[go: up one dir, main page]

KR100721927B1 - How to separate cancer cells from cancer tissue - Google Patents

How to separate cancer cells from cancer tissue Download PDF

Info

Publication number
KR100721927B1
KR100721927B1 KR1020060106722A KR20060106722A KR100721927B1 KR 100721927 B1 KR100721927 B1 KR 100721927B1 KR 1020060106722 A KR1020060106722 A KR 1020060106722A KR 20060106722 A KR20060106722 A KR 20060106722A KR 100721927 B1 KR100721927 B1 KR 100721927B1
Authority
KR
South Korea
Prior art keywords
cancer
cells
tissue
cell
penicillin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020060106722A
Other languages
Korean (ko)
Inventor
최성호
Original Assignee
이수앱지스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이수앱지스 주식회사 filed Critical 이수앱지스 주식회사
Priority to KR1020060106722A priority Critical patent/KR100721927B1/en
Application granted granted Critical
Publication of KR100721927B1 publication Critical patent/KR100721927B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 암조직에서 암세포를 분리하는 방법에 관한 것으로, 보다 상세하게는 분리된 암조직을 알코올로 전처리하고 항생제를 포함하는 세척액으로 세척하는 단계; 세정한 암조직을 항생제를 포함하는 효소혼합액에 부유시켜 암세포를 분리하는 단계; 및 세포부유액에서 비암세포를 제거하는 단계를 포함하는 암세포 분리방법에 관한 것이다. The present invention relates to a method for separating cancer cells from cancer tissue, and more particularly, pretreatment of the isolated cancer tissue with alcohol and washing with a washing solution containing antibiotics; Separating the cancer cells by floating the washed cancer tissues in an enzyme mixture containing antibiotics; And it relates to a method for separating cancer cells comprising the step of removing non-cancer cells from the cell suspension.

암세포 분리법, 고형암 Cancer Cell Separation, Solid Cancer

Description

암조직에서 암세포를 분리하는 방법{A Method of separating tumor cells from cancer tissue}A method of separating tumor cells from cancer tissue

도 1 은 고형암 조직의 분리 직후 세포 부유액의 트리판 블루 염색양상을 나타내는 것으로, 도 1b는 도 1a의 점선으로 표시한 원 안의 양상을 확대한 도면으로서, 여기서 L은 살아있는 세포(living cell)를 나타내며 염색되지 않았고, D는 죽은 세포(dead cell)를 나타내는 것으로 염색되어 푸른색을 띠었으며, R은 적혈구를 나타내며 염색되지 않고, 매우 굴절되었다(highly refractive). Figure 1 shows the trypan blue staining of the cell suspension immediately after the separation of solid cancer tissue, Figure 1b is an enlarged view of the circle shown in the dotted line of Figure 1a, where L represents a living cell (living cell) Unstained, D stained to represent dead cells, blue in color, and R to red blood cells, not stained, highly refractive.

도 2 는 고형암 조직의 분리 직후 HE 염색(Haematoxylin & Eosin Staining) 결과를 보인다. Figure 2 shows the result of HE staining (Haematoxylin & Eosin Staining) immediately after the separation of solid cancer tissue.

도 3 은 고형암 조직에 대한 피콜 밀도 구배 원심분리(Ficol Gradient Centrifuge) 결과로 고형암 조직에 존재하는 암세포 및 비암세포의 분포를 보인다. Figure 3 shows the distribution of cancer cells and non-cancer cells present in solid cancer tissue as a result of Ficol Gradient Centrifuge for solid cancer tissue.

도 4 는 고형암 조직에 대한 면역자기분리(immunomagnetic separation) 결과로 고형암 조직에서 비암세포를 제거한 결과를 보인다. Figure 4 shows the result of removing the non-cancer cells from the solid cancer tissue as a result of immunomagnetic separation (immunomagnetic separation) for the solid cancer tissue.

도 5 는 한국인 호발 5대 암종(위암, 폐암, 간암, 대장암, 유방암)에 대한 암종별 암세포 분리효율을 나타내는 것으로 도 5a 는 암세포 수득율을 나타내고, 도 5b는 수득된 암세포의 생존율을 나타낸다. FIG. 5 shows cancer cell separation efficiency according to carcinomas of five major carcinomas of Korea (stomach cancer, lung cancer, liver cancer, colon cancer, breast cancer). FIG. 5A shows the cancer cell yield and FIG. 5B shows the survival rate of the obtained cancer cells.

도 6 은 일반 고형암에 비하여 배양성공률이 저조한 대장암 조직이 본 발명에 따른 처리과정 후 배양 성공률이 증대된 결과를 보인다. ‘평균’은 대장암외 다른 고형암의 배양성공률, ‘대장암(처리전)’은 항생제를 포함하는 세척액만 사용했을 때 배양성공률, ‘대장암(처리후)’은 에탄올 전처리, 세척액, 메트로니다졸을 모두 사용하였을 때 배양성공률을 의미한다. Figure 6 shows the result of the culture success rate of the colon cancer tissue having low culture success rate compared to the general solid cancer increased after the treatment process according to the present invention. 'Average' is the culture success rate of solid cancers other than colon cancer, and 'Colour cancer (before treatment)' is the culture success rate when only washing solution containing antibiotics is used. When used, it means the culture success rate.

우리나라에서는 매년 약 9만 9천명의 새로운 암환자가 발생하고 있다(2002년 한국 중앙암등록사업). 최근 10년간 암등록 추이를 볼 때 연평균 암 발생빈도가 매년 약 5.6%씩 증가한다는 점과 2001년을 기준으로 인구 십만명당 암사망율이 일본은 238.8명, 미국은 200.5명인데 비해 한국은 123.5명에 불과하다는 점 등으로 미루어 볼 때 국내의 암 환자 발생은 앞으로도 지속적으로 증가할 것으로 추측된다. In Korea, about 9,000 new cancer patients occur each year (2002 Korea Central Cancer Registration Project). According to the recent 10 years of cancer registration, the average annual cancer incidence increases by about 5.6% per year, and as of 2001, the cancer mortality rate per 100,000 population was 238.8 in Japan and 200.5 in the United States, compared to 123.5 in Korea. In view of the fact that the cancer cases in Korea is expected to continue to increase in the future.

최근 생명과학 기술이 발달함에 따라 인체암 조직 및 이로부터 분리된 암 세포를 환자의 진단, 치료, 예후판정 또는 기초적인 암 연구에 활용하려는 시도가 활발해 지고 있다. 그러나, 암조직 내에는 여러 가지 다양한 세포가 혼입되어 있어 순수한 암세포만을 분리하기 어려울뿐만 아니라 다양한 고형암 조직으로부터 충분한 양의 살아있는 암세포를 분리하는 것이 기술적인 장애가 될 수 있다. 미국의 연구진은 살아 있는 암조직에서 암세포를 하나씩 분리할 수 있는 레이저미세분리법을 쓰고 있지만 현재까지 우리나라에는 이런 기술이 없어 암세포를 실험실에서 배양, 연구하는 방법을 쓰고 있다. With the recent development of life science technology, attempts have been made to utilize human cancer tissues and cancer cells isolated therefrom for diagnosis, treatment, prognosis, or basic cancer research. However, since various various cells are incorporated in cancer tissues, it is difficult to separate only pure cancer cells, and separation of a sufficient amount of living cancer cells from various solid cancer tissues may be a technical obstacle. Researchers in the United States are using laser microseparation to separate cancer cells one by one from living cancer tissues, but until now, there is no such technology in Korea, and cancer cells are cultured and studied in a laboratory.

고형암 조직으로부터 살아있는 암세포를 분리하는 경우, 후속 연구로 암세포의 세포주 형성, 약제감수성(chemosensitivity) 검사, 암백신 개발 등에 세포 배양 과정이 필요할 경우가 있다. 따라서 효율적인 암세포 분리 및 이후 세포배양에의 이용 등을 위해서는 인체 조직에 존재하는 상재균에 의한 미생물 오염을 억제하고, 생존한 세포를 충분히 분리하여야 하며, 혼입된 정상세포를 제거하여야 하는 등의 과정이 필요하다. In the case of isolating live cancer cells from solid cancer tissue, subsequent studies may require cell culture processes such as cancer cell line formation, chemosensitivity testing, and cancer vaccine development. Therefore, in order to efficiently isolate cancer cells and use them for further cell culture, the process of inhibiting microbial contamination by the fungi present in human tissues, separating the living cells sufficiently, and removing normal cells incorporated need.

