[go: up one dir, main page]

KR100807081B1 - Selective growth method of one-dimensional silicon carbide deposition - Google Patents

Selective growth method of one-dimensional silicon carbide deposition Download PDF

Info

Publication number
KR100807081B1
KR100807081B1 KR1020050099951A KR20050099951A KR100807081B1 KR 100807081 B1 KR100807081 B1 KR 100807081B1 KR 1020050099951 A KR1020050099951 A KR 1020050099951A KR 20050099951 A KR20050099951 A KR 20050099951A KR 100807081 B1 KR100807081 B1 KR 100807081B1
Authority
KR
South Korea
Prior art keywords
silicon carbide
silicon
dimensional
present
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020050099951A
Other languages
Korean (ko)
Other versions
KR20070043913A (en
Inventor
박지연
김원주
류우석
박종훈
Original Assignee
한국원자력연구원
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원, 한국수력원자력 주식회사 filed Critical 한국원자력연구원
Priority to KR1020050099951A priority Critical patent/KR100807081B1/en
Publication of KR20070043913A publication Critical patent/KR20070043913A/en
Application granted granted Critical
Publication of KR100807081B1 publication Critical patent/KR100807081B1/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/04Pattern deposit, e.g. by using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 일차원 탄화규소 증착물의 선택적 성장 방법에 관한 것으로, 보다 상세하게는 규소 기판 위에 패턴이 만들어진 산화규소 층에서 노출된 규소 면에 촉매를 사용하지 않고 기상-고상 반응을 통하여 일차원 구조를 지닌 탄화규소 증착물을 선택적으로 성장시키는 방법에 대한 것으로서, 종래 촉매를 이용함으로써 불순물이 유입되는 문제점을 해결할 뿐만 아니라 공정 단계를 효율적으로 단축할 수 있어 성능이 우수한 전계방출소자나 기타 전자소자에 유용하게 적용할 수 있는 유용한 효과를 제공할 수 있다.The present invention relates to a method for selectively growing a one-dimensional silicon carbide deposit, and more particularly, to a method for selectively growing a one-dimensional silicon carbide deposit by a vapor phase-solid phase reaction without using a catalyst on a silicon surface exposed in a silicon oxide layer, The present invention relates to a method of selectively growing a silicon deposition material, and it is possible to solve the problem of introducing impurities by using a conventional catalyst, as well as to efficiently shorten a process step, and thus the present invention is usefully applied to a field emission device or other electronic device Lt; RTI ID = 0.0 > and / or < / RTI >

전계방출소자, 탄화규소, 휘스커, 나노와이어, 나노로드, 나노화이버, 화학기상증착법 Field emission devices, silicon carbide, whiskers, nanowires, nano rods, nanofibers, chemical vapor deposition

Description

일차원 탄화규소 증착물의 선택적 성장 방법{Method for Selective Growth of One-dimensional Silicon Carbide Deposits}[0001] The present invention relates to a method for selective growth of one-dimensional silicon carbide deposits,

도 1은 일반적인 반도체 제조공정에서 적용되고 있는 광식각법에 따라 규소 기판 위에 패턴이 만들어진 산화규소 층의 제조과정을 나타내는 모식도; FIG. 1 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention; A schematic diagram showing a manufacturing process of a silicon oxide layer in which a pattern is formed on a substrate;

도 2는 본 발명의 일 실시예에 따라 규소 기판 위에 패턴이 만들어진 산화규소 층에서 규소면에 선택적으로 성장한 탄화규소 휘스커를 나타낸 모식도; 2 is a schematic view showing a silicon carbide whisker selectively grown on a silicon surface in a silicon oxide layer in which a pattern is formed on a silicon substrate according to an embodiment of the present invention;

도 3은 패터닝 없이 (a) SiO2 기판과, (b) Si 기판에서 탄화규소 휘스커의 성장 거동을 보여주는 미세 구조 SEM 사진; FIG. 3 is a microstructure SEM photograph showing (a) SiO 2 substrate and (b) growth behavior of silicon carbide whiskers on a Si substrate without patterning;

도 4는 본 발명의 일 실시예에 따라 (a) Si 기판 위에 패턴이 만들어진 SiO2 층의 모습과, (b) 노출된 Si 면을 따라 선택적으로 성장된 탄화규소 휘스커를 나타내는 미세 구조 SEM 사진; 및 Figure 4 is a microstructural SEM image showing (a) a patterned SiO 2 layer on a Si substrate and (b) a silicon carbide whisker selectively grown along the exposed Si surface, in accordance with an embodiment of the present invention; And

도 5는 본 발명의 일 실시예에 따라 노출된 Si 기판에만 선택적으로 성장된 탄화규소 휘스커의 (a) 평면과, (b) 단면을 확대한 미세구조 SEM 사진. FIG. 5 is a microstructure SEM image of a (a) plane and (b) cross section of silicon carbide whiskers grown selectively on an exposed Si substrate according to an embodiment of the present invention.

