[go: up one dir, main page]

KR100663180B1 - Anode active material for high energy density lithium secondary battery - Google Patents

Anode active material for high energy density lithium secondary battery Download PDF

Info

Publication number
KR100663180B1
KR100663180B1 KR1020060050397A KR20060050397A KR100663180B1 KR 100663180 B1 KR100663180 B1 KR 100663180B1 KR 1020060050397 A KR1020060050397 A KR 1020060050397A KR 20060050397 A KR20060050397 A KR 20060050397A KR 100663180 B1 KR100663180 B1 KR 100663180B1
Authority
KR
South Korea
Prior art keywords
negative electrode
active material
electrode active
powder
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020060050397A
Other languages
Korean (ko)
Other versions
KR20060071387A (en
Inventor
최임구
최현기
이형동
박철완
이경직
이상은
하인호
권오창
정지영
Original Assignee
주식회사 소디프신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 소디프신소재 filed Critical 주식회사 소디프신소재
Priority to KR1020060050397A priority Critical patent/KR100663180B1/en
Publication of KR20060071387A publication Critical patent/KR20060071387A/en
Application granted granted Critical
Publication of KR100663180B1 publication Critical patent/KR100663180B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차전지용 음극 활물질에 관한 것으로서, 본 발명에 의한 음극 활물질은 분말 입도의 분포를 조절한 혼합 분말 형태로 제조됨으로써, 집전체에 코팅되는 단위 부피당 분말 함량을 최대화시켜 합제밀도를 크게 향상시키며, 전극 압연시 분말의 변형을 최소화 시켜주어 스프링백(spring back) 현상을 개선할 뿐만 아니라, 분말들 사이에 형성되는 미세 채널들에 의해 전해액과의 젖음성(wettability)을 향상시키는 효과를 가지므로, 이러한 본 발명의 음극 활물질을 포함하는 리튬 이차전지는 고에너지 밀도, 우수한 전지 용량 및 안정된 수명 특성을 나타낸다.The present invention relates to a negative electrode active material for a lithium secondary battery, and the negative electrode active material according to the present invention is manufactured in a mixed powder form in which the distribution of powder particle size is controlled, thereby maximizing the powder content per unit volume coated on the current collector, thereby greatly improving the mixture density. In addition, it minimizes the deformation of the powder during electrode rolling to improve the spring back phenomenon, and also has the effect of improving the wettability with the electrolyte by the microchannels formed between the powders. The lithium secondary battery including the negative electrode active material of the present invention exhibits high energy density, excellent battery capacity, and stable life characteristics.

Description

고에너지밀도 리튬 이차전지용 음극 활물질{ANODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY HAVING HIGH ENERGY DENSITY} Anode active material for high energy density lithium secondary battery {ANODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY HAVING HIGH ENERGY DENSITY}

도 1은 본 발명에 의해 제조된 음극 활물질(실시예 5)을 입도분석기로 분석한 후, 측정된 분말의 입도 분포를 나타낸 그래프이다.Figure 1 is a graph showing the particle size distribution of the measured powder after analyzing the negative electrode active material (Example 5) prepared by the present invention with a particle size analyzer.

본 발명은 고에너지밀도의 리튬 이차전지의 제조에 사용될 수 있는 음극 활물질에 관한 것이다. The present invention relates to a negative electrode active material that can be used in the manufacture of a high energy density lithium secondary battery.

최근 수년간 핸드폰, 노트북, 캠코더 등 휴대형 전자기기시장이 급속히 성장하면서 리튬 이차전지에 관한 기술도 급신장하고 있다. 기존에 많이 사용되었던 Ni-Cd 전지와 니켈수소 전지는 완전히 방전시키지 않고 충전해 사용하면 용량이 줄어드는 메모리 효과(memory effect)가 나타날 수도 있는데 반해서, 리튬이온 전지는 용량이 크며 가볍고 특히 메모리 효과가 없어 용량이 남아있는 상태에서 그대로 재충전해 사용 가능하므로 편리하다. In recent years, the market for portable electronic devices such as mobile phones, laptops and camcorders is growing rapidly, and the technology for lithium secondary batteries is rapidly growing. Ni-Cd batteries and nickel-metal hydride batteries, which have been widely used in the past, may have a memory effect that decreases their capacity when fully charged without being fully discharged. However, lithium-ion batteries have a large capacity, are light, and have no memory effect. It is convenient because it can be recharged as it is remaining.