이에 본 발명자들은 한국인의 5대 암종인 위암, 폐암, 간암, 대장/직장암, 및 유방암 조직 등으로부터 혼입된 정상세포를 제거하고 시료 내 암세포의 비율을 늘릴 수 있는 방법을 고안하였으며 미생물의 오염을 예방하기 어려운 대장, 직장암 세포의 배양효율 높이기 위한 전처리과정 및 유효 항생제 사용에 대한 발명을 완성하였다.Therefore, the present inventors have devised a method to remove normal cells incorporated from the five major carcinomas of Koreans, stomach cancer, lung cancer, liver cancer, colorectal / rectal cancer, and breast cancer tissues, and increase the proportion of cancer cells in the sample, and prevent microbial contamination. The invention of the pretreatment process and the use of effective antibiotics to increase the culture efficiency of colorectal, rectal cancer cells, which are difficult to do, was completed.

따라서, 본 발명의 목적은 암세포의 미생물 오염을 줄이고, 고형암 조직에서 비암세포를 효율적으로 제거하여 암세포 분리 효율이 높은 암세포 분리방법을 제공하는 것이다. Accordingly, an object of the present invention is to reduce the microbial contamination of cancer cells, and to efficiently remove non-cancer cells from solid cancer tissues to provide a method for separating cancer cells with high cancer cell separation efficiency.

상기와 같은 목적을 달성하기 위하여, 본 발명은 하나의 양태로서,In order to achieve the above object, the present invention is an aspect,

(a) 분리된 고형암 조직을 알코올로 전처리하고 항생제를 포함하는 세척액으로 세정하는 단계; (b) 세정한 암조직을 페니실린, 스트렙토마이신, 겐타마이신 및 엠포테리신B를 포함하는 효소혼합액에 부유시켜 암세포를 분리하는 단계; 및 (c) 상기 세포부유액에서 비암세포를 제거하는 단계를 포함하는 고형암 암세포의 분리방법을 제공한다. 더욱 바람직한 양태에서, 상기 방법은 단계(b)의 효소혼합액에 매트로니다졸을 더 포함하는 것을 특징으로 하는 고형암 암세포의 분리방법을 제공한다.(a) pretreating the separated solid cancer tissue with alcohol and washing with a wash solution comprising antibiotics; (b) floating the washed cancer tissue in an enzyme mixture including penicillin, streptomycin, gentamicin and empoterisin B to separate cancer cells; And (c) provides a method for separating solid cancer cancer cells comprising the step of removing the non-cancer cells from the cell suspension. In a more preferred embodiment, the method provides a method for separating solid cancer cancer cells, characterized in that it further comprises matronidazole in the enzyme mixture of step (b).

본 발명에서 “고형암(Solid cancer)”이라 함은 유방 또는 전립선 등의 고형 장기(solid organ)에서 비정상적으로 세포가 성장하는 것으로, 액체인 혈액에 영향을 끼치는 백혈병(leukemia)과 반대되는 개념이다. 따라서, 본 발명의 고형암에는 위암, 폐암, 간암, 대장암, 직장암, 유방암, 전립선암, 피부암, 두경부암, 췌장암, 난소암, 방광암, 신장암, 흑색종, 소세포 및 비소세포폐암, 육종, 신경아교종 또는 T-세포 림프종 및 B-세포 림프종 등이 포함되나 이에 제한되지는 아니한다. In the present invention, the term "solid cancer" refers to an abnormal growth of cells in a solid organ such as the breast or the prostate, as opposed to leukemia, which affects liquid blood. Therefore, the solid cancer of the present invention includes gastric cancer, lung cancer, liver cancer, colon cancer, rectal cancer, breast cancer, prostate cancer, skin cancer, head and neck cancer, pancreatic cancer, ovarian cancer, bladder cancer, kidney cancer, melanoma, small cell and non-small cell lung cancer, sarcoma, neuroblastoma Glioma or T-cell lymphoma and B-cell lymphoma, and the like.

상기한 본 발명의 방법에서 분리된 고형암 조직을 ‘알코올로 전처리’하는 단계는 바람직하게 70% 에탄올에 암조직을 침지시켜 조직표면을 소독하는 것을 포함한다. 종래의 암세포 분리법은, 분리된 암조직을 항생제를 포함하는 세척액(washing buffer)로 세정하기 전에 알코올 등에 의해 전처리하는 과정을 포함하지 않았다. 이후 실시예에서 입증하는 바와 같이, 본 발명의 방법에서와 같이 항생제 포함 세척액으로 세정하기 전에 알코올로 전처리하는 과정을 포함함으로써, 분 리된 암세포의 배양과정에서 오염을 방지하여 암세포의 정제율 및 수득율을 높이는 현저한 효과가 있었다.'Pretreatment of the solid cancer tissue isolated in the method of the present invention with alcohol' preferably includes disinfecting the tissue surface by immersing the cancer tissue in 70% ethanol. The conventional cancer cell separation method does not include a process of pretreatment with alcohol or the like before washing the separated cancer tissues with a washing buffer containing antibiotics. As demonstrated in the following Examples, by the pre-treatment with alcohol before washing with a washing solution containing antibiotics as in the method of the present invention, to prevent contamination in the culture process of isolated cancer cells to improve the purification rate and yield of cancer cells The height had a remarkable effect.

상기 항생제를 포함하는 ‘세척액’은 종래 암세포분리시에 일반적으로 사용되는 세척액일 수 있으나, 바람직하게는 이후 설명하는 본 발명에 따른 효소혼합액에 포함되는 것과 같은 종류의 항생제인 엠포테리신B, 페니실린, 스트렙토마이신 및 겐타마이신과 같은 항생제를 포함하고, 여기에 우태아 혈청(FBS)을 더 포함하는 용액일 수 있다. 본 발명의 바람직한 실시예에서는, 엠포테리신 B가 포함된 항생제 용액(HBSS, Hank's balance salt solution, Hyclone 사)에 100U/ml 페니실린(penicillin), 100㎍/ml 스트렙토마이신(Streptomycin), 100 ug/ml 겐타마이신(gentamicin), 2.5㎍/ml 엠포테리신 B 및 10% FBS 가 포함된 용액을 단계(a)에서의 세척액으로 사용하였다.The 'washing liquid' containing the antibiotic may be a washing liquid generally used in conventional cancer cell separation, but preferably, the antibiotics of the same type as those included in the enzyme mixture according to the present invention to be described later, penicillin It may be a solution containing antibiotics, such as streptomycin and gentamicin, further comprising fetal calf serum (FBS). In a preferred embodiment of the present invention, 100 U / ml penicillin, 100 µg / ml Streptomycin, 100 ug / in an antibiotic solution containing Empoterisin B (HBSS, Hank's balance salt solution, Hyclone) A solution containing ml gentamicin, 2.5 μg / ml empotericin B and 10% FBS was used as the wash in step (a).