본 발명은 일차원 탄화규소 증착물의 선택적 성장 방법에 관한 것으로, 보다 상세하게는 규소 기판 위에 패턴이 만들어진 산화규소 층에서 노출된 규소 면에 촉매를 사용하지 않고 기상-고상 반응을 통하여 일차원 구조를 지닌 탄화규소 증착물을 선택적으로 성장시키는 방법에 대한 것이다.The present invention relates to a method for selectively growing a one-dimensional silicon carbide deposit, and more particularly, to a method for selectively growing a one-dimensional silicon carbide deposit by a vapor phase-solid phase reaction without using a catalyst on a silicon surface exposed in a silicon oxide layer, And a method for selectively growing silicon deposition.

디스플레이 소자의 하나인 FED (Field Emission Display)에 사용되는 전계 방출 소자로는 규소나 몰리브덴을 전기 화학적 식각 공정에 의하여 가공하여 사용하였으나, 고온에서 열피로 (thermal fatigue) 현상이 발생하여 수명이 감소하는 문제점을 안고 있었다. As a field emission device used in a field emission display (FED), one of the display devices, silicon or molybdenum was processed by an electrochemical etching process. However, thermal fatigue occurs at a high temperature, I had a problem.

대안 소재로 전계 방출 특성이 우수한 탄소 나노튜브를 적용하려는 노력이 시도되고 있으나, 우수한 전계 방출 특성에도 불구하고 내구성이 감소하는 단점이 있다.Efforts have been made to apply carbon nanotubes having excellent field emission characteristics as an alternative material, but their durability is reduced despite excellent field emission characteristics.

탄화규소 (SiC)는 공유 결합 물질로 낮은 밀도와 높은 융점을 갖고 있으므로 고온에서 기계적 화학적 특성이 우수하다. 또한, 넓은 밴드 갭과 높은 전자 이동도를 갖고 있는 반도체 물질이므로 고전압 소자, 고주파 소자 등의 전자소자와 FED 소자로의 응용이 기대된다. Silicon carbide (SiC) is a covalent bonding material that has low density and high melting point, so it has excellent mechanical and chemical properties at high temperatures. In addition, since it is a semiconductor material having a wide band gap and high electron mobility, it is expected to be applied to electronic devices such as high voltage devices and high frequency devices and FED devices.

아울러, 탄화규소 합성공정의 발달로 나노로드, 나노와이어, 나노화이버, 휘스커와 같은 일차원 구조 형태로 용이하게 합성이 가능하여 FED의 전계 방출 소자로서 적용을 가속화시키고 있다. 이 중, 탄화규소 휘스커는 결정학적으로 <111> 방향으로 성장한다. 그리고, 반응조건에 따라 알파상 결정구조를 갖는 경우도 있지만, 대부분 베타상 결정구조를 갖는 것으로 보고되고 있다. In addition, due to the development of the silicon carbide synthesis process, it is possible to synthesize easily one-dimensional structure such as nano-rods, nanowires, nanofibers and whiskers, thereby accelerating application as a field emission device of an FED. Of these, silicon carbide whiskers crystallographically grow in the <111> direction. In addition, although it has an alpha-phase crystal structure depending on the reaction conditions, it is reported that most have a beta-phase crystal structure.

나노로드, 나노와이어, 나노화이버 및 휘스커와 같은 일차원 형태로 탄화규소를 성장시키는 방법은 일반적으로 촉매를 이용한 액상-기상-고상 방법과 촉매없이 반응시키는 기상-고상 방법이 알려져 있다. A method for growing silicon carbide in a one-dimensional form such as a nanorod, a nanowire, a nanofiber and a whisker is generally known as a vapor-solid phase method in which a liquid-vapor-solid-phase method using a catalyst is reacted without a catalyst.

탄화규소 휘스커를 기상-액상-고상기구로 합성하기 위해 금속 촉매를 사용하는데, 철(Fe), 니켈(Ni), 코발트(Co), 텅스텐(W), 백금(Pt), 팔라듐(Pd), 마그네슘(Mg), 크롬(Cr), 티타늄(Ti), 스테인레스강(stainless steel) 같은 것들이 쓰이며, 가장 많이 쓰이는 것은 Fe나 Ni 이다. 이 방법의 단점은 촉매를 사용함에 따라 공정 중에 불순물이 유입될 우려가 있어 결과물의 순도에 문제를 일으킨다는 점이다.(Fe), nickel (Ni), cobalt (Co), tungsten (W), platinum (Pt), palladium (Pd), and palladium (Pd) are used to synthesize silicon carbide whiskers in a gas- Magnesium (Mg), chromium (Cr), titanium (Ti) and stainless steel are used. The most commonly used materials are Fe and Ni. The disadvantage of this method is that the impurities may be introduced into the process due to the use of the catalyst, thereby causing a problem in the purity of the resultant product.

