서 활성탄을 분산시킨 후, 원심분리 하였다(250rpm, 2분). 동일한 조작을 3회 이상 반복하여 활성탄 부유입자를 제거하였다. 그 후 0.5% 덱스트란(Dextran) (혈청량×1.1㎖)를 넣고 표시지점까지 증류수를 넣은 후 위아래로 뒤집어 활성탄을 분산시켜 원심분리 하였다(600rpm, 5분). 상층액을 흡입ㆍ제거한 후, 혈청을 넣고 기포발생이 안되도록 서서히 교반하여 활성탄을 분산시켰다.
이를 37℃의 쉐이킹 워터 배스(shaking water bath)에서 60분간 배양한 후, 원심분리하여(3000rpm, 20분) 상층액을 스포이드로 흡인ㆍ제거하고 다른 유리원심튜브에 분주한 후, 또다시 원심분리하여(3000rpm, 20분) 얻어진 상층액을 0.45㎛ 필터로 여과한 후 페놀 레드 프리(phenol red free)배지에 활성탄 처리 혈청을 5% 첨가하여 E-스크린 어세이법(E-screen assay)에 이용하였다. 세포수는 5×103cells/웰로 96 웰 플레이트(Falcon #353072, Non-pyrogenic)에 일정량(100㎕)의 세포를 분주하였다. 96 웰 플레이트를 천천히 흔들어서 세포를 균일하게 분산시키고 5% CO2가 일정하게 유지되는 37℃ 배양기에서 24시간동안 배양한 후, 웰에 들어 있는 배지를 제거하였다.
시험용 배지인 5% 활성탄-덱스트란 활성 FBS(Charcoal-dextran activated FBS)을 포함하는 DMEM 90㎕씩 각 웰에 가하고 시험물질(비스페놀 A 및 메톡시클로르)의 농도를 조제하여 각 농도별로 10㎕씩 웰에 첨가하였다. 이때 음성대조물질로는 DMSO를 가하였으며 각 웰당 DMSO의 최종농도는 0.5%가 넘지 않도록 하였다. 그 후 시험물질이 첨가된 96 웰 플레이트를 5% CO2, 배양기에서 6일간(144시간) 배양하고 MCF-7 세포의 증식성은 테트라졸리움 염(tetrazolium salt)인 WST-8을 첨가했을 때 세포에 의한 환원반응으로 생성되는 포마잔(formazan)을 흡광도 450nm에서 측정하였다.
In order to evaluate the toxicity and safety of the target substance and degradation products, the cell proliferation test was performed by preparing 5% FBS DMEM medium to confirm contamination, and preparing 0.25% trypsin solution and 0.2% EDTA to recover cultured cells, and then performing MCF. After pipetting (Michigan Cancer Foundation) -7 cells, the number of cells was measured. 5% activated carbon was added, distilled water was added to the indicated point, shaken up and down, and the activated carbon was dispersed, followed by centrifugation (250rpm, 2 minutes). The same operation was repeated three more times to remove activated carbon suspended particles. Thereafter, 0.5% dextran (serum amount × 1.1 ml) was added, distilled water was added to the indicated point, and then upside down, the activated carbon was dispersed and centrifuged (600 rpm, 5 minutes). After the supernatant was aspirated and removed, serum was added and the mixture was slowly stirred to prevent foaming, thereby dispersing activated carbon.
This was incubated in a shaking water bath at 37 ° C. for 60 minutes, centrifuged (3000 rpm, 20 minutes), the supernatant was aspirated and removed with a dropper, and then dispensed into another glass centrifuge tube. The obtained supernatant was filtered through a 0.45 μm filter (3000 rpm, 20 minutes), and 5% of activated carbon treated serum was added to a phenol red free medium for use in an E-screen assay. It was. The cell number was 5 × 10 3 cells / well, and a predetermined amount (100 μl) of cells was dispensed into a 96 well plate (Falcon # 353072, Non-pyrogenic). The 96 well plates were shaken slowly to uniformly distribute the cells and incubated for 24 hours in a 37 ° C. incubator with a constant 5% CO 2, followed by removal of the medium in the wells.
90 μl of DMEM containing 5% activated carbon-dextran activated FBS, which is a test medium, was added to each well, and the concentration of the test substance (bisphenol A and methcyclocyclo) was prepared. Was added to the wells. At this time, DMSO was added as a negative control, and the final concentration of DMSO per well was not more than 0.5%. Subsequently, 96 well plates to which the test substance was added were incubated for 6 days (144 hours) in an incubator with 5% CO2, and the proliferation of MCF-7 cells was induced by the addition of WST-8, a tetrazolium salt. Formazan produced by the reduction reaction was measured at an absorbance of 450 nm.