이러한 리튬 이차전지의 핵심기술개발 과제로는 에너지밀도 향상, 고수명, 고효율, 저온특성, 비용절감 등이 있으며, 이러한 핵심기술은 전지구조의 개발, 전지재료의 특성향상, 전극재료 및 극판 제조기술의 향상, 전해액 특성 등에 의하여 결정된다. The core technology development tasks of the lithium secondary battery include energy density improvement, long life, high efficiency, low temperature characteristics, and cost reduction.The core technologies include battery structure development, battery material characteristics improvement, electrode material and electrode plate manufacturing technology. Improvement, electrolyte solution characteristics and the like.

리튬 이차전지는 일반적으로 음극, 양극, 전해질 및 상기 전극들 사이에 리튬 이온-투과가능한 격리판을 포함하는 구조를 갖는다. 이러한 리튬 이차전지의 음극은 음극 활물질(예: 탄소계 물질), 도전제(예: 카본블랙), 바인더(예: 폴리비닐리덴 플루오라이드(PVDF)) 및 용매(예: N-메틸피롤리돈(NMP))를 포함하는 슬러리 형태의 음극 조성물을 집전체의 표면 위에 코팅하고, 건조 및 압착함으로써 제조된다. A lithium secondary battery generally has a structure including a negative electrode, a positive electrode, an electrolyte, and a lithium ion-transmissive separator between the electrodes. The negative electrode of the lithium secondary battery may be a negative electrode active material (eg, carbon-based material), a conductive agent (eg, carbon black), a binder (eg, polyvinylidene fluoride (PVDF)), and a solvent (eg, N-methylpyrrolidone). (NMP)) is prepared by coating, drying and compressing the negative electrode composition in the form of a slurry on the surface of the current collector.

상기 음극 활물질의 기술 동향으로는 재료로 흑연화 중간상 소구체, 천연흑연, 유사 등방성 카본, 파인 모자익 카본(fine mosaic carbon), 무정형 탄소 등이 사용되고 있으나 재료별로 전압과 용량에서 차이를 보이므로 이를 개선하기 위하여 여러 가지 표면처리 또는 다른 특성을 지닌 재료를 혼합하는 방법을 통하여 고용량화에 대한 연구를 하고 있다. 또한, 최근에는 단일의 음극 활물질을 포함하는 음극 조성물로 음극을 제조하는 경우 음극판의 충진밀도 향상 및 고용량화에 한계가 있어, 입경이 상이한 2종 이상의 음극 활물질을 혼합하거나, 음극 활물질의 표면을 코팅 또는 표면처리하는 기술이 제시되고 있다. As the technology trend of the negative electrode active material, graphitized mesophase globules, natural graphite, pseudoisotropic carbon, fine mosaic carbon, amorphous carbon, etc. are used, but the difference in voltage and capacity for each material improves the improvement. In order to achieve the high capacity through the method of mixing various surface treatment or materials with different characteristics. In addition, recently, when manufacturing a negative electrode with a negative electrode composition containing a single negative electrode active material, there is a limit in improving the packing density and high capacity of the negative electrode plate, so that two or more kinds of negative electrode active materials having different particle diameters may be mixed, or the surface of the negative electrode active material may be coated or Surface treatment techniques have been proposed.

예를 들어, 미국 특허 제5,273,842호는 음극 활물질의 입경 분포가 경사 분포(grading distribution)가 되도록 분급하여 이를 음극 제조시 적용하는 기술을 개시하고 있다. 그러나, 이 방법은 음극 활물질의 소모량이 많고 음극 활물질 자체 의 제조시간이 길어진다는 단점을 갖는다. For example, U. S. Patent No. 5,273, 842 discloses a technique of classifying the particle size distribution of the negative electrode active material to be a grading distribution and applying the same to the manufacturing of the negative electrode. However, this method has the disadvantage that the consumption of the negative electrode active material is high and the manufacturing time of the negative electrode active material itself is long.