그러나, 이제까지 규소 기판 위에 패턴이 만들어진 SiO2 층을 갖는 구조에서 노출된 Si 면을 따라 일차원 탄화규소 증착물을 촉매 없이 선택적으로 성장시키는 방법은 보고된 바가 없다.However, no method has been reported to selectively grow the one-dimensional silicon carbide deposit along the exposed Si surface in the structure having the SiO 2 layer patterned on the silicon substrate so far without catalyst.

이에, 본 발명자들은 촉매 없이 기상-고상 반응에 의한 화학기상증착법으로 규소 기판 위에 패턴이 만들어진 SiO2 층을 갖는 구조에서 노출된 Si 면을 따라 일차원 탄화규소 증착물을 선택적으로 성장시키면, 상기와 같은 불순물의 유입 문제를 해결할 수 있을 뿐만 아니라 공정을 간소화할 수 있으며, 보다 우수한 성능을 갖는 전계방출소자나 전자소자에 적용될 수 있음을 확인하고 본 발명을 완성하였다.The present inventors have found that when a one-dimensional silicon carbide deposition material is selectively grown along the exposed Si surface in a structure having a SiO 2 layer patterned on a silicon substrate by a chemical vapor deposition method using a gas-phase reaction in the absence of a catalyst, Can be solved and the process can be simplified, and the present invention can be applied to a field emission device or an electronic device having superior performance, and completed the present invention.

따라서, 본 발명의 목적은 공정 단계를 단축시킬 수 있을 뿐만 아니라, 불순물의 유입을 원천적으로 방지할 수 있는 일차원 탄화규소 증착물의 선택적 성장 방법을 제공하고자 함에 있다.Accordingly, it is an object of the present invention to provide a selective growth method of a one-dimensional silicon carbide deposition material which can shorten the processing steps and can prevent the inflow of impurities.

상기의 기술적 과제를 달성하기 위하여 본 발명은, (a) 규소 기판 상에 패터닝된 산화규소층을 에칭하여 규소면을 노출시키는 단계; 및 (b) 상기 노출된 규소 면에만 일차원 구조를 갖는 탄화규소를, 촉매 없이 화학기상증착법을 이용하여 선택적으로 성장시키는 단계를 포함하는 일차원 탄화규소 증착물의 선택적 성장 방법 을 제공한다.According to an aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: (a) etching a patterned silicon oxide layer on a silicon substrate to expose a silicon surface; And (b) selectively growing silicon carbide having a one-dimensional structure only on the exposed silicon surface by using a chemical vapor deposition method without using a catalyst. The present invention also provides a method for selectively growing a one-dimensional silicon carbide deposit.

본 발명에 따르면, 촉매를 사용함이 없이 일차원 구조의 탄화규소를 규소 기판 상에 선택적으로 성장시키므로 불순물의 유입을 원천적으로 방지할 수 있음과 아울러, 성장공정을 간소화시킬 수 있는 장점이 있다.According to the present invention, since a one-dimensional silicon carbide is selectively grown on a silicon substrate without using a catalyst, the introduction of impurities can be prevented at the source, and the growth process can be simplified.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일차원 탄화규소 증착물의 선택적 성장 방법에 있어서, 단계 (a)에서는 통상의 반도체 제조 공정에 따라 규소 기판 상에 패터닝된 산화규소층을 에칭하여 규소면을 노출시키는 공정을 수행한다. 본 발명이 속하는 일반적인 반도체 공정에서 적용하는 광식각법 (photolithography) 절차에 따라 규소 기판 위에 패턴이 만들어진 산화규소 층을 형성하나, 본 발명은 그 절차를 한정하는 것은 아니다.In the selective growth method of the one-dimensional silicon carbide deposit of the present invention, in step (a), the silicon oxide layer patterned on the silicon substrate is etched according to a conventional semiconductor manufacturing process to expose the silicon surface. The patterned silicon oxide layer is formed on the silicon substrate according to the photolithography procedure applied in the general semiconductor process to which the present invention belongs, but the present invention is not limited thereto.

본 발명의 일차원 탄화규소 증착물의 선택적 성장 방법에 있어서, 단계 (b)에서는 상기 단계 (a)에서 노출된 규소 면에만 일차원 구조를 갖는 탄화규소를, 촉매 없이 화학기상증착법을 이용하여 선택적으로 성장시키는 공정을 수행한다.In the selective growth method of the one-dimensional silicon carbide deposit of the present invention, in step (b), silicon carbide having a one-dimensional structure only in the silicon surface exposed in the step (a) is selectively grown by chemical vapor deposition Process.