도 6 내지 도 9는 DEP, DEHP, DCP 및 BBP에 대한 MCF-7 세포의 세포증식성을 조사한 결과를 나타내고 있다.6 to 9 show the results of examining the cell proliferation of MCF-7 cells for DEP, DEHP, DCP and BBP.

DEP의 경우 POD에 의한 증식성의 감소는 배양 1일째부터 정치 및 진탕 모두에서 감소시키는 것으로 나타났으며, 아교버섯도 동일한 효과를 갖는 것으로 판단되었다. E2는 에스트로겐성 시약의 일종인 에스트라디올2(estradiol2)를 투입한 배지이다(도 6). In the case of DEP, the decrease in proliferation by POD was shown to decrease in both stationary and shaking from the 1st day of culture, and it was determined that the glue also had the same effect. E2 is a medium in which estradiol2, a kind of estrogen reagent, is added (FIG. 6).

DEHP의 경우 겨울우산버섯에 의해 배양 1일째부터 증식성이 첨가 전의 수준으로 감소하였으며 꽃구름버섯에 의한 경우는 정치하였을 때 7일째부터 첨가 전의 수준으로 감소하였다(도 7).In the case of DEHP, the proliferative ability was decreased to the level before the addition from the first day of the cultivation by the winter umbrella, and when it was left by the flower cloud, it decreased to the level before the addition from the 7th (FIG. 7).

DCP의 경우 꽃구름버섯에 의해 투여 후 증가한 폭이 19일째 될 때 투여 전의 수준으로 감소하였으나, 숲주름버섯에 의한 경우는 세포 증식율이 12일 이후 감소하는 것으로 나타났다.(도 8)In the case of DCP, the increase in the post-administration width by the mushroom cloud was reduced to the level before administration at the 19th day, but the growth rate of the cells by the forest wrinkle was decreased after 12 days (FIG. 8).

BBP의 경우 큰껍질버섯에 의한 분해가 배양 3일 후 투여 전 수준으로 감소하는 것으로 나타났다. 아교버섯에 의한 분해는 배양 21일째 투여 전 수준으로 감소하는 것으로 나타났다.(도 9) In the case of BBP, degradation by the bark mushrooms was reduced to the pre-dose level after 3 days of culture. Degradation by glue mushroom was found to decrease to the level before administration on day 21 of culture (FIG. 9).

상기 MCF-7세포에 대한 세포증식성 실험결과로부터, 본 발명에 의하여 각 대상물질이 세포독성이 감소된 분해산물로 분해됨으로써 세포독성이 감소된다는 것을 확인할 수 있다.From the results of cell proliferation experiments on the MCF-7 cells, it can be confirmed that the cytotoxicity is reduced by decomposing each of the target substances into degradation products having reduced cytotoxicity by the present invention.

또한 MCF-7 세포주에서 이용되는 marker 유전자를 이용하여 그 발현양을 측정하여 세포의 증식과 병행하여 분해된 화합물의 에스트로겐성을 검증하였다. 세포증식성 실험 중에 대표적으로 효과가 있는 것으로 추정되는 물질을 하나씩 선발하여 실험하였다(에스트로겐성 시험 대상은 세포증식성 실험과 마찬가지로 시험물질인 DCP, BBP, DEHP 및 DEP를 최초로 200 ppm으로 첨가된 상태에서 다양한 균사체로 각각 1일, 3일, 7일, 12, 19, 21일 후의 배양액을 채취하여 실험하였다). In addition, the expression level was measured using a marker gene used in the MCF-7 cell line to verify the estrogenity of the degraded compound in parallel with the proliferation of cells. Among the cell proliferative experiments, one of the most presumably effective substances was selected and tested. (Estrogen test subjects were subjected to various tests with DCP, BBP, DEHP, and DEP added at 200 ppm for the first time as in the cell proliferative experiment. 1, 3, 7 days, 12, 19, 21 days after the mycelia were collected and tested).