본 발명에서 “효소혼합액”이라 함은 암에 걸린 인체에서 분리한 고형암 조직에서 암세포와 비암세포를 분리할 수 있는 효소와 그 밖의 분리 효율을 높일 수 있는 물질을 포함하고 있는 용액을 말한다. 바람직하게 상기 효소 혼합액에서 암세포와 비암세포를 분리할 수 있는 효소로는 콜라게나아제(collagenase), 디스파제(dispase), 프로나제(pronase), DNase 등이 포함되며(효소 조성 참고문헌: Sevin BU, Peng ZL, Perras JP, Ganjei P, Penalver M, Averette HE. Application of an ATP-bioluminescence assay in human tumor chemosensitivity testing. Gynecol Oncol. (1988), 31, 191-204), 분리효율을 높이는 물질로는 암세포의 오염을 예방하기 위한 물질로서 페니실린(penicillin), 스트렙토마이신(Streptomycin), 겐타마 이신(gentamicin), 엠포테리신B(Ampotericin B) 및 메트로니다졸(Metronidazole) 등과 같은 항생제와 암세포의 생존율을 보존하는 물질로서 FBS를 포함하는 PMI 1640과 같은 배양액일 수 있다. 분리효소혼합액에 사용하는 RPMI 1640 배양액은 DMEM, RPMI, IMDM, MEM, McCoy’s 5A 등과 같은 배양액으로 쉽게 대체하여 사용할 수 있으나, 이에 제한되지는 않는다.In the present invention, the "enzyme mixture" refers to a solution containing an enzyme capable of separating cancer cells and non-cancer cells from a solid cancer tissue isolated from a human body having cancer and a substance capable of increasing other separation efficiency. Preferably, enzymes capable of separating cancer cells from non-cancer cells in the enzyme mixture include collagenase, dispase, pronase, DNase, etc. (enzyme composition reference: Sevin BU , Peng ZL, Perras JP, Ganjei P, Penalver M, Averette HE.Application of an ATP-bioluminescence assay in human tumor chemosensitivity testing.Gynecol Oncol. (1988), 31, 191-204), Antibiotics such as penicillin, streptomycin, gentamicin, ampotericin B, and metronidazole are used to prevent cancer cell contamination. It may be a culture medium such as PMI 1640 containing FBS as a substance. RPMI 1640 culture medium used in the separation enzyme mixture can be easily replaced with a culture medium such as DMEM, RPMI, IMDM, MEM, McCoy's 5A, but is not limited thereto.

본 발명의 구체적인 실시예에서 상기 효소혼합액은 RPMI 1640, 콜라게나아제(collagenase), 프로나제(pronase), DNase, 페니실린(penicillin), 스트렙토마이신(Streptomycin), 겐타마이신(gentamicin), 엠포테리신B(Ampotericin B), 메트로니다졸(Metronidazole) 및 FBS를 포함하는 배양액으로 구성되었으나, 대장암 및 직장암의 경우를 제외하면, 상기 성분 중 메트로니다졸을 포함하지 않더라도 우수한 효율로 암세포를 분리할 수 있다. 직장암, 대장암의 경우에는 특히 메트로니다졸이 포함되는 경우 암세포의 정제효율이 훨씬 높아지고 배양 성공률이 증가함을 확인하였다. In a specific embodiment of the present invention, the enzyme mixture is RPMI 1640, collagenase, collagenase, pronase, DNase, penicillin, streptomycin, gentamicin, gentamicin, empotericin B (Ampotericin B), metronidazole (Metronidazole) and consisting of a culture medium containing FBS, except for the case of colorectal cancer and rectal cancer, cancer cells can be separated with excellent efficiency even if the component does not contain metronidazole. In the case of colorectal cancer and colorectal cancer, the purification efficiency of cancer cells is much higher and the success rate of culture is increased especially when metronidazole is included.

상기 효소혼합액의 각 성분 및 농도는 당업자가 필요에 따라 적절히 조절할 수 있으며, 이러한 효소혼합액을 사용하여 암세포와 비암세포를 분리하는 방법에 관한 공지의 문헌을 참조할 수 있다(참고문헌 Journal of surgical oncology 40:4~7, 1989; Cancer research 43, 258~264, 1983: Amphotericin 1ug/mi;및 Cancer research 37, 3639~3643, 1977 & Eur. J Cancer 33(8) 1291~1298, 1997).본 발명에서 사용한 항생제 중 페니실린은 그람 양성 박테리아, 스트렙토마이신은 그람 양성 및 그람 음성 박테리아, 겐타마이신은 그람 양성 및 그람 음성 박테리아와 미코플라스마(mycoplasma), 엠포테리신 B는 곰팡이 및 효모에 대한 항생효과를 가지며, 이들 항생제는 동일한 작용범위를 가지고 있는 다른 항생제로의 대체가 가능하다.Each component and concentration of the enzyme mixture can be appropriately adjusted by those skilled in the art as needed, and reference can be made to well-known literature on methods for separating cancer cells from non-cancer cells using such enzyme mixtures. 40: 4-7, 1989; Cancer research 43, 258-264, 1983: Amphotericin 1ug / mi; and Cancer research 37, 3639-3643, 1977 & Eur. J Cancer 33 (8) 1291-1298, 1997). Among the antibiotics used in the invention, penicillin is Gram-positive bacteria, Streptomycin is Gram-positive and Gram-negative bacteria, Gentamicin is Gram-positive and Gram-negative bacteria and mycoplasma, and Empotericin B has antimicrobial effects against fungi and yeast. These antibiotics can be replaced with other antibiotics having the same range of action.

구체적으로는, 그람 양성 및 그람 음성 박테리아에 작용 가능한 다른 항생제로는 네오마이신(Neomycin), 앰피실린(ampiciliin) 등이 있고,그람 양성 및 그람 음성 박테리아와 미코플라스마(mycoplasma)에 작용 가능한 다른 항생제로는 가나마이신(Kanamycin) 등이 있으며, 곰팡이 및 효모에 작용 가능한 항생제로는 니스타틴(Nystatin)이 있다(참고문헌 Culture of animal cells, WILEY-LISS, 4TH edition, 99 page).Specifically, other antibiotics that can act on gram-positive and gram-negative bacteria include neomycin and ampiciliin, and other antibiotics that can act on gram-positive and gram-negative bacteria and mycoplasma. Kanamycin is an antibiotic that can act on fungi and yeast, and Nystatin (Culture of animal cells, WILEY-LISS, 4TH edition, 99 pages).

고형암 조직을 외과용 수술칼로 세절한 후 상기 효소혼합액에 부유시켜 처리하면 암조직으로부터 암세포 및 비암세포가 분리되며, 이와 같이 분리된 암세포와 비암세포를 포함하는 세포부유액으로부터 비암세포를 분리할 수 있다. 본 발명에서“비암세포”라 함은 고형암조직에서 암세포를 제외한 모든 세포를 의미하며, 여기에는 혈액세포와 기타 정상세포가 포함된다. 효소혼합액으로의 처리는 효소혼합액에 암조직을 부유시켜 약 37℃, 5% CO2 존재하에서 암조직의 종류에 따라 12시간 내지 16시간 동안 배양(incubation)하는 것을 포함한다. When the solid cancer tissue is cut with a surgical knife and suspended in the enzyme mixture, the cancer cells and the non-cancer cells are separated from the cancer tissue, and the non-cancer cells can be separated from the cell suspension containing the separated cancer cells and the non-cancer cells. . In the present invention, the term "non-cancer cell" means all cells except cancer cells in solid cancer tissues, and includes blood cells and other normal cells. Treatment with the enzyme mixture causes the cancer tissue to float in the enzyme mixture, approximately 37 ° C., 5% CO 2. Incubating for 12 to 16 hours depending on the type of cancer tissue in the presence.

효소혼합액으로 처리된 상기 세포부유액으로부터 비암세포를 제거하는 단계는 피콜 밀도구배 원심분리(Ficoll gradient centrifugation) 및 항-CD45 항체 자기 비드(Anti-CD45 antibody magnetic bead)를 사용하는 것을 포함한다. Removing the non-cancerous cells from the cell suspension treated with the enzyme mixture includes using Ficoll gradient centrifugation and anti-CD45 antibody magnetic beads.