상기 탄화규소는 휘스커, 나노와이어, 나노로드 또는 나노화이버를 포함하는 일차원 구조 형태일 수 있다.The silicon carbide may be in the form of a one-dimensional structure including whiskers, nanowires, nanorods or nanofibers.

상기 화학기상증착법에서, 상기 일차원 구조로 만들어진 탄화규소의 원료물질로는 규소 및 탄소를 함유하는 화합물이면 특히 한정하지 않으나, 바람직하게는 메틸렌트리클로로실레인(CH3SiCl3; MTS), 디메틸트리크로로실레인((CH3)2SiCl2; DTS), 및 에틸렌트리클로로실레인(C2H4SiCl3; ETS)로부터 선택되는 유기금속화합물 또는 사염화규소(SiCl4)를 선택하여 사용하는 것이 바람직하다.In the chemical vapor deposition method, the raw material for the silicon carbide made of the above-described one-dimensional structure is not particularly limited as long as it is a compound containing silicon and carbon, but preferably methylene trichlorosilane (CH 3 SiCl 3 ; MTS) An organometallic compound or silicon tetrachloride (SiCl 4 ) selected from chlorosilane ((CH 3 ) 2 SiCl 2 ; DTS) and ethylene trichlorosilane (C 2 H 4 SiCl 3 ; ETS) .

또한, 상기 화학기상증착법에서, 상기 일차원 구조로 만들어진 탄화규소 형성 시 분위기 가스로서의 운반 및 희석 기체로는 수소, 질소, 아르곤 또는 이들의 혼합 기체를 사용하는 것이 바람직하다.Further, in the chemical vapor deposition method, it is preferable to use hydrogen, nitrogen, argon, or a mixed gas thereof as the transporting and diluting gas as the atmospheric gas for forming the silicon carbide formed by the one-dimensional structure.

본 발명에 따라 성장시킨 탄화규소에 있어서, 상기 화학기상증착법에서의 증착반응 온도와 원료물질의 유량, 내부압력, 반응시간 등의 변수는 경험적인 실험과 사용장비의 편의성과 안정성을 고려하여 결정하는 것이 바람직하다.In the silicon carbide grown according to the present invention, the parameters such as the deposition reaction temperature, the flow rate of the raw material, the internal pressure, and the reaction time in the chemical vapor deposition method are determined in consideration of the empirical experiment and the convenience and stability of the equipment to be used .

상기 화학기상증착법에서의 증착반응 온도는 상기 원료 물질의 발화점, 기화점 등의 화학적 특성을 고려하여 본 발명에서는 1000 내지 1250 ℃, 바람직하게는 1000 내지 1200 ℃의 온도에서 성장시키는 것이 바람직하고, 증착반응 압력은 760 torr 이하, 바람직하게는 1 내지 760 torr의 압력에서 성장시키는 것이 바람직하며, a) 상기 운반 및 희석기체와 b) 상기 원료물질의 입력비는 부피비로 2 내지 150, 바람직하게는 5 내지 100으로 조절하여 사용하는 것이 바람직하다. In the present invention, the deposition reaction temperature in the chemical vapor deposition method is preferably 1000 to 1250 ° C, preferably 1000 to 1200 ° C, in consideration of the chemical characteristics such as the ignition point and the vaporization point of the raw material, Preferably, the reaction pressure is at a pressure of 760 torr or less, preferably 1 to 760 torr, and a) the feed and diluent gas and b) the input ratio of the raw material is 2 to 150, preferably 5 To 100 &lt; / RTI &gt;

상기 증착반응 온도, 증착압력 및 입력비(부피비를 기준으로)가 상기 범위를 벗어나면 일차원 구조의 탄화규소가 아닌 이차원(필름형) 구조의 증착이 발생되는 문제점이 발생한다.When the deposition reaction temperature, the deposition pressure, and the input ratio (based on the volume ratio) are out of the above range, deposition of a two-dimensional (film) structure rather than a one-dimensional structure silicon carbide occurs.

상기한 바와 같이 제조되는 노출된 규소면에만 선택적으로 성장시킨 일차원 구조의 탄화규소 형성체는 전계 방출 소자나 전자소자 등 다양한 반도체 분야에 적용될 수 있다.The one-dimensional silicon carbide formed body selectively grown only on the exposed silicon surface produced as described above can be applied to various semiconductor fields such as a field emission device and an electronic device.

이하, 본 발명에 따른 일차원 탄화규소 증착물의 선택적 성장 방법을 도 1 내지 2를 참조하여 설명한다.Hereinafter, a method for selectively growing a one-dimensional silicon carbide deposit according to the present invention will be described with reference to FIGS . 1 to 2. FIG.