따라서, 본 발명의 목적은 집전체에 코팅되는 단위 부피당 분말 함량을 최대화시켜 합제밀도를 향상시키고, 전극 압연시 분말의 변형을 최소화 시켜주어 스프링백(spring back) 현상을 개선하며, 분말들 사이에 형성되는 미세 채널들에 의해 전해액과의 젖음성(wettability)을 향상시킬 수 있는 음극 활물질을 제공하는 것이다.Accordingly, an object of the present invention is to maximize the powder content per unit volume coated on the current collector to improve the mixture density, to minimize the deformation of the powder during electrode rolling to improve the spring back phenomenon, between the powder It is to provide a negative electrode active material that can improve the wettability (weettability) with the electrolyte by the fine channels to be formed.

또한, 본 발명의 목적은 상기 음극 활물질을 음극판에 처리함으로써, 고에너지 밀도, 우수한 전지 용량 및 안정된 수명 특성을 나타내는 리튬 이차전지를 제공하는 것이다. In addition, an object of the present invention is to provide a lithium secondary battery exhibiting a high energy density, excellent battery capacity and stable life characteristics by treating the negative electrode active material on a negative electrode plate.

상기의 목적에 따라, 본 발명에서는 입자크기가 5㎛ 이하인 미립 분말을 전체부피의 1% 내지 15%로 포함하고, d90이상의 입자 크기가 20 내지 80㎛인 과립 분말을 포함하며, 전체 입도에서 최대 피크 위치에 해당되는 입자 크기 dmaxpeak가 평균 부피 입자에 해당되는 d50vol 이상인 것을 특징으로 하는 리튬 이차전지용 음극 활물질을 제공한다.In accordance with the above object, in the present invention, the granular powder having a particle size of 5 μm or less is included in 1% to 15% of the total volume, and the granule powder having a particle size of d90 or more is 20 to 80 μm, the maximum in the total particle size. It provides a negative electrode active material for a lithium secondary battery, characterized in that the particle size dmax peak corresponding to the peak position is d50 vol or more corresponding to the average volume particles.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 리튬 이차전지용 음극 활물질은 상기한 바와 같이 활물질의 분말 입도 분포가 특정 범위로 제어된 것을 특징으로 한다. As described above, the negative electrode active material for a lithium secondary battery according to the present invention is characterized in that the powder particle size distribution of the active material is controlled in a specific range.

구체적으로, 본 발명에 의한 음극 활물질은 5 ㎛ 이하의 크기를 가지는 미립 분말이 전체 음극 활물질의 1% 내지 15%의 부피로 포함된다.Specifically, in the negative electrode active material according to the present invention, fine powder having a size of 5 μm or less is included in a volume of 1% to 15% of the total negative electrode active material.

리튬 이차전지에 있어서, 음극 활물질로 사용되는 분말 중 5 ㎛ 이하의 입경을 갖는 미립의 존재는 전극 내에서 충진성을 높이면서, 입자간 접점을 연결시켜 전기전도도 향상 면에서 중요하나, 분말에 미립이 많이 포함되어 있을수록 분말 비표면적의 증가율이 커지고, 전극용 슬러리 제조 및 코팅시의 공정성이 떨어지게 된다. 즉, 상기 미립 분말이 전체 음극 활물질의 15%를 초과하여 존재하면, 비표면적이 지나치게 증가하여 비가역 반응을 많이 일으킴으로써 전지 효율이 감소하고 전지 제조의 공정성이 떨어지며, 1% 미만으로 존재하면, 충진성과 전기전도도가 떨어지게 된다. In the lithium secondary battery, the presence of fine particles having a particle size of 5 μm or less in the powder used as the negative electrode active material is important in terms of improving electrical conductivity by connecting the interparticle contacts while increasing the filling property in the electrode. The more contained, the greater the increase rate of the specific surface area of the powder, and the less fairness in the preparation and coating of the slurry for the electrode. That is, when the fine powder is present in more than 15% of the total negative electrode active material, the specific surface area is excessively increased to cause a lot of irreversible reaction, the battery efficiency is reduced and the processability of the battery manufacturing is reduced, if less than 1%, the filling Performance and electrical conductivity will fall.