pS2 mRNA 분석은 프로리퍼레이션 어세이(Proliferation assay)에서와 같이 세포를 준비하고 계산된 세포를 웰당 5X104 세포가 되도록 6 웰 플레이트에 분주한 다음 5% CO2, 37℃ 인큐베이터에서 24시간 배양한 후 웰안의 배지를 흡인, 제거하고 PBS 5ml로 웰내를 1회 세척, 스테로이드 프리(steroid free) DMEM(페놀 레드 프리, 5% 활성탄-덱스트란 처리된 5% FBS가 첨가된 DMEM)을 2 ml씩 분주하였다. 72시간 후 플레이트내의 스테로이드가 제거된 배지를 프로리퍼레이션 어세이(Proliferation assay)와 같은 방법으로 처리하되, 한 군당 2개의 웰을 지정하고 24시간 후 플레이트 내의 배지를 흡인 제거하고 PBS로 1회 세척한 다음 트리졸(Trizol) 용액(Gibco BRL)을 한 군당(2 웰) 1ml씩 넣은 후 충분히 피펫팅한 용액을 1.5ml 튜브로 옮기고 클로로포름 200 ul를 넣고 충분히 진탕한 후 원심분리(14,000rpm, 10분), 상층액을 수거하여 새로운 튜브로 옮기고 이소프로파놀( isopropanol)을 넣은 후 4-6회 뒤집어준 후에 다시 원심분리(14,000rpm, 10분)하여 펠렛을 확인한 후 상층액을 미세피펫으로 제거, 70% 에탄올(DEPC 처리된 증류수로 희석한)로 튜브를 세척하고 원심분리기로 침강시킨 후 남아있는 에탄올을 미세피펫으로 제거하였다. 적당량의 DEPC로 처리된 증류수를 넣은 후(약 15 ul) 피펫팅하여 펠렛을 녹여 농도는 자외선 600 nm에서 측정하였으며, 약 4ug의 총 RNA를 주형으로, M-MLV 역전사효소(Ambion)를 사용하여 cDNA를 합성하였다. 합성된 cDNA중 1ul를 주형으로 Tag DNA 중합효소를 이용하여 PCR을 시행하는데 pS2 유전자를 증폭하기 위하여 포워드 프라이머(Forward primer) 5'-GGCCACCATGGAGAACAAGG와 리버스 프라이머(reverse primer) 5'-CCA CGAACGGTGTCGTCGAA를 사용하여 30 회를 사용하였다. 각각의 사이클은 최초 5분간 95℃에서 변형단계를 거쳐, 1분간 95℃에서 변형하고, 50℃에서 1분간 어닐링(annealing)하며, 72℃에서 1분 30초간 중합화(polymerization)하였으며, 확장(extension)은 72℃에서 15분 동안 30회 반복하였다. 하우스 키핑(House keeping) 유전자는 휴먼 1A(human 1A)를 이용하였으며, 포워드 프라이머(Forward primer) 5'-GATATGG CGTTTCCCCGCATA와 리버스 프라이머(reverse primer) 5'-GGATTTTGGCGT AGGTTTGGT를 1A 증폭에 사용하였다. PCR 결과물 중 50%를 아가로스 겔(pS-2; 2% 아가로스, 1A; 1% 아가로스)에 로딩한 후 100볼트로 약 30분간 전압을 걸어 전개시킨 후 EtBr을 이용하여 염색하였으며, 나타난 영상은 Gel doc 1,000을 사용하여 분석하였다. 측정된 pS2 mRNA의 값을 1A mRNA로 표준화하였다.pS2 mRNA analysis was performed by preparing the cells as in the Proliferation assay, dispensing the calculated cells into 6 well plates at 5 × 10 4 cells per well, incubating for 24 hours in a 5% CO 2, 37 ° C. incubator and then The medium inside was aspirated and removed, and the wells were washed once with 5 ml of PBS, and 2 ml of steroid free DMEM (phenol red-free, DMEM with 5% FBS treated with 5% activated carbon-dextran) was dispensed. . After 72 hours, the steroid-free medium in the plate is treated in the same manner as a Proliferation assay, but two wells per group are designated, and after 24 hours, the medium in the plate is aspirated off and washed once with PBS. Then add 1 ml of Trizol solution (Gibco BRL) per group (2 wells), transfer the pipette solution into a 1.5 ml tube, add 200 ul of chloroform, shake it sufficiently, and then centrifuge (14,000 rpm, 10). Min), remove the supernatant, transfer to a new tube, add isopropanol, invert 4-6 times, centrifuge again (14,000 rpm, 10 minutes), check the pellet, and remove the supernatant with a micropipette. The tube was washed with 70% ethanol (diluted with DEPC treated distilled water), settled in a centrifuge and the remaining ethanol was removed with a micropipette. After adding the appropriate amount of DEPC treated with distilled water (about 15 ul), pipetting to melt the pellet was measured at 600 nm UV, using about 4ug total RNA as a template, using M-MLV reverse transcriptase (Ambion) cDNA was synthesized. PCR was carried out using Tag DNA polymerase as a template of the synthesized cDNA. To amplify the pS2 gene, a forward primer 5'-GGCCACCATGGAGAACAAGG and reverse primer 5'-CCA CGAACGGTGTCGTCGAA were used. 30 times was used. Each cycle undergoes a strain step at 95 ° C. for the first 5 minutes, strained at 95 ° C. for 1 minute, annealed at 50 ° C. for 1 minute, polymerized for 1 minute and 30 seconds at 72 ° C., and expanded ( extension) was repeated 30 times at 72 ° C. for 15 minutes. House keeping gene was used as human 1A, and forward primer 5'-GATATGG CGTTTCCCCGCATA and reverse primer 5'-GGATTTTGGCGT AGGTTTGGT were used for 1A amplification. 50% of the PCR product was loaded on agarose gel (pS-2; 2% agarose, 1A; 1% agarose), and then developed by applying voltage at 100 volts for about 30 minutes and stained using EtBr. Images were analyzed using Gel doc 1,000. The measured pS2 mRNA values were normalized to 1A mRNA.