도 1은 일반적인 반도체 제조공정에서 적용되고 있는 광식각법에 따라 규소 기판 위에 패턴이 만들어진 산화규소 층의 제조과정을 나타내는 모식도이고, 도 2는 본 발명의 일 실시예에 따라 규소 기판 위에 패턴이 만들어진 산화규소 층에서 규소면에 선택적으로 성장한 탄화규소 휘스커를 나타낸 모식도이다. FIG. 1 is a cross-sectional view of a semiconductor device according to an embodiment of the present invention; FIG. 2 is a schematic view showing a silicon carbide whisker selectively growing on a silicon surface in a silicon oxide layer in which a pattern is formed on a silicon substrate according to an embodiment of the present invention .

도 1을 참조하면, 먼저 산화규소막을 형성하고, 감광제(photoresist; PR)를 균일하게 바른 다음, 상기 PR에 열을 가해서 말리는 가열처리(baking)를 수행한다. 크롬마스크를 그 위에 덮고 자외선을 쬐면, 마스크 아래의 PR은 빛을 안 받고, 마스크 외의 부분은 빛을 받아 변성이 된다. 현상(develop)하여 상기 변성된 PR을 녹여 제거하고 SiO2를 에칭하면 최종적으로 규소면이 노출된 Si/SiO2 기판이 형성된다. Referring to FIG. 1 , a silicon oxide film is first formed, a photoresist (PR) is uniformly applied, and baking is performed by applying heat to the PR. When a chrome mask is put on it and ultraviolet rays are applied, the PR under the mask will not receive light, and the portion other than the mask will receive light and become denatured. When the modified PR is melted and removed, and SiO 2 is etched, a Si / SiO 2 substrate having a silicon surface exposed is finally formed.

도 2를 참조하면, 상기와 같이 규소 기판 위에 패턴이 만들어진 산화규소 층에서 노출된 규소면에 선택적으로 탄화규소 휘스커를 성장시킨다.Referring to FIG. 2 , a silicon carbide whisker is selectively grown on a silicon surface exposed in a silicon oxide layer in which a pattern is formed on the silicon substrate.

이하, 본 발명의 일차원 탄화규소 증착물의 선택적 성장 방법을 하기 실시예를 통하여 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명의 바람직한 최선의 실시예를 예시하기 위한 것으로 본 발명의 범위가 하기 실시예만으로 한정되거나 제한되지 않음은 물론이다.Hereinafter, a selective growth method of the one-dimensional silicon carbide deposit of the present invention will be described in more detail with reference to the following examples. However, the following examples are intended to illustrate the preferred embodiments of the present invention, and the scope of the present invention is not limited to the following examples.

<< 실시예Example 1>  1>

(1) 광식각법에 의한 패턴이 형성된 Si/SiO2 기판 제작(1) Fabrication of patterned Si / SiO 2 substrates by photolithography

산화규소막을 형성하고, 감광제(photoresist; PR)를 균일하게 바른 다음, 상기 PR에 열을 가해서 말리는 가열처리(baking)를 수행한다. 크롬마스크를 그 위에 덮고 자외선을 쬐면, 마스크 아래의 PR은 빛을 안 받고, 마스크 외의 부분은 빛을 받아 변성이 된다. 현상(develop)하여 상기 변성된 PR을 녹여 제거하고 SiO2를 에 칭하면 최종적으로 규소면이 노출된 Si/SiO2 기판이 형성된다. A silicon oxide film is formed, a photoresist (PR) is uniformly applied, and baking is performed by applying heat to the PR. When a chrome mask is put on it and ultraviolet rays are applied, the PR under the mask will not receive light, and the portion other than the mask will receive light and become denatured. Develops to remove the denatured PR, and etches SiO 2 to finally form a Si / SiO 2 substrate having exposed silicon surface.

(2) 탄화규소 휘스커 증착물 형성(2) Formation of silicon carbide whisker deposits

화학기상증착 공정을 이용하여 반응압력을 10 torr로 조절하고, 반응온도를 1150 ℃로 하였다. 운반/희석기체인 수소와 출발 원료인 메틸렌트리클로로실레인(MTS)의 입력비는 부피비로 70으로 조절하여, 도 2에서 보는 바와 같은 탄화규소 휘스커를 노출된 Si 면 위에만 선택적으로 성장시켰다.The reaction pressure was adjusted to 10 torr using a chemical vapor deposition process, and the reaction temperature was set to 1150 ° C. Transport / diluting gas is only input ratio of Si on the surface of the control 70 in a volume ratio, also exposing the silicon carbide whiskers such as shown in Figure 2 to the methylene trichloro hydrogen and the starting material silane (MTS) was selectively grown.