또한, 본 발명에 의한 음극 활물질 분말은 d90 이상의 입자 크기가 20 ∼ 80 ㎛인 과립 분말을 포함한다. 리튬 이차전지에 있어서, 음극 활물질로 사용되는 분말 중 과립의 존재는 합제밀도의 향상 측면에서는 유리하나, 제한된 전극 두께 내에서 상대적으로 큰 입자가 많이 존재하면 전극의 불균일성을 유도할 수 있고, 고율 특성을 방해할 수 있다. 즉, 과립의 입자 크기가 20 ㎛보다 작으면, 전체적인 평균 입도가 낮아져서 비표면적 증가 및 합제밀도 감소를 유도하고, 80 ㎛보다 크면, 전극 불균일성 및 고율 특성 저하에 영향을 미칠 수 있다. In addition, the negative electrode active material powder according to the present invention includes granule powder having a particle size of d90 or more of 20 to 80 µm. In the lithium secondary battery, the presence of granules in the powder used as the negative electrode active material is advantageous in terms of improving the mixture density, but when a large number of relatively large particles are present within the limited electrode thickness, the nonuniformity of the electrode can be induced, and high rate characteristics Can interfere. That is, when the particle size of the granules is smaller than 20 μm, the overall average particle size is lowered to induce an increase in specific surface area and a decrease in the mixture density, and when larger than 80 μm, the electrode nonuniformity and the high rate property may be affected.

또한, 본 발명에 의한 음극 활물질은 전체 입도에서 최대 피크 위치에 해당되는 입자 크기 dmaxpeak가 평균 부피 입자에 해당되는 d50vol 대비 큰 것을 특징으로 한다. 본 발명의 음극 활물질은 전체적인 입도 분포에서, 미립을 함유하면서도 중간 크기 이상의 과립의 비중을 상대적으로 크게 함으로써 비가역 반응을 최소화하고, 전극 제조시 공정성을 높이면서도, 전기전도도 및 합제밀도를 향상시킬 수 있다. 그러나, 상기와 같은 효과를 얻기 위해서는 10% 부피 정도를 차지하는 최대 과립자의 함량은 최소화시킬 필요가 있으므로, 본 발명에 의한 음극 활물질은 부피비로서 평균적인 함량은 과립 쪽이 적으면서, 중간 이상 입자의 분포는 과립쪽으로 많이 존재하는 입도 분포를 가지고 있다. In addition, the negative electrode active material according to the present invention is characterized in that the particle size dmax peak corresponding to the maximum peak position in the overall particle size is larger than d50 vol corresponding to the average volume particle. The negative electrode active material of the present invention can increase the specific gravity of the granules of medium size or more in the overall particle size distribution, while minimizing the irreversible reaction, and improve the electrical conductivity and the mixture density, while improving the processability during electrode production. . However, in order to obtain the above effects, it is necessary to minimize the content of the maximum granules occupying about 10% by volume, so that the negative electrode active material according to the present invention has an average content as the volume ratio of the granules, and the distribution of the intermediate or higher particles. Has a large particle size distribution towards the granules.

본 발명에 있어서 상기 음극 활물질을 구성하는 분말 성분으로는 천연 흑연, 인조흑연, 비정질 탄소로 구성되는 군으로부터 선택되는 1종 이상의 혼합 분말이 사용될 수 있다. In the present invention, at least one mixed powder selected from the group consisting of natural graphite, artificial graphite, and amorphous carbon may be used as the powder component constituting the negative electrode active material.