상기 “피콜 밀도구배 원심분리”란 합성 수크로스 폴리머(sucrose polymer)인 피콜의 밀도 구배를 이용한 원심분리법으로, 용액 내 다양하게 존재하는 피콜의 농도에 따른 침전과정 동안 밀도가 서로 다른 세포들이 분리될 수 있다(Katayanagi N. et al. “Flow cytometric BrdU/DNA assay for anticancer agent sensitivity test” Nippon Rinsho. 1992, 50 (10), 2386-2390; Silva S.L. et al. “A novel model for isolation of Walker’s tumoral cells using the Ficoll-Hypaque gradient” Acta Cir Bras. 2006, 21 (2), 101-105; Weisethal L.M., et al. “A novel dye exclusion method for testing in vitro chemosensitivity of human tumors” Cancer Res. 1983, 43 (2), 749-57; 및 Andreotti P.E. et al. “Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: clinical correlation for cisplatin resistance of ovarian carcinoma” Cancer Res. 1995, 55 (22), 5276-5282. 참조). 본 발명에서는 이를 암세포 분리에 이용함으로써 암조직에서 암세포와 비암세포를 분리하는 효율을 현저히 높일 수 있음을 확인하였다.The "picol density gradient centrifugation" is a centrifugation method using a density gradient of a picol, a synthetic sucrose polymer, and cells having different densities can be separated during the precipitation process according to the concentration of the picol present in the solution. (Katayanagi N. et al. “Flow cytometric BrdU / DNA assay for anticancer agent sensitivity test” Nippon Rinsho. 1992, 50 (10), 2386-2390; Silva SL et al. “A novel model for isolation of Walker's tumoral cells using the Ficoll-Hypaque gradient ”Acta Cir Bras. 2006, 21 (2), 101-105; Weisethal LM, et al.“ A novel dye exclusion method for testing in vitro chemosensitivity of human tumors ”Cancer Res. 1983, 43 (2), 749-57; and Andreotti PE et al. “Chemosensitivity testing of human tumors using a microplate adenosine triphosphate luminescence assay: clinical correlation for cisplatin resistance of ovarian carcinoma” Cancer Res. 1995, 55 (22), 5276-5282 . Reference). In the present invention it was confirmed that by using this for cancer cell separation can significantly increase the efficiency of separating cancer cells and non-cancer cells in cancer tissue.

상기“항-CD45 항체 자기 비드”는 항-CD45 항체를 이용한 자기 비드법으로, 여기서 자기 비드란 실리카로 코팅된 균일한 초상자성체(uniform superparamagnetic)로 1 내지 5 의 직경을 가지며, 아민(Amine), 카르복시(Carboxy), 알데히드(Aldehyde), 에폭시(Epoxy), IDA, 하이드라지드(hydrazide), DADPA 또는 실리카(Silica) 등의 다른 표면기를 가지고 있는 구슬이다. 이러한 구슬은 비특이적 결합률이 낮고, 표면적이 넓고, 분산이 잘되며, 쉽게 다룰 수 있는 성질로 인해 단백질, 항체, 탄수화물, 렉틴, 핵산 또는 작은 약물 등을 분리하는데 폭넓게 이용되고 있다. The "anti-CD45 antibody magnetic beads" is a magnetic bead method using an anti-CD45 antibody, wherein the magnetic beads are a uniform superparamagnetic coated with silica, having a diameter of 1 to 5, and an amine. , Beads with other surface groups such as Carboxy, Aldehyde, Epoxy, IDA, hydrazide, DADPA or Silica. These beads are widely used to separate proteins, antibodies, carbohydrates, lectins, nucleic acids, or small drugs due to their low nonspecific binding rate, wide surface area, good dispersion, and easy handling.

본 발명은 특히 바람직한 양태로서, 고형암 중 대장암 또는 직장암의 조직으로부터 암세포를 높은 정제율 및 수득률로 분리하는 것을 특징으로 하는 암세포 분리방법을 제공한다. 대장, 직장암 조직에서 암세포를 분리하는 경우 다른 고형암에 비해 인체 내에 존재하는 상재균에 의해 쉽게 오염이 되는 경향이 있어 분리 배양에 어려움이 있었으나, 본 발명에서는 상기한 바와 같이 특히 알코올 전처리 및 효소혼합액에 메트로니다졸을 더 포함시킴으로써 대장암이나 직장암으로 부터도 일반 고형암 수준의 정제 효율 및 수득율로서 암세포를 배양할 수 있음을 확인하였다.In a particularly preferred embodiment, the present invention provides a method for separating cancer cells, characterized in that the cancer cells are separated from the tissue of colorectal cancer or colorectal cancer in solid cancer with high purification rate and yield. When the cancer cells are separated from the colon and rectal cancer tissues, they tend to be easily contaminated by residing fungi present in the human body, compared to other solid cancers, and thus, there is a difficulty in separating and culturing. In the present invention, particularly in the alcohol pretreatment and the enzyme mixture as described above. By further including metronidazole, it was confirmed that cancer cells can be cultured from colorectal cancer or rectal cancer with purification efficiency and yield of general solid cancer levels.

이하 본 발명의 내용을 실시예를 통해 보다 상세히 설명하기로 한다. 다만 이들 실시예는 본 발명의 내용을 설명하기 위해 예시하는 취지일 뿐, 권리범위가 이들에 한정되는 것으로 해석되어서는 안될 것이다.Hereinafter, the contents of the present invention will be described in more detail with reference to Examples. However, these examples are only intended to illustrate the contents of the present invention, it should not be construed that the scope of rights is limited thereto.

<< 실시예Example >>

세브란스 병원(연세대학교 의과대학)으로부터 얻은 한국인 호발 5대 고형암종인 위암, 폐암, 간암, 대장암, 유방암 조직에 대하여 각각 이하의 실시예에 따라 동일한 방식으로 처리하였으며, 따라서 이하의 실시예에서는 이들 암조직을 종류에 따라 구분하지 않고 모두 “고형암”이라는 용어로 통일하여 설명한다.Tissues of gastric cancer, lung cancer, liver cancer, colorectal cancer, and breast cancer, the five most common solid carcinomas obtained from Severance Hospital (Yonsei University College of Medicine), were treated in the same manner according to the following examples. Rather than sorting the tissues by type, they are all described in the term “solid cancer”.

<< 실시예Example 1> 암 조직의 전처리 1> Pretreatment of Cancer Tissue

고형암 조직을 70% 알코올(에탄올,Sigma)에 2~3초간 담가 조직표면을 소독하고, 표면 소독이 끝난 즉시, 페트리 디쉬에 옮겨 세척액A(washing media A) 20ml를 붓고 조직외부를 잘 닦아 주었다. 세척액A는 HBSS (Hank's balance salt solution, Hyclone사)에 100U/ml 페니실린(penicillin), 100㎍/ml 스트렙토마이신(Streptomycin), 100 ug/ml 겐타마이신(gentamicin), 2.5㎍/ml 엠포테리신 B 및 10% FBS 가 포함된 용액을 사용하였다(참고문헌: Sevin BU, Peng ZL, Perras JP, Ganjei P, Penalver M, Averette HE. Application of an ATP-bioluminescence assay in human tumor chemosensitivity testing. Gynecol Oncol. (1988), 31, 191-204). The solid cancer tissue was soaked in 70% alcohol (ethanol, Sigma) for 2-3 seconds to disinfect the tissue surface, and immediately after the surface disinfection, it was transferred to a petri dish and poured 20 ml of washing media A and wiped out the tissue well. Washing solution A was prepared by HBSS (Hank's balance salt solution, Hyclone) in 100 U / ml penicillin, 100 μg / ml streptomycin, 100 ug / ml gentamicin, 2.5 μg / ml empotericin B And a solution containing 10% FBS (Ref .: Sevin BU, Peng ZL, Perras JP, Ganjei P, Penalver M, Averette HE.Application of an ATP-bioluminescence assay in human tumor chemosensitivity testing.Gynecol Oncol. ( 1988), 31, 191-204).

사용된 세척액을 제거하고 새로운 세척액A로 다시 한 번 닦아주었다. 조직을 1.5ml 튜브에 들어갈 정도로 잘라 1.5ml 튜브에 담아 무게를 측정하였다. 조직을 페트리 디쉬에 다시 옮긴 후 빈 1.5ml 튜브의 무게를 측정하였다. 깨끗한 페트리 디쉬에 조직을 옮기고 1mm2 이하로 외과용 수술칼이나 수술가위로 잘게 잘라주었다.Remove used wash solution and wipe again with fresh wash solution A. The tissues were cut to the extent of 1.5ml tubes and weighed into 1.5ml tubes. The tissues were transferred back to Petri dishes and the empty 1.5 ml tubes were weighed. The tissue was transferred to a clean Petri dish and chopped with a surgical knife or surgical scissors to less than 1 mm 2 .