도 10은 꽃구름버섯과 숲주름버섯에 의한 DCP와 그 분해산물에 대한 에스트로겐성을 나타낸다. 양성반응물로 이용된 에스트로겐과 최초의 DCP로 처리하였을 때 pS2유전자 발현이 유도되는 것으로 나타났으나, 숲주름버섯으로 처리한 분해산물로 처리하였을 때 MCF-7 세포의 pS2 유전자의 발현은 현저히 감소하는 것으로 나타났다. 처리 12일 후에 무처치군과 동일한 양으로 감소하는 것으로 나타났다. 그러나 꽃구름버섯에 의해서는 감소정도가 미미하였다.     Figure 10 shows the estrogen properties of DCP and its degradation products by the cloud mushroom and forest wrinkle mushroom. Expression of pS2 gene was induced by treatment with estrogen used as a positive reactant and the first DCP, but expression of pS2 gene in MCF-7 cells was significantly decreased when treated with degradation products treated with forest wrinkles. Appeared. After 12 days of treatment it was found to decrease by the same amount as the untreated group. However, the decrease was minimal due to the mushroom cloud.

또한, 도 11은 큰껍질버섯과 아교버섯에 의한 BBP와 그 분해산물에 대한 에스트로겐성을 나타내고 있는데, 양성반응물로 이용된 에스트로겐과 최초의 BBP로 처리하였을 때 pS2유전자 발현이 유도되는 것으로 나타났으나, 큰껍질버섯에 의한 분해산물로 처리하였을 때 MCF-7 세포의 pS2 유전자의 발현은 현저히 감소하는 것으로 나타났다. 처리 19일 후에 무처치군과 동일한 양으로 감소하는 것으로 나타났다. 그러나 아교버섯에 의해서는 처리 7일째부터 감소정도가 투여수준과 동일하였다.In addition, Figure 11 shows the estrogen properties of BBP and its degradation products by the bark and glue mushrooms, pS2 gene expression was induced when treated with estrogen and the first BBP used as a positive reactant The expression of pS2 gene in MCF-7 cells was significantly decreased when treated with the degradation products of the bark mushrooms. After 19 days of treatment it was found to decrease in the same amount as the untreated group. However, by the 7th day of treatment, the decrease was the same as the administration level.

따라서, 도 10 및 도 11의 결과로부터, DEP, DEHP, DCP BBP의 분해산물들의 에스트로겐성이 감소됨을 확인할 수 있다. 결국, 본 발명은 상기 프탈레이트화합물을 인체에 안전한 분해산물로 분해, 생성시킬 수 있으므로 생물학적 복구법에 유용하게 응용될 수 있다.Therefore, it can be seen from the results of FIGS. 10 and 11 that the estrogen properties of the degradation products of DEP, DEHP, DCP BBP are reduced. As a result, the present invention can be usefully applied to a biological recovery method because the phthalate compound can be decomposed and produced as a safe decomposition product for the human body.