본 발명에 의한 음극 활물질은 상기와 같이 분말의 입도 분포가 특정 범위로 제어됨으로써, 전극 압연시 충진성이 향상되어 합제밀도가 쉽게 올라가고, 분말 내에 주어지는 스트레스가 적어서 분말 변형이 적어지며, 압연 후 일정 조건에서 방치시 분말이 외압이 가해지기 전의 상태로 되돌아가려는 스프링백 현상이 크게 감소된다. 상기 스프링백 현상이 많이 발생하게 되면, 압연 시 합제밀도가 올라가더라도 전지 내에서는 합제밀도가 낮아지게 되어 고에너지밀도의 전지 구현이 어렵게 되고, 또한 일정 부피로 설계된 전지 내에서 전극간 압력이 증가되면서 전지 팽창 을 유도하여, 전지 특성 및 안전성 저하의 원인이 될 수 있다. 이러한 스프링백 현상의 정도는 합제밀도 1.90g/cc 이하인 전극을 기준으로, 전극의 압연 직후에 측정된 두께(T1)와 전극 압연 후 12시간 동안의 진공 건조 후에 측정된 두께(T2)로서 계산되어진 스프링백 값[{(T2 - T1)/T1}*100]으로 평가될 수 있으며, 상기 스프링백 값이 8% 이하인 경우에 유리한 전지 성능을 발현할 수 있다. 만약, 상기 스프링백 값이 8% 이상을 나타내면, 음극판의 과다한 부피 팽창으로 인해 양극판 및 전지 자체에 스트레스를 주게 되고, 이러한 스트레스는 전기적 불균일성을 유발시켜 전지 성능의 저하를 유발시키게 된다. Since the particle size distribution of the powder is controlled in a specific range as described above, the negative electrode active material according to the present invention improves the filling property during electrode rolling, thereby easily increasing the mixture density, and decreases the powder deformation due to less stress given in the powder. When left under conditions, the springback of the powder trying to return to the state before the external pressure is greatly reduced. When the springback phenomenon occurs a lot, even if the mixture density increases during rolling, the mixture density decreases in the battery, making it difficult to implement a battery having a high energy density, and also increasing the pressure between electrodes in a battery designed with a constant volume. By inducing battery expansion, battery characteristics and safety may be reduced. The extent of this springback phenomenon is calculated as the thickness (T1) measured immediately after the electrode rolling and the thickness (T2) measured after vacuum drying for 12 hours after the electrode rolling, based on the electrode having a mixture density of 1.90 g / cc or less. It can be evaluated as a springback value [{(T2-T1) / T1} * 100], and advantageous battery performance can be expressed when the springback value is 8% or less. If the springback value is greater than or equal to 8%, an excessive volume expansion of the negative electrode plate causes stress on the positive electrode plate and the battery itself, and this stress causes electrical non-uniformity to cause degradation of battery performance.

뿐만 아니라, 본 발명에 의한 음극 활물질은 분말의 입도 분포에 의하여 전극 내에서 분말간 균일한 미세 채널을 형성시켜, 전해액의 유입성을 향상시킴으로서 전해액과 분말들 사이의 반응성, 즉, 젖음성을 향상시킬 수 있다. 이러한 젖음성의 향상은 고합제밀도 전극에서 매우 중요한 물성 중 하나로서, 높은 합제밀도 전극이더라도 전해액과의 젖음성이 나쁘면, 전극내 전해액 유입이 어려워 우수한 전지 특성 발현이 어렵게 된다. In addition, the negative electrode active material according to the present invention forms a uniform microchannel between powders in the electrode by the particle size distribution of the powder, thereby improving the inflow of the electrolyte, thereby improving the reactivity between the electrolyte and the powder, that is, the wettability. Can be. The improvement of the wettability is one of very important physical properties in the high mixture density electrode, and even if the high mixture density electrode has poor wettability with the electrolyte, it is difficult to express the excellent battery characteristics due to difficulty in introducing the electrolyte solution into the electrode.

이하 본 발명을 하기 실시예 및 시험예를 통해 더욱 구체적으로 설명한다. 단, 하기 실시예 및 시험예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 제한되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following Examples and Test Examples. However, the following Examples and Test Examples are only for illustrating the present invention, but the scope of the present invention is not limited thereto.

실시예 1∼10Examples 1-10

하기 표 1에 표시된 입자 크기 분포와 함량에 따라 제조된 분말 재료를 혼합하여 음극 활물질 혼합 분말로서 사용하였다. 천연흑연에 비정질탄소 또는 인조흑연을 혼합하는 경우에는 모두 동일한 중량비로 혼합하였으며, 음극 활물질 혼합 분말의 입자 크기 분포는 MASTERSIZER 2000[MALVERN INSTRUMENT사(영국)]을 사용하여 측정하였다. 먼저, 상기 음극 활물질 혼합분말 100 중량부, 도전성 미립자로서 평균 입경 100㎚의 카본블랙 2 중량부, 바인더로서 스티렌 부타디엔 고무(SBR) 2 중량부 및 증점제로서 카복실 메틸 셀룰로스(CMC) 2 중량부를 물과 함께 혼합한 후, 충분히 교반하여 음극 활물질 슬러리 조성물을 제조하였다.The powder material prepared according to the particle size distribution and content shown in Table 1 was mixed and used as a negative electrode active material mixed powder. In the case of mixing amorphous carbon or artificial graphite with natural graphite, all were mixed in the same weight ratio, and the particle size distribution of the negative electrode active material mixed powder was measured using MASTERSIZER 2000 [MALVERN INSTRUMENT (UK)]. First, 100 parts by weight of the negative active material mixed powder, 2 parts by weight of carbon black having an average particle diameter of 100 nm as conductive fine particles, 2 parts by weight of styrene butadiene rubber (SBR) as a binder, and 2 parts by weight of carboxymethyl cellulose (CMC) as a thickener. After mixing together, the mixture was sufficiently stirred to prepare a negative electrode active material slurry composition.