<< 실시예Example 2> 분리효소 혼합액 처리 2> Separation enzyme mixture solution treatment

실시예 1에서와 같이 전처리한 고형암 조직을 분리효소 혼합액(disaggregation enzyme cocktail) 5~10ml에 부유시켜 골고루 분포시킨 후, 37℃ 5% CO2의 조건으로 인큐베이터에서 암조직에 종류에 따라 12시간 반응시켰다. 상기 분리효소 혼합액은 RPMI 1640 배양액에, 콜로게나아제 Ⅱ(collagenase II), 프로나 제(pronase), DNase, 페니실린(penicillin), 스트렙토마이신(Streptomycin), 엠포테리신B(Ampotericin B), 겐타마이신 (gentamicin), 메트로니다졸(Metronidazole) 및 10% FBS가 포함된 용액을 사용하였다. The solid cancer tissue pretreated as in Example 1 was evenly distributed in 5-10 ml of a disaggregation enzyme cocktail, and then reacted for 12 hours depending on the type of cancer tissue in the incubator at 37 ° C. 5% CO 2 . I was. The separation enzyme mixture is cultured in RPMI 1640, collagenase II (collagenase II), pronase, DNase, penicillin, streptomycin (Streptomycin), empoterisin B (Ampotericin B), gentamicin (gentamicin), metronidazole, and a solution containing 10% FBS were used.

본 발명에서 실제 사용한 효소들의 농도는 0.2mg/ml collagenase II, 2.25 PUK/ml pronase, 1400 U/ml Dnase (참고문헌: Sevin BU, Peng ZL, Perras JP, Ganjei P, Penalver M, Averette HE. Application of an ATP-bioluminescence assay in human tumor chemosensitivity testing. Gynecol Oncol. (1988), 31, 191-204)이었고, 실제 사용한 항생제의 농도는 100U/ml 페니실린(penicillin), 100㎍/ml 스트렙토마이신(Streptomycin), 2.5㎍/ml 엠포테리신B(Ampotericin B), 100 ug/ml 겐타마이신 (gentamicin) 1㎍/ml 메트로니다졸(Metronidazole)이었다. The concentration of enzymes actually used in the present invention is 0.2mg / ml collagenase II, 2.25 PUK / ml pronase, 1400 U / ml Dnase (Reference: Sevin BU, Peng ZL, Perras JP, Ganjei P, Penalver M, Averette HE. of an ATP-bioluminescence assay in human tumor chemosensitivity testing.Gynecol Oncol. (1988), 31, 191-204, and the actual concentration of antibiotics used was 100 U / ml penicillin, 100 µg / ml streptomycin. , 2.5 μg / ml Empotericin B, 100 μg / ml gentamicin 1 μg / ml metronidazole.

<< 실시예Example 3> 암세포 회수 3> Cancer Cell Recovery

실시예 2에서 효소혼합액으로 처리된 암조직을 조직절편 내부의 세포가 잘 분리될 수 있도록 10ml 혈청피펫(serological pipette)으로 20회이상 피펫팅하였다. 분해시킬 암 조직이 작아 분리효소 혼합액이 적게 사용된 경우에는 세척액A를 5ml정도 첨가해서 피펫팅하였다. 세포부유액(Cell suspension)을 여과기(strainer)에 걸러 50ml 코니컬 튜브(conical tube)에 받았다. 페트리 디쉬와 여과기에 미량 존재하는 잔류세포는 새로운 세척액A로 재부유시켜 회수하였다. 펠렛(pellet)을 얻기 위하여 여과액을 500g에서 5분간 원심분리하였다. 10ml 혈청 피펫으로 상층액을 제거하고, 펠렛은 다시 세척액A 1ml로 다시 부유시켜 1.5ml 튜브에 옮긴 후, 500g 에서 5분간 원심분리하여 펠렛을 얻었다. 펠렛을 적당한 부피(200~100μl)의 세척액A로 재부유하였고, 이를 트리판 블루로 염색(Trypan blue staining)하여 세포계수(cell counting)하였다. Cancer tissue treated with the enzyme mixture in Example 2 was pipetted 20 times with a 10 ml serological pipette so that the cells inside the tissue sections could be well separated. When the cancer tissue to be decomposed was small and a small amount of separation enzyme mixture was used, about 5 ml of washing solution A was added and pipetted. Cell suspensions were filtered through strainers into 50 ml conical tubes. Residual cells present in traces in Petri dishes and filters were recovered by resuspending with fresh Wash A. The filtrate was centrifuged at 500 g for 5 minutes to obtain pellets. The supernatant was removed with a 10 ml serum pipette, and the pellet was again suspended in 1 ml of washing solution A, transferred to a 1.5 ml tube, and centrifuged at 500 g for 5 minutes to obtain pellets. The pellet was resuspended in a suitable volume (200-100 μl) of Wash Solution A, which was then trypan blue stained and cell counted.

암 조직을 분리한 직후에 가장 많이 존재하는 비암세포는 적혈구였다. 세포 부유액을 피콜 밀도구배 원심분리하기 전에 트리판 블루로 염색한 결과를 도 1에서 보였다. 도 1b에서 나타낸 바와 같이, L은 살아있는 세포(living cell)를 나타내며 염색되지 않았고, D는 죽은 세포(dead cell)를 나타내는 것으로 염색되어 푸른색을 띠었으며, R은 적혈구를 나타내며 염색되지 않고, 매우 굴절되었다(highly refractive). 다수의 적혈구 세포와 그 보다 적은 수의 유핵세포가 관찰되었고 트리판 블루로 염색되는 죽은 세포도 존재하였다. Immediately after cancer tissue was isolated, the most common non-cancerous cells were red blood cells. The results are stained with trypan blue for cell suspension prior to separation Ficoll density gradient centrifugation showed in Figure 1. As shown in FIG. 1B, L represents living cells and is not stained, D is stained to represent dead cells and is blue in color, R represents red blood cells and is not stained, very Highly refractive. Numerous erythrocytes and fewer nucleated cells were observed and dead cells stained with trypan blue.

<< 실시예Example 4> 적혈구 및 죽은 세포의 제거 4> Removal of red blood cells and dead cells

15ml 튜브에 피콜(Ficoll, sigma H4153, density=1.077g/ml)을 2ml 담고 그 위에 준비된 세포 부유액 3ml를 패스처 피펫(pasture pipette)이나 P1000 피펫맨을 이용하여 튜브 벽면을 따라 조심스럽게 흐르도록 하였다. 이 때 튜브 하나에는 8× 106 개 정도의 세포가 적당하고, 그 이상일 경우에는 튜브수를 늘려 나누어 담아, 상온에서 400g로 15분간 원심 분리하였다. 피펫맨 또는 패스처 피펫으로 인터페이스(interface)를 조심스럽게 취해서 15ml 튜브에 옮기고, 수득량을 높이기 위해 세척액A 및 피콜의 경계면 위, 아래층을 조금씩 취하였다. 튜브를 세척액A로 채워 흔 들어 세척한 후 500g에서 5분간 원심 분리하였다. 펠렛은 다시 세척액 1ml로 재부유하여 1.5ml 튜브에 옮긴 후 500g에서 5분간 원심분리하여 얻은 펠렛을 적당한 부피(200~1000μl)의 세척액A로 재부유하여 트리판 블루로 염색하고 세포계수하였다. 2 ml of Ficoll (Sigma H4153, density = 1.077 g / ml) was placed in a 15 ml tube, and 3 ml of the cell suspension prepared thereon was carefully flowed along the tube wall using a paste pipette or P1000 pipetteman. . At this time, about 8 × 10 6 cells are suitable for one tube, and if it is more than that, the number of tubes is increased, divided, and centrifuged at 400 g for 15 minutes at room temperature. Carefully take the interface with a Pipetteman or Passer pipette and transfer it to a 15 ml tube, and take small portions above and below the interface of Wash Solution A and Piccol to increase yield. The tube was filled with washing solution A, shaken, washed, and centrifuged at 500 g for 5 minutes. The pellet was resuspended in 1 ml of wash solution, transferred to a 1.5 ml tube, and centrifuged at 500 g for 5 minutes. The pellet was resuspended in a suitable volume (200-1000 μl) of Wash Solution A, stained with trypan blue, and counted.