이상에서 상세히 설명하였듯이, 본 발명은 내분비계 장애물질에 해당하는 프탈레이트화합물을 분해할 수 있으므로, 플라스틱 제품내 존재하는 프탈레이트화합물에 의하여 오염된 토양이나 수질 및 생물분해반응기에서의 생물학적 분해 및 복구법에 유용하다.As described in detail above, the present invention can decompose phthalate compounds corresponding to endocrine disruptors, and therefore, the present invention is directed to biological degradation and recovery methods in soil or water and biodegradation reactors contaminated with phthalate compounds present in plastic products. useful.

Claims (5)

목재부후균을 배양하여 이들이 생산하는 효소로부터 프탈레이트화합물을 분해하는 생물학적 복구방법.Biological recovery method of culturing wood fungi to decompose phthalate compounds from the enzymes they produce. 제1항에 있어서, 상기 목재부후균은 꽃구름버섯, 숲주름버섯, 큰껍질버섯 및 아교버섯으로 이루어진 그룹으로부터 하나 이상 선택되는 것을 특징으로 하는 생물학적 복구방법.The method of claim 1, wherein the wood fungus is a biological recovery method, characterized in that at least one selected from the group consisting of flowering mushrooms, forest wrinkle mushrooms, large shell mushrooms and glue mushrooms. 제1항에 있어서, 상기 프탈레이트화합물은 프탈레이트에스테르인 것을 특징으로 하는 생물학적 복구방법.The biological repair method according to claim 1, wherein the phthalate compound is a phthalate ester. 제3항에 있어서, 상기 프탈레이트에스테르는 디에틸프탈레이트, 디에틸헥실프탈레이트, 디사이클로헥실프탈레이트 및 벤질부틸프탈레이트로부터 이루어진 그룹으로부터 하나 이상 선택되는 것을 특징으로 하는 생물학적 복구방법.The method of claim 3, wherein the phthalate ester is at least one selected from the group consisting of diethyl phthalate, diethylhexyl phthalate, dicyclohexyl phthalate and benzyl butyl phthalate. 제1항에 있어서, 상기 효소는 락카제(laccase) 또는 망간 퍼옥시다제(manganese peroxidase)인 것을 특징으로 하는 방법.The method of claim 1, wherein the enzyme is laccase or manganese peroxidase.
KR1020050033997A 2005-04-25 2005-04-25 Biological Recovery Method of Phthalate Compound Using Wood Decay Bacteria Expired - Lifetime KR100660389B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050033997A KR100660389B1 (en) 2005-04-25 2005-04-25 Biological Recovery Method of Phthalate Compound Using Wood Decay Bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050033997A KR100660389B1 (en) 2005-04-25 2005-04-25 Biological Recovery Method of Phthalate Compound Using Wood Decay Bacteria

Publications (2)

Publication Number Publication Date
KR20060112288A KR20060112288A (en) 2006-10-31
KR100660389B1 true KR100660389B1 (en) 2006-12-21

Family

ID=37620589

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050033997A Expired - Lifetime KR100660389B1 (en) 2005-04-25 2005-04-25 Biological Recovery Method of Phthalate Compound Using Wood Decay Bacteria

Country Status (1)

Country Link
KR (1) KR100660389B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989750A (en) * 2012-12-04 2013-03-27 常州大学 Method for restoring and controlling Cd (cadmium) and DBP (dibutyl phthalate) compound polluted soil by using large-biomass non-hyperaccumulation vegetables

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989751A (en) * 2012-12-04 2013-03-27 常州大学 Method for restoring and controlling Cd (cadmium) and DEHP (di-(2-ethylhexyl)phthalate) compound polluted soil by using large-biomass non-hyperaccumulation vegetables
CN102989749A (en) * 2012-12-04 2013-03-27 常州大学 Method for restoring and controlling Cd (cadmium) and DNP (2, 4-dinitropheno) compound polluted soil by using large-biomass non-hyperaccumulation vegetables
CN116371905B (en) * 2023-03-20 2023-10-13 南京农业大学 Method for removing PAEs in environment by utilizing functional indigenous flora solid microbial inoculum