상기 음극 활물질 슬러리 조성물을 구리 집전체의 표면 위에 닥터 블레이드(doctor blade)를 이용하여 코팅한 후, 코팅층을 110℃에서 열풍 건조시키고 30kgf/㎠의 압력으로 롤-프레스한 다음, 120℃ 진공 오븐에서 12시간 동안 진공 건조시킴으로써 두께 60㎛의 음극판을 제조하였다.After coating the negative electrode active material slurry composition on the surface of the copper current collector using a doctor blade, the coating layer was hot-air dried at 110 ° C., roll-pressed to a pressure of 30 kgf / cm 2, and then in a 120 ° C. vacuum oven. A negative electrode plate having a thickness of 60 μm was prepared by vacuum drying for 12 hours.

Figure 112006039619907-pat00001
Figure 112006039619907-pat00001

상기 표1에서 실시예 5에 해당하는 음극 활물질의 입도 분포 그래프를 도 1에 나타내었다.In Table 1, the particle size distribution graph of the negative electrode active material corresponding to Example 5 is shown in FIG. 1.

시험예Test Example

상기 실시예 1 내지 10 및 비교예 1 내지 8에서 제조된 음극판 각각을 이용하여 통상적인 방법으로 코인 타입의 반쪽 전지를 제조하였다.Coin-type half cells were manufactured in a conventional manner using the negative electrode plates prepared in Examples 1 to 10 and Comparative Examples 1 to 8, respectively.

상기 음극판에 대해서는, 마이크로미터를 이용하여 압연 직후에 측정된 두께(T1) 및 압연 후 12시간 동안 진공 건조한 후에 측정된 두께(T2)로 스프링백 특성을 계산[{(T2 - T1)/T1}*100]하였고, 압연 직후 합제밀도를 측정하였으며, 제조된 전지에 대해서는, 가역 용량, 초기 효율, 고율 특성 및 수명 특성을 측정하여 그 결과를 하기 표 2에 나타내었다. 전지를 0.2C로 충전한 후 0.2C로 방전시켰을 때의 방전 용량을 "가역 용량"으로, 이때의 충전 용량에 대한 방전 용량의 비율을 "초기 효율"로, 이때의 방전 용량에 대한 2C로 충전한 후 2.0C로 방전시켰을 때의 방전 용량의 비율을 "고율 특성"으로 표시하였다. "가역 용량"은 음극활물질 무게 1g 당 전지 용량을 나타내는 mAh/g 및 음극활물질이 코팅되었을 때의 부피 1cc 당 전지 용량을 나타내는 mAh/cc로 표시하였으며, 부피당 전지용량은 무게당 전지용량에 합제밀도를 곱한 값으로 구하였다. 즉, 합제밀도가 커질수록 부피당 전지용량이 커지며, 부피당 전지용량이 전지에서는 더욱 중요한 용량 값이 된다. "수명 특성"은 전지를 1.0C로 충전한 후, 1.0C로 방전하는 것을 50회 반복한 다음, 첫 회 방전 용량에 대한 50회 방전 용량의 비율로 나타내었다.For the negative electrode plate, springback characteristics were calculated from the thickness T1 measured immediately after rolling using a micrometer and the thickness T2 measured after vacuum drying for 12 hours after rolling [{(T2-T1) / T1}. * 100], the mixture density was measured immediately after rolling, and for the manufactured battery, the reversible capacity, initial efficiency, high rate characteristics, and lifetime characteristics were measured, and the results are shown in Table 2 below. When the battery is charged to 0.2C and then discharged to 0.2C, the discharge capacity is "reversible capacity", and the ratio of the discharge capacity to the charging capacity at this time is "initial efficiency" and charging at 2C to the discharge capacity at this time. After that, the ratio of the discharge capacity when discharged at 2.0C was expressed as "high rate characteristics". "Reversible capacity" is expressed in mAh / g representing the battery capacity per 1 g of the negative electrode active material and mAh / cc representing the battery capacity per 1 cc of volume when the negative electrode active material is coated, the battery capacity per volume is the combined density of the battery capacity per weight Was obtained by multiplying In other words, as the mixture density increases, the battery capacity per volume becomes larger, and the battery capacity per volume becomes a more important capacity value in the battery. "Life characteristics" is expressed as the ratio of 50 times the discharge capacity to the first discharge capacity after charging the battery at 1.0 C, then repeatedly discharged at 1.0 C 50 times.