피콜 밀도구배 원심분리(1.077g/ml)를 사용하여 혼입되어 있던 적혈구의 95%이상을 유핵세포층으로부터 제거할 수 있으며, 배양을 위한 전처리 과정에서 발생하는 세포 조각 및 죽은 세포의 제거에도 도움이 되었다. Ficoll density gradient centrifugation (1.077 g / ml) can be used to remove more than 95% of the erythrocytes incorporated from the nucleated cell layer, which also helps to remove cell debris and dead cells from pretreatment for culture. .

<< 실시예Example 5>  5> 비암세포의Noncancerous 제거  remove

암 조직내 암세포 및 비암세포의 비율과 분포를 조사하기 위하여 고형암 조직에 속하는 위암조직을 분리한 뒤 세포부유액을 이용하여 시토신(cytosin, Thermo shandon) 슬라이드를 제작하고 HE 염색(Haematoxylin & Eosin Staining)을 시행하였다. 염색된 유핵세포는 암세포 및 비암세포 여부, 세포유형 등을 병리과전문의가 판독하였고, 세포의 크기는 Image Pro을 이용하여 분류하였다. 그 결과 전체 세포의 58%가 비암세포였으며 암조직에 흔하게 혼입되는 비암세포는 적혈구, 림프구, 포식세포(macrophage), 분류하기 곤란한 세포, 중성구(neutrophil), 섬유모세포(fibroblast) 순이었다(도 2).In order to investigate the ratio and distribution of cancer cells and non-cancer cells in cancer tissues, gastric cancer tissues belonging to solid cancer tissues were isolated and cytosine (thermosindon) slides were prepared using cell suspension and HE staining (Haematoxylin & Eosin Staining) Was implemented. The stained nucleated cells were read by a pathologist to determine whether they are cancer cells, non-cancer cells, cell types, etc., and the size of the cells was classified using Image Pro. As a result, 58% of all cells were non-cancerous cells, and the most common non-cancerous cells in cancer tissues were red blood cells, lymphocytes, macrophages, difficult to classify cells, neutrophils, and fibroblasts ( Fig. 2 ) . ).

세척액B(washing buffer B, 1X Phosphate-Buffered Saline pH7.4 (Gibco), 0.5% BSA 및 2mM EDTA를 포함하는 용액)로 세포를 1회 세척하고, 세포 107 개 당 80 μl의 세척 완충액으로 재부유하였고, 107개 이하의 세포에 대해서도 80 μl의 세 척액B를 사용하였다. 세포부유액 80 μl당 20μl의 MACS 항-CD45 비드(beads)를 넣고 잘 섞은 후, 6~12℃에서 15분간 배양하였다. 배양시 냉장고에 두고 1~2회 반전(inversion)시켰다. 혼합액(mixture) 총부피의 10~20배에 해당하는 세척액B를 첨가하여 세척하고, 원심분리는 300g에서 10분동안 시행하여 상층액에 존재하는 미결합 비드를 제거하였다. 원심분리 후 상층액은 제거하고 펠렛은 500μl의 세척 완충액으로 재부유하였다. MACS 멀티스탠드(Multistand)를 알코올로 소독한 후 클린 벤치 안에 넣고, OctoMACS 분리기(separator)도 소독하여 멀티스탠드에 부착시켰다. 분리기 아래에는 컬럼(column)을 통해 나오는 단편(fraction)을 받을 수 있도록 선반(rack)과 적당한 부피의 1.5ml 튜브를 준비하였다. MS 컬럼을 분리기에 끼운 후, 세척 완충액을 500μl정도 흘려주면서 프리웨팅(prewetting) 시켰다. 이후 앞서 준비한 세포부유액을 컬럼에 흘려주었다. 넣어준 세포부유액이 다 빠져 나오면 세척액B를 500μl씩 3회 정도 흘려주면서 컬럼 내에 비드가 결합하지 않은 세포를 음성 선택(negative selection)하였고, 음성 선택 대상인 단편을 모두 모아 500g에서 원심 분리하여 펠렛을 얻었다. 펠렛을 적당한 부피(200~1000μl)의 세척액A로 재부유하여 트리판 블루로 염색하고 세포계수하였다.Wash cells once with washing buffer B (solution containing 1 × Phosphate-Buffered Saline pH7.4 (Gibco), 0.5% BSA and 2 mM EDTA) and re-use with 80 μl of wash buffer per 10 7 cells. Suspended and 80 μl of Wash B was used for up to 10 7 cells. 20 μl of MACS anti-CD45 beads per 80 μl of cell suspension were added and mixed well, followed by incubation at 6-12 ° C. for 15 minutes. Incubation was placed in the refrigerator 1-2 times (inversion). Washing solution B corresponding to 10 to 20 times the total volume of the mixture (mixture) was added and washed, and centrifugation was performed at 300 g for 10 minutes to remove unbound beads present in the supernatant. After centrifugation the supernatant was removed and the pellet was resuspended in 500 μl wash buffer. The MACS Multistand was sterilized with alcohol and placed in a clean bench, and the OctoMACS separator was also sterilized and attached to the multistand. Under the separator, a rack and an appropriate volume of 1.5 ml tube were prepared to receive the fragments coming out of the column. After inserting the MS column into the separator, the washing buffer was prewetting while flowing about 500 μl. Thereafter, the cell suspension prepared above was flowed to the column. When the cell suspension was drained out, Negative selection of cells with no beads bound in the column was performed by flowing Wash Solution B about 500 μl three times, and all the fragments that were negatively selected were collected and centrifuged at 500 g to obtain pellets. . The pellet was resuspended in a suitable volume (200-1000 μl) of Wash Solution A, stained with Trypan Blue, and counted.

피콜 밀도구배 원심분리로 단핵세포 층으로부터 다핵백혈구(polymorphonuclear leukocyte)를 분리할 수 있었다. 외과적으로 적출된 고형암 조직에서 피콜 밀도구배 원심분리 전후의 암 세포 비율을 조사한 결과 암세포의 비율이 평균 40.9%에서 45.6%로 증가됨을 관찰하였다(도 3). 흔하게 혼입되는 정상세포는 적혈구, 백혈구, 대식세포, 분류하기 곤란한 정상세포, 중성구, 섬유모세포 순이었다.Ficoll density gradient centrifugation allowed the separation of polymorphonuclear leukocytes from mononuclear cell layers. As a result of examining the percentage of cancer cells before and after Ficoll density gradient centrifugation in surgically extracted solid cancer tissues, it was observed that the proportion of cancer cells increased from 40.9% to 45.6% on average ( FIG. 3 ). Commonly incorporated normal cells were erythrocytes, white blood cells, macrophages, difficult to sort normal cells, neutrophils, and fibroblasts.

암조직에 혼입되어 있는 대부분의 정상세포가 혈액에서 유래한 세포임에 착안하여 유핵세포(nucleated blood) 표면에 발현되는 CD45에 대한 항체에 자기 비드(magnetic bead)를 결합시킨 제품을 사용하여 해당 정상세포를 음성 선택한 결과, 18개의 고형암 조직에서 암세포 비율을 평균 21.7% 증가 시킬 수 있었다. 그러나 조직 내 암세포 비율이 낮은 경우(20% 미만)는 피콜 밀도구배 원심분리 및 면역자기 분리(immunomagnetic separation)를 시행한 후에도 암세포 비율이 증가하는 정도가 경미하였다(도 4). 이와 같은 결과는 암 조직이 채취되는 단계가 매우 중요하다는 것을 의미하는 것이다.Since most of the normal cells incorporated into cancer tissues are blood-derived cells, the products using magnetic beads combined with antibodies to CD45 expressed on the surface of nucleated blood are used. Negative selection of the cells resulted in an average increase of 21.7% in cancer cells in 18 solid cancer tissues. However, when the percentage of cancer cells in the tissues was low (less than 20%), the rate of increase of cancer cells was slight even after Ficol density gradient centrifugation and immunomagnetic separation ( FIG. 4 ). This means that the stage at which cancer tissue is collected is very important.