<< 실시예Example 2> 2>

운반/희석기체로 수소와 질소의 혼합기체를, 운반/희석기체와 메틸렌트리클로로실레인의 입력비를 부피비로 60으로 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 도 2에서 보는 바와 같은 탄화규소 휘스커를 노출된 Si 면 위에만 선택적으로 성장시켰다. 2 was prepared in the same manner as in Example 1, except that the mixed gas of hydrogen and nitrogen was used as the carrier / diluent gas and the input ratio of the carrier / diluent gas and methylene trichlorosilane was adjusted to 60 by volume ratio The same silicon carbide whiskers were selectively grown only on the exposed Si surface.

<< 실시예Example 3>  3>

운반/희석기체로 아르곤을, 운반/희석기체와 출발 원료인 디메틸트리클로로실레인의 입력비를 부피비로 60으로 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 도 2에서 보는 바와 같은 탄화규소 휘스커를 노출된 Si 면 위에만 선택적으로 성장시켰다. 2 was prepared in the same manner as in Example 1, except that argon was used as the carrier / dilution gas and the input ratio of the carrier / dilution gas and the dimethyltrichlorosilane as the starting material was adjusted to 60 by volume ratio. Silicon whiskers were selectively grown only on the exposed Si surface.

<< 실시예Example 4>  4>

운반/희석기체로 수소와 질소의 혼합기체를, 운반/희석기체와 출발 원료인 에틸렌트리클로로실레인의 입력비를 부피비로 60으로 조절한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 도 2에서 보는 바와 같은 탄화규소 휘스커를 노출된 Si 면 위에만 선택적으로 성장시켰다. 2 was prepared in the same manner as in Example 1, except that a mixed gas of hydrogen and nitrogen was used as a carrier / diluent gas, and an input ratio of the carrier / diluent gas and ethylene trichlorosilane as a starting material was adjusted to 60 by volume ratio . The silicon carbide whiskers were selectively grown on the exposed Si surface only.

<성장 거동 및 <Growth Behavior and 증착물Deposition material 구조 관찰> Structure observation>

도 3은 패터닝 없이 (a) SiO2 기판과, (b) Si 기판에서 탄화규소 휘스커의 성장 거동을 보여주는 미세 구조 SEM 사진이고, 도 4는 상기 실시예에 따라 (a) Si 기판 위에 패턴이 만들어진 SiO2 층의 모습과, (b) 노출된 Si 면을 따라 선택적으로 성장된 탄화규소 휘스커를 나타내는 미세 구조 SEM 사진이며, 도 5는 상기 실시예에 따라 노출된 Si 기판에만 선택적으로 성장된 탄화규소 휘스커의 (a) 평면과, (b) 단면을 확대한 미세구조 SEM 사진이다. Fig. 3 is a microstructural SEM photograph showing the growth behavior of silicon carbide whiskers on (a) an SiO 2 substrate and (b) a Si substrate without patterning, and Fig. 4 (a) the microstructure of SEM photograph showing the appearance of the SiO 2 layer, (b) silicon carbide whiskers to grow selectively along the exposed Si surface, Figure 5 is a silicon carbide growth selectively only on the Si substrate exposed in accordance with the embodiment (A) plane of the whisker and (b) cross-section of the whisker.

도 3을 참조하면, (a) SiO2 기판에는 탄화규소 증착물이 거의 성장하지 않았고, (b) Si 면 위에만 일차원 탄화규소 증착물인 휘스커가 성장된 모습을 확인할 수 있다.Referring to FIG. 3 , (a) silicon carbide deposits were hardly grown on the SiO 2 substrate, and (b) whiskers, one-dimensional silicon carbide deposits, were grown only on the Si surface.

도 4에서 알 수 있는 바와 같이, 상기 실시예에 따라 (a) Si 기판 위에 패턴이 만들어진 SiO2 층을 준비하고, (b) 화학기상증착법을 이용하여 상기 실시예의 조건으로 화학증착 반응을 수행하면 노출된 Si 면에만 일차원 구조를 지닌 탄화규소 증착물이 성장된 모습을 관찰할 수 있었다.As shown in FIG . 4 , (a) a SiO 2 layer having a pattern formed on a Si substrate was prepared, (b) a chemical vapor deposition reaction was performed under the conditions of the above example using a chemical vapor deposition method We could observe the growth of silicon carbide deposits with one - dimensional structure only on the exposed Si surface.

상기 실시예에 따라, 선택적으로 탄화규소가 성장된 부분만을 확대하여 관찰한 도 5를 참조하면, 탄화규소 증착물은 일차원의 구조를 가지며 잘 성장된 모습을 확인할 수 있었다.Referring to FIG. 5 , in which only the portion where the silicon carbide is selectively grown is magnified and observed according to the above embodiment, the silicon carbide deposit has a one-dimensional structure and can be well grown.