Figure 112006039619907-pat00002
Figure 112006039619907-pat00002

상기 표 2로부터, 본 발명의 실시예에서 제조된 음극판이 비교예에서 제조된 음극판에 비해 스프링백 특성이 우수하고, 합제밀도가 높으며, 본 발명의 음극 활물질을 갖는 전지가 비교예의 음극 활물질을 갖는 전지에 비해 전지 초기 성능 및 사이클 수명 특성이 모두 우수하다는 것을 알 수 있다. From Table 2, the negative electrode plate prepared in the embodiment of the present invention is superior to the negative electrode plate prepared in the comparative example, the spring density is high, the mixture density is high, the battery having the negative electrode active material of the present invention has a negative electrode active material of the comparative example It can be seen that the battery initial performance and cycle life characteristics are both superior to the battery.

상기와 같이, 본 발명에 의한 음극 활물질은 분말 입도의 분포를 조절한 혼합 분말 형태로 제조됨으로써, 집전체에 코팅되는 단위 부피당 분말 함량을 최대화시켜 합제밀도를 크게 향상시키며, 전극 압연시 분말의 변형을 최소화 시켜주어 스프링백 현상을 개선하였을 뿐만 아니라, 분말들 사이에 형성되는 미세 채널들에 의해 전해액과의 젖음성을 향상시키는 효과를 가지므로, 이러한 본 발명의 음극 활물질을 포함하는 리튬 이차전지는 고에너지 밀도, 우수한 전지 용량 및 안정된 수명 특성을 나타낼 수 있다.As described above, the negative electrode active material according to the present invention is manufactured in the form of a mixed powder in which the distribution of powder particle size is controlled, thereby maximizing the powder content per unit volume coated on the current collector, greatly improving the mixture density, and deforming the powder during electrode rolling. In addition to improving the springback phenomenon by minimizing the effect, and having the effect of improving the wettability with the electrolyte by the microchannels formed between the powders, the lithium secondary battery including the negative electrode active material of the present invention has a high Energy density, good battery capacity and stable lifetime characteristics.

Claims (3)

입자크기가 5㎛ 이하인 미립 분말을 전체부피의 1% 내지 15%로 포함하고, d90이상의 입자 크기가 20 내지 80㎛인 과립 분말을 포함하며, 1 to 15% of the total volume of particulate powder having a particle size of 5 μm or less, and a granular powder having a particle size of 20 to 80 μm or more of d90 or more, 전체 입도에서 최대 피크 위치에 해당되는 입자 크기 dmaxpeak가 평균 부피 입자에 해당되는 d50vol 이상이고, The particle size dmax peak corresponding to the maximum peak position in the overall particle size is at least d50 vol corresponding to the average volume particle, 음극 합제밀도 1.90g/cc 이하에서 8% 이하의 스프링백 특성을 갖는, 리튬 이차전지용 음극 활물질.A negative electrode active material for lithium secondary batteries, having a springback characteristic of 8% or less at a negative electrode mixture density of 1.90 g / cc or less. 제 1항에 있어서, 상기 분말 성분은 천연 흑연, 인조흑연 및 비정질 탄소로 구성되는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 리튬 이차전지용 음극 활물질. The negative electrode active material of claim 1, wherein the powder component is at least one selected from the group consisting of natural graphite, artificial graphite, and amorphous carbon. 제 1항에 따른 음극 활물질을 음극 구성성분으로 포함하는 리튬 이차전지.A lithium secondary battery comprising the negative electrode active material according to claim 1 as a negative electrode component.
KR1020060050397A 2006-06-05 2006-06-05 Anode active material for high energy density lithium secondary battery Active KR100663180B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060050397A KR100663180B1 (en) 2006-06-05 2006-06-05 Anode active material for high energy density lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060050397A KR100663180B1 (en) 2006-06-05 2006-06-05 Anode active material for high energy density lithium secondary battery