상기와 같은 실시예에 따른 결과로, 한국인 호발 5대 암종에서 암종별 분리효율은 도5a에 나타난 바와 같이, 위암(n=129)에서 mg 당 50,000 개의 세포를, 폐암(n=67)에서는 mg 당 약 38,000 개의 세포, 간암(n=15)에서는 mg 당 약 49000 개의 세포, 대장암(n=26)에서는 mg 당 약 31000 개의 세포, 및 유방암(n=75)에서 mg 당 약 15000 개의 세포를 얻을 수 있었으며, 또한 도5b에 나타난 바와 같이, 이들 분리된 암세포의 생존율이 위암 92.2%(n=129), 폐암 94.9%(n=67), 간암 93.7%(n=15), 대장암 91.9%(n=26), 및 유방암 92.4%(n=75)로 나타나 기존의 방법에 비해 현저히 개선된 분리 효율(수득률) 및 분리된 세포의 생존율을 나타냄을 알 수 있었다.As a result of the above example, the separation efficiency of each type of cancer among the five most common carcinomas of Korea, as shown in Figure 5a, 50,000 cells per mg in gastric cancer (n = 129), mg in lung cancer (n = 67) About 38,000 cells per mg, about 49000 cells per mg for liver cancer (n = 15), about 31000 cells per mg for colorectal cancer (n = 26), and about 15000 cells per mg for breast cancer (n = 75) As shown in FIG. 5B, the survival rate of these isolated cancer cells was 92.2% (n = 129), lung cancer 94.9% (n = 67), liver cancer 93.7% (n = 15), and colon cancer 91.9%. (n = 26), and 92.4% (n = 75) of breast cancer, indicating a significantly improved separation efficiency (yield) and survival rate of the isolated cells compared to the conventional method.

또한, 다른 고형암과 비교한 대장암 조직에서의 배양 성공률의 증대를 도6에서 보였다. 통상적인 암세포 배양법을 이용하여, 본 발명의 방법에 따라 분리된 암 세포와 기존의 방법으로 분리된 암세포의 배양 성공률을 비교해 보았는데, 본 발명의 방법에 따라 분리된 대장암 외 다른 고형암 세포의 배양 성공률은 95% 로 나타났다. 또한, 항생제를 포함한 세척액만 사용한 기존의 대장암 세포 분리에 따른 배양 성공률이 57% 인 것에 반해, 에탄올 전처리를 포함한 본원 실시예에 따라 분리한 대장암 세포의 배양 성공률은 94%로 나타나, 본 발명의 방법에 따라 암세포를 분리하는 경우, 일반 고형암 뿐 아니라 대장암이나 직장암과 같이 그 특성상 높은 정제율의 기대가 어려워 이후 높은 배양 성공률 또한 기대할 수 없었던 암조직에서도 높은 분리 및 정제 효율 뿐 아니라, 그에 따른 이후의 높은 배양 성공률을 보장할 수 있음을 알 수 있다.In addition, the increase in the success rate of culture in colorectal cancer tissue compared to other solid cancer is shown in FIG . Using a conventional cancer cell culture method, the success rate of the culture of cancer cells separated according to the method of the present invention and cancer cells separated by the conventional method was compared, the success rate of culture of solid cancer cells other than colorectal cancer isolated according to the method of the present invention Was 95%. In addition, the culture success rate of the colon cancer cells isolated according to the present Example including the ethanol pretreatment was 57%, whereas the culture success rate of the conventional colon cancer cell separation using only the washing solution containing antibiotics was 94%, the present invention In the case of separating cancer cells according to the method, it is difficult to expect high purification rate due to its characteristics, such as colorectal cancer or rectal cancer, in addition to general solid cancer, and thus high separation and purification efficiency in cancer tissues that could not be expected to have high culture success rate. It can be seen that the subsequent high cultivation success rate can be guaranteed.

이상 설명한 바와 같이, 본 발명의 암세포 분리방법은 분리된 고형암 조직을 알코올로 전처리하고 항생제를 포함하는 세척액으로 세정하는 단계; 세정한 암조직을 항생제를 포함하는 효소혼합액에 부유시켜 암세포를 분리하는 단계; 및 상기 세포부유액에서 비암세포를 제거하는 단계를 포함함에 따라 암세포 분리 수득율이 기존 방법들에 비하여 우수하고 분리된 암세포의 배양시 오염 억제율이 높아, 암환자에 대한 암진단, 치료, 예후판정과 기초적인 암연구에 폭넓게 이용될 수 있으며, 이는 특히 기존에 암조직의 특성상 높은 정제율과 수득율을 기대할 수 없었던 대장암이나 직장암의 경우에도 동일하게 적용될 수 있어 매우 효과적인 방법이다.As described above, the cancer cell separation method of the present invention comprises the steps of pretreating the separated solid cancer tissue with alcohol and washing with a washing solution containing antibiotics; Separating the cancer cells by floating the washed cancer tissues in an enzyme mixture containing antibiotics; And removing the non-cancer cells from the cell suspension, the cancer cell separation yield is superior to the existing methods, and the contamination inhibition rate in the culture of the isolated cancer cells is high, and cancer diagnosis, treatment, prognosis and basic diagnosis of cancer patients It can be widely used for cancer research, which is particularly effective in the case of colorectal cancer or rectal cancer, which had not been expected to have high purification rate and yield rate due to the characteristics of cancer tissue.

Claims (9)