상술한 바와 같이 본 발명에 따르면, 규소 기판 위에 패턴이 만들어진 산화규소 층에서 노출된 규소 면에 촉매를 사용하지 않고 기상-고상 반응을 통하여 일차원 구조를 지닌 탄화수소를 선택적으로 성장시킴으로써, 공정 단계를 효율적으로 단축할 수 있을 뿐만 아니라, 촉매를 사용하지 않으므로 불순물의 유입을 원천적으로 방지할 수 있다. 또한, 일반적인 반도체 제조 공정과 같은 공정을 따라 수행되므로 성능이 우수한 전계방출소자나 전자소자에 적용될 수 있는 일차원 구조를 지닌 탄화규소의 성장에 용이하게 응용될 수 있는 유용한 효과를 제공한다.As described above, according to the present invention, by selectively growing a hydrocarbon having a one-dimensional structure through a gas-solid reaction without using a catalyst on a silicon surface exposed in a silicon oxide layer in which a pattern is formed on a silicon substrate, And the introduction of impurities can be prevented originally because no catalyst is used. In addition, the present invention provides a useful effect that can be easily applied to the growth of silicon carbide having a one-dimensional structure that can be applied to a field emission device or an electronic device having excellent performance because it is performed according to the same process as a general semiconductor manufacturing process.

상기에서 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 숙련된 당업자는 하기의 특허청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않은 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art in light of the above teachings. It will be understood that the invention can be variously modified and changed.

Claims (7)

규소 기판 상에 패터닝된 산화규소층을 에칭하여 규소면을 노출시키는 단계; 및 메틸렌트리클로로실레인, 디메틸트리클로로실레인 및 에틸렌트리클로로실레인으로부터 선택되는 유기금속화합물 또는 사염화규소를 원료물질로 사용하여 상기 노출된 규소 면에만 일차원 구조를 갖는 탄화규소를, 촉매 없이 화학기상증착법을 이용하여 선택적으로 성장시키는 단계를 포함하는 일차원 탄화규소 증착물의 선택적 성장 방법.Etching the patterned silicon oxide layer on the silicon substrate to expose the silicon surface; And an organometallic compound selected from methylene trichlorosilane, dimethyltrichlorosilane, and ethylene trichlorosilane, or silicon tetrachloride as a raw material, and the silicon carbide having a one-dimensional structure only on the exposed silicon surface is used as a raw material, A method for selective growth of a one-dimensional silicon carbide deposit, comprising selectively growing the silicon carbide deposit using a vapor deposition method. 제 1항에 있어서, 상기 탄화규소는 휘스커, 나노와이어, 나노로드 또는 나노화이버를 포함하는 일차원 구조 형태임을 특징으로 하는 일차원 탄화규소 증착물의 선택적 성장 방법.The method of claim 1, wherein the silicon carbide is a one-dimensional structure including whiskers, nanowires, nanorods, or nanofibers. 제 1항에 있어서, 상기 화학기상증착법은 촉매 없이 기상-고상 반응공정에 의한 것임을 특징으로 하는 일차원 탄화규소 증착물의 선택적 성장 방법.The method of claim 1, wherein the chemical vapor deposition is performed by a gas-solid reaction process without a catalyst. 삭제delete 제 1항에 있어서, 상기 화학기상증착법으로 일차원 구조의 탄화규소를 선택적으로 선택시키되, 수소, 질소, 아르곤 또는 이들의 혼합 기체를 운반 및 희석 기체로 사용함을 특징으로 하는 일차원 탄화규소 증착물의 선택적 성장 방법.The method according to claim 1, wherein the one-dimensional silicon carbide is selectively selected by the chemical vapor deposition method, and hydrogen, nitrogen, argon, or a mixed gas thereof is used as a carrier and diluent gas. Way. 제 5항에 있어서, 상기 화학기상증착법에서의 증착반응 온도는 1000 내지 1250 ℃; 증착반응 압력은 1 내지 760 torr; 및 a) 상기 운반 및 희석기체와 b) 상기 원료물질의 입력비는 부피비로 2 내지 150의 범위로 조절됨을 특징으로 하는 일차원 탄화규소 증착물의 선택적 성장 방법.6. The method of claim 5, wherein the deposition reaction temperature in the chemical vapor deposition method is 1000 to 1250 DEG C; The deposition reaction pressure ranges from 1 to 760 torr; And a) an input ratio of said transporting and diluting gas and b) said raw material is controlled in a range of 2 to 150 in volume ratio. 제1항, 제2항, 제3항, 제5항 또는 제6항에 의한 일차원 탄화규소 증착물의 선택적 성장방법을 전계방출소자의 제조에 사용하는 것을 특징으로 하는 일차원탄화규소 증착물의 선택적 성장 방법.A method for selectively growing a one-dimensional silicon carbide deposit, characterized by using a method for selectively growing a one-dimensional silicon carbide deposit according to any one of claims 1, 2, 3, 5, and 6 for manufacturing a field emission device .
KR1020050099951A 2005-10-22 2005-10-22 Selective growth method of one-dimensional silicon carbide deposition Active KR100807081B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050099951A KR100807081B1 (en) 2005-10-22 2005-10-22 Selective growth method of one-dimensional silicon carbide deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050099951A KR100807081B1 (en) 2005-10-22 2005-10-22 Selective growth method of one-dimensional silicon carbide deposition