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128903A (en) * 1997-10-31 1999-05-18 Ohbayashi Corp Decomposition removal of oil-polluted soil by microorganism
KR20000035283A (en) * 1998-11-06 2000-06-26 미다라이 후지오 Sample separating apparatus and method, and substrate manufacturing method
KR20040026064A (en) * 2002-09-17 2004-03-27 대한민국(관리부서:산림청 임업연구원) Bioremediation Method of bisphenol-A and methoxychlor using Stereum hirsutum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128903A (en) * 1997-10-31 1999-05-18 Ohbayashi Corp Decomposition removal of oil-polluted soil by microorganism
KR20000035283A (en) * 1998-11-06 2000-06-26 미다라이 후지오 Sample separating apparatus and method, and substrate manufacturing method
KR20040026064A (en) * 2002-09-17 2004-03-27 대한민국(관리부서:산림청 임업연구원) Bioremediation Method of bisphenol-A and methoxychlor using Stereum hirsutum

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102989750A (en) * 2012-12-04 2013-03-27 常州大学 Method for restoring and controlling Cd (cadmium) and DBP (dibutyl phthalate) compound polluted soil by using large-biomass non-hyperaccumulation vegetables

Also Published As

Publication number Publication date
KR20060112288A (en) 2006-10-31

Similar Documents

Publication Publication Date Title
Jiang et al. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP)
Dao et al. Screening white-rot fungi for bioremediation potential of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin
Chen et al. Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample
D'annibale et al. Role of autochthonous filamentous fungi in bioremediation of a soil historically contaminated with aromatic hydrocarbons
Chiu et al. Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol
Golan-Rozen et al. Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: role of cytochrome P450 monooxygenase and manganese peroxidase
Cernava et al. A novel assay for the detection of bioactive volatiles evaluated by screening of lichen-associated bacteria
Vacondio et al. Biodegradation of pentachlorophenol by marine-derived fungus Trichoderma harzianum CBMAI 1677 isolated from ascidian Didemnun ligulum
Liu et al. Anaerobic biodegradation of acetochlor by acclimated sludge and its anaerobic catabolic pathway
Asemoloye et al. Transcriptomic responses of catalase, peroxidase and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains
US10364415B2 (en) 1,4-dioxane-degrading bacteria culture method, medium, and 1,4-dioxane treatment method using 1,4-dioxane-degrading bacteria
Szczepaniak et al. Influence of soil contamination with PAH on microbial community dynamics and expression level of genes responsible for biodegradation of PAH and production of rhamnolipids
Sari et al. Correlation of ligninolytic enzymes from the newly-found species Trametes versicolor U97 with RBBR decolorization and DDT degradation
Bokade et al. Molecular advances in mycoremediation of polycyclic aromatic hydrocarbons: Exploring fungal bacterial interactions
Balomajumder Simultaneous biodegradation of mixture of carbamates by newly isolated Ascochyta sp. CBS 237.37
Ting et al. Novel exploration of endophytic Diaporthe sp. for the biosorption and biodegradation of triphenylmethane dyes
Khudhair et al. Pyrene metabolism by new species isolated from soil Rhizoctonia zeae SOL3
Esparza-Naranjo et al. Potential for the biodegradation of atrazine using leaf litter fungi from a subtropical protection area
KR100660389B1 (en) Biological Recovery Method of Phthalate Compound Using Wood Decay Bacteria
Nasir et al. Biodegradation of carbamazepine using fungi and bacteria
Weigold et al. Formation of chloroform and tetrachloroethene by Sinorhizobium meliloti strain 1021
Dos Santos et al. Biotransformation of progesterone by endophytic fungal cells immobilized on electrospun nanofibrous membrane
Dorival-García et al. Effect of the injection of pure oxygen into a membrane bioreactor on the elimination of bisphenol A
Watanabe et al. Evaluation of the use of Pycnoporus sanguineus fungus for phenolics and genotoxicity decay of a pharmaceutical effluent treatment
Sahoo et al. Exploration of Basidiomycetes for Anthraquinone Dyes Decolorization in Textile Wastewater

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20050425

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20060728

Patent event code: PE09021S01D

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20061206

GRNT Written decision to grant
PR0702 Registration of establishment of national patent

Patent event code: PR07021E01D

Comment text: Registration of Establishment of National Patent

Patent event date: 20061215

PR1002 Payment of registration fee

Payment date: 20061215

End annual number: 20

Start annual number: 1

PG1601 Publication of registration