분리된 고형암 조직을 알코올로 전처리하고 항생제를 포함하는 세척액으로 세정하는 단계; 세정한 암조직을 페니실린, 스트렙토마이신, 겐타마이신 및 엠포테리신B를 포함하는 효소혼합액에 부유시켜 암세포를 분리하는 단계; 및 세포부유액에서 혈액세포 및 정상세포를 제거하는 단계를 포함하는 고형암 암세포의 분리방법.Pretreatment of the separated solid cancer tissue with alcohol and washing with a washing solution containing antibiotics; Separating the cancer cells by floating the washed cancer tissues in an enzyme mixture including penicillin, streptomycin, gentamicin and empoterisin B; And removing blood cells and normal cells from the cell suspension. 제1항에 있어서, 효소혼합액이 메트로니다졸을 더 포함하는 것인 방법.The method of claim 1, wherein the enzyme mixture further comprises metronidazole. 제1항에 있어서, 알코올로 암조직을 전처리하는 단계는 70% 에탄올에 암조직을 침지시켜 조직표면을 소독하는 것을 특징으로 하는 암세포 분리방법.The method of claim 1, wherein the pretreatment of the cancer tissue with alcohol comprises disinfecting the tissue surface by immersing the cancer tissue in 70% ethanol. 제1항에 있어서, 상기 효소혼합액은 배양액에 콜라게나아제 Ⅱ(collagenase II), 디스파제(dispase), 프로나제(pronase), DNase, 페니실린(penicillin), 스트렙토마이신(Streptomycin), 겐타마이신(gentamicin), 엠포테리신B(Ampotericin B), 메트로니다졸(Metronidazole) 및 FBS가 포함된 용액인 암세포 분리방법.The method of claim 1, wherein the enzyme mixture is collagenase II (collagenase II), dispase, pronase, DNase, penicillin (penicillin), streptomycin, gentamicin (gentamicin) in the culture medium ), Empotericin B (Ampotericin B), Metronidazole (Metronidazole) and FBS solution containing cancer cells separation method. 제4항에 있어서, 상기 효소혼합액은 배양액에 0.05 내지 0.8 mg/ml 콜라게나아제Ⅱ(collagenase II), 1 내지 5 PUK/ml pronase, 600 내지 2000 U/ml DNase, 50 내지 200 U/ml 페니실린(penicillin), 50 내지 200 ㎍/ml 스트렙토마이신(Streptomycin), 50 내지 200 ug/ml 겐타마이신 (gentamicin), 0.5 내지 5 ㎍/ml 엠포테리신B(Ampotericin B), 1㎍/ml 메트로니다졸(Metronidazole) 및 10 % FBS가 포함된 용액인 암세포 분리방법.The method of claim 4, wherein the enzyme mixture is 0.05 to 0.8 mg / ml collagenase II (collagenase II), 1 to 5 PUK / ml pronase, 600 to 2000 U / ml DNase, 50 to 200 U / ml penicillin (penicillin), 50 to 200 μg / ml streptomycin, 50 to 200 ug / ml gentamicin, 0.5 to 5 μg / ml empotericin B, 1 μg / ml metronidazole ) And a method for separating cancer cells containing 10% FBS. 제4항 또는 제5항에 있어서, 상기 배양액은 DMEM, RPMI, IMDM, MEM 및 McCoy’s 5A로 이루어진 군에서 선택되어진 하나 이상의 배양액인 방법.6. The method of claim 4 or 5, wherein the culture is one or more cultures selected from the group consisting of DMEM, RPMI, IMDM, MEM and McCoy's 5A. 제1항에 있어서, 혈액세포 및 정상세포를 제거하는 단계는 피콜 밀도구배 원심분리(Ficoll gradient centrifugation) 및 항-CD45 항체 자기 비드(Anti-CD45 antibody magnetic bead)를 사용하는 것을 특징으로 하는 암세포 분리방법.The method of claim 1, wherein the step of removing blood cells and normal cells cancer cell separation, characterized in that using Ficoll gradient centrifugation and anti-CD45 antibody magnetic beads (Anti-CD45 antibody magnetic bead) Way. 제1항 내지 제5항 및 제7항 중 어느 한 항에 있어서, 처리하는 암조직은 위암, 폐암, 간암, 대장암, 직장암, 유방암, 전립선암, 피부암, 두경부암, 췌장암, 난소암, 방광암, 신장암, 흑색종, 소세포 및 비소세포폐암, 육종, 신경아교종 또는 T-세포 림프종 및 B-세포 림프종 조직인 암세포 분리방법.The method according to any one of claims 1 to 5 and 7, wherein the cancer tissue to be treated is gastric cancer, lung cancer, liver cancer, colon cancer, rectal cancer, breast cancer, prostate cancer, skin cancer, head and neck cancer, pancreatic cancer, ovarian cancer, bladder cancer A method for isolating cancer cells that are renal cancer, melanoma, small cell and non-small cell lung cancer, sarcoma, glioma or T-cell lymphoma and B-cell lymphoma tissue. 제2항 내지 제5항 및 제7항 중 어느 한 항에 있어서, 처리하는 암조직은 대장암 또는 직장암 조직인 암세포 분리방법.The method of any one of claims 2 to 5 and 7, wherein the cancer tissue to be treated is colorectal cancer or rectal cancer tissue.
KR1020060106722A 2006-10-31 2006-10-31 How to separate cancer cells from cancer tissue Active KR100721927B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060106722A KR100721927B1 (en) 2006-10-31 2006-10-31 How to separate cancer cells from cancer tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060106722A KR100721927B1 (en) 2006-10-31 2006-10-31 How to separate cancer cells from cancer tissue

Publications (1)

Publication Number Publication Date
KR100721927B1 true KR100721927B1 (en) 2007-05-28

Family

ID=38278244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060106722A Active KR100721927B1 (en) 2006-10-31 2006-10-31 How to separate cancer cells from cancer tissue

Country Status (1)

Country Link
KR (1) KR100721927B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172955A1 (en) * 2012-05-15 2013-11-21 Diatech Oncology Tumor cell isolation/purification process and methods for use thereof
US9476871B2 (en) 2012-05-02 2016-10-25 Diatech Oncology Llc System and method for automated determination of the relative effectiveness of anti-cancer drug candidates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328884B1 (en) 1999-10-13 2002-03-15 노환중 A novel cell line PNUH-12 derived from a human squamous carcinoma in human hypopharynx and process for characterization
KR100434080B1 (en) 2001-02-12 2004-07-05 대한민국(전북대학교 총장) Human Sarcomatoid Cholangiocarcinoma and Clonorchiasis Sinenesis-associated Cholangiocarcinoma Cell Lines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100328884B1 (en) 1999-10-13 2002-03-15 노환중 A novel cell line PNUH-12 derived from a human squamous carcinoma in human hypopharynx and process for characterization
KR100434080B1 (en) 2001-02-12 2004-07-05 대한민국(전북대학교 총장) Human Sarcomatoid Cholangiocarcinoma and Clonorchiasis Sinenesis-associated Cholangiocarcinoma Cell Lines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9476871B2 (en) 2012-05-02 2016-10-25 Diatech Oncology Llc System and method for automated determination of the relative effectiveness of anti-cancer drug candidates
US10488402B2 (en) 2012-05-02 2019-11-26 Pierian Biosciences, LLC System and method for automated determination of the relative effectiveness of anti-cancer drug candidates
US12066427B2 (en) 2012-05-02 2024-08-20 Pierian Biosciences, LLC System and method for automated determination of the relative effectiveness of anti-cancer drug candidates
WO2013172955A1 (en) * 2012-05-15 2013-11-21 Diatech Oncology Tumor cell isolation/purification process and methods for use thereof

Similar Documents

Publication Publication Date Title
US7232653B1 (en) Cancer cells from body fluids containing cells, isolation thereof and agents containing the same
Harouaka et al. Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells
ES2546837T3 (en) Target cell isolation procedure
US7211433B1 (en) Method for the enriching or depleting tumor cells obtained from a body fluid and kit suitable for this purpose
CN110632292A (en) Immunofluorescence kit for detecting PD-L1 and CD8 antigens and application method
US20190078153A1 (en) Method of analyzing genetically abnormal cells
CN106244553A (en) The separation of circulating tumor cell and detection method
CN108179134A (en) Based on EpCAM/PSMA double antibody functionalization micro-flow control chips and its preparation method and application
CN111351937A (en) A kind of MMR protein expression deletion detection kit and detection method thereof
KR100721927B1 (en) How to separate cancer cells from cancer tissue
Kulka et al. Isolation of tissue mast cells
Hirz et al. Neutrophil isolation and analysis to determine their role in lymphoma cell sensitivity to therapeutic agents
Mylonakis et al. Bone marrow mastocytosis in dogs with myelosuppressive monocytic ehrlichiosis (Ehrlichia canis): a retrospective study
Belov et al. Surface profiling of extracellular vesicles from plasma or ascites fluid using dotscan antibody microarrays
Evans et al. Mesenchymal stem cell regulation of macrophage phagocytosis; quantitation and imaging
AU2016395556B2 (en) Method for detecting or separating/obtaining circulating tumor cell employing cell proliferation method
US20180080006A1 (en) Cell culture medium
WO2022151520A1 (en) Primary gastrointestinal stromal tumor cell culture medium, culture method, and application thereof
Khare et al. Cell Sorting: Underpinnings and Contemporary Developments
Haselager et al. In vitro lymph node-mimicking 3D model displays long-term T cell-dependent CLL proliferation and survival
Abolins-Thompson 'I get by with a little help from my friends': The role of stromal cells in the breast cancer chemoresistance mechanism
EP3138923B1 (en) Method for predicting prognosis of acute myeloid leukemia relapse
RU2826875C1 (en) Culture medium for primary cells of stromal tumor of gastrointestinal tract, method for cultivation thereof and use thereof
JP7368678B1 (en) Methods for measuring the relative abundance of specific cell subpopulations in a CD4+ T cell population
CN115896028B (en) Reagent combination for separating circulating tumor cells and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20061031

PA0201 Request for examination
PA0302 Request for accelerated examination

Patent event date: 20061031

Patent event code: PA03022R01D

Comment text: Request for Accelerated Examination

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20070124

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20070425

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20070518

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20070521

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20100305

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20110310

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20120221

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20130208

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20130208

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20140219

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20140219

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20150511

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20150511

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20160519

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20160519

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20170511

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20170511

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20180518

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20180518

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20190520

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20190520

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20210512

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20220509

Start annual number: 16

End annual number: 16

PR1001 Payment of annual fee

Payment date: 20240509

Start annual number: 18

End annual number: 18

PR1001 Payment of annual fee

Payment date: 20250513

Start annual number: 19

End annual number: 19