Publications (2)

Publication Number Publication Date
KR20060071387A KR20060071387A (en) 2006-06-26
KR100663180B1 true KR100663180B1 (en) 2007-01-05

Family

ID=37164846

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060050397A Active KR100663180B1 (en) 2006-06-05 2006-06-05 Anode active material for high energy density lithium secondary battery

Country Status (1)

Country Link
KR (1) KR100663180B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131303A1 (en) * 2008-04-21 2009-10-29 엘에스엠트론 주식회사 Cathode active material for a secondary battery, electrode for a secondary battery and secondary battery comprising the same, and a production method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102449847B1 (en) * 2015-10-27 2022-09-29 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, and rechargeable lithium battery including same
WO2019240466A1 (en) * 2018-06-11 2019-12-19 주식회사 아모그린텍 Flexible battery, manufacturing method therefor, and auxiliary battery comprising same
KR20240094884A (en) * 2022-12-16 2024-06-25 포스코홀딩스 주식회사 Anode material for lithium secondary cell, precursor for the same, lithium secondary cell, and manufacturing method of the anode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131303A1 (en) * 2008-04-21 2009-10-29 엘에스엠트론 주식회사 Cathode active material for a secondary battery, electrode for a secondary battery and secondary battery comprising the same, and a production method therefor

Also Published As

Publication number Publication date
KR20060071387A (en) 2006-06-26

Similar Documents

Publication Publication Date Title
KR101479320B1 (en) Negative electrode active material for rechargeable lithium battery, and method for preparing the same
US9647262B2 (en) Core-shell type anode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
KR101875031B1 (en) Anode active material-containing slurry, method for producing the slurry, anode using the slurry and lithium secondary battery including the anode
KR101383473B1 (en) New silicon based electrode formulations for lithium-ion batteries and method for obtaining it
CN115101803B (en) Secondary battery
KR20060091486A (en) Cathode active material, manufacturing method thereof, and cathode and lithium battery employing the same
KR100938059B1 (en) Anode for lithium secondary battery and lithium secondary battery using same
KR101249349B1 (en) Negative active material for lithium secondary battery and lithium secondary battery using same
KR100975875B1 (en) Cathode active material, manufacturing method thereof, cathode and lithium battery employing the same
US8802289B2 (en) Composition for electrode comprising an iron compound with carbon and a (meth)acrylate-nitrile copolymer
EP4481854A1 (en) Lithium iron phosphate positive electrode active material, positive electrode sheet, and lithium-ion battery
CN113300001A (en) Winding type battery cell and electrochemical device
KR100663180B1 (en) Anode active material for high energy density lithium secondary battery
CN115394951A (en) Negative electrode active material of secondary battery and secondary battery
KR20110078307A (en) Metallic zinc anode active material and lithium secondary battery using same
KR100663178B1 (en) Anode active material for high energy density lithium secondary battery
JP4267885B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode using the negative electrode material, and lithium ion secondary battery
JPH1167207A (en) Negative electrode for lithium secondary battery
JP2011233541A (en) Graphite particles for lithium ion secondary battery
KR100663182B1 (en) Anode active material for high energy density lithium secondary battery
JP2007134276A (en) Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
WO2008140160A1 (en) Anode material of secondary battery and secondary battery using the same
JP2023068392A (en) Electrode active material, electrode, and lithium ion secondary battery
CN119764424A (en) Negative electrode material, negative electrode sheet and battery
KR100886529B1 (en) Anode Material for Secondary Battery and Secondary Battery Using Same

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20060605

PA0201 Request for examination
A302 Request for accelerated examination
PA0302 Request for accelerated examination

Patent event date: 20060608

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

Patent event date: 20060605

Patent event code: PA03021R01I

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20060731

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20061031

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20061222

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20061226

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20091222

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20101215

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20111219

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20121204

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20121204

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20131206

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20141201

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20151202

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20151202

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20161221

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20161221

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20171213

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20171213

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20181221

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20181221

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20201218

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20221212

Start annual number: 17

End annual number: 17

PR1001 Payment of annual fee

Payment date: 20231219

Start annual number: 18

End annual number: 18

PR1001 Payment of annual fee

Payment date: 20240826

Start annual number: 19

End annual number: 19