Publications (2)

Publication Number Publication Date
KR20070043913A KR20070043913A (en) 2007-04-26
KR100807081B1 true KR100807081B1 (en) 2008-02-25

Family

ID=38178100

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050099951A Active KR100807081B1 (en) 2005-10-22 2005-10-22 Selective growth method of one-dimensional silicon carbide deposition

Country Status (1)

Country Link
KR (1) KR100807081B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018100679A1 (en) * 2018-01-12 2019-07-18 Universität Paderborn Apparatus and method for producing silicon carbide
CN116535238B (en) * 2023-04-27 2024-08-30 西北工业大学 In-situ growth of radial SiC nanowires on the surface of one-dimensional micro-nano silicon-based ceramic substrate and preparation method
CN117090044A (en) * 2023-08-24 2023-11-21 吉林大学 A kind of carbon nanotube bundle core silicon carbide fiber and its preparation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970077333A (en) * 1996-05-31 1997-12-12 이서봉 Method of chemically depositing 1,3-disilabutane on silicon (001) and (111) substrates to stack and grow a cubic silicon carbide film
JP2000012462A (en) 1998-06-24 2000-01-14 New Japan Radio Co Ltd Method for forming silicon carbide crystalline film
JP2001130998A (en) 1999-11-04 2001-05-15 Nippon Pillar Packing Co Ltd Silicon carbide single crystal and method for production thereof
JP2003002800A (en) 2001-06-25 2003-01-08 Japan Science & Technology Corp Method for synthesizing 3C-SiC nanowhisker and 3C-SiC nanowhisker
KR20030060619A (en) * 2002-01-10 2003-07-16 학교법인 포항공과대학교 A process for preparing a zinc oxide nanowire by metal organic chemical vapor deposition and a nanowire prepared therefrom
JP2008042004A (en) * 2006-08-08 2008-02-21 Tokyo Electron Ltd Patterning method and device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970077333A (en) * 1996-05-31 1997-12-12 이서봉 Method of chemically depositing 1,3-disilabutane on silicon (001) and (111) substrates to stack and grow a cubic silicon carbide film
JP2000012462A (en) 1998-06-24 2000-01-14 New Japan Radio Co Ltd Method for forming silicon carbide crystalline film
JP2001130998A (en) 1999-11-04 2001-05-15 Nippon Pillar Packing Co Ltd Silicon carbide single crystal and method for production thereof
JP2003002800A (en) 2001-06-25 2003-01-08 Japan Science & Technology Corp Method for synthesizing 3C-SiC nanowhisker and 3C-SiC nanowhisker
KR20030060619A (en) * 2002-01-10 2003-07-16 학교법인 포항공과대학교 A process for preparing a zinc oxide nanowire by metal organic chemical vapor deposition and a nanowire prepared therefrom
JP2008042004A (en) * 2006-08-08 2008-02-21 Tokyo Electron Ltd Patterning method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"무촉매법으로 성장시킨 탄화규소 휘스커의 기판 의존성" 2004년 한국세라믹학회 추계학술대회 초록 (2004. 10. 15.)

Also Published As

Publication number Publication date
KR20070043913A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
US6833558B2 (en) Parallel and selective growth method of carbon nanotube on the substrates for electronic-spintronic device applications
US7713352B2 (en) Synthesis of fibers of inorganic materials using low-melting metals
US6221154B1 (en) Method for growing beta-silicon carbide nanorods, and preparation of patterned field-emitters by chemical vapor depositon (CVD)
CN1248959C (en) Carbon nano pipe array growth method
US6313015B1 (en) Growth method for silicon nanowires and nanoparticle chains from silicon monoxide
Zhang et al. Synthesis of thin Si whiskers (nanowires) using SiCl4
JP4116031B2 (en) Carbon nanotube matrix growth apparatus and multilayer carbon nanotube matrix growth method
US7241432B2 (en) Low temperature synthesis of semiconductor fibers
US7744440B2 (en) Method of growing carbon nanotubes and method of manufacturing field emission device using the same
KR20060094958A (en) Method for controlling the diameter of carbon nanotubes, carbon nanotubes or carbon nanotube arrays and structures including the same, field effect transistors and integrated circuits including the same
Han et al. Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method
US7781017B1 (en) Method for making carbon nanotube-base device
US20090317943A1 (en) Alignment of Semiconducting Nanowires on Metal Electrodes
US7303631B2 (en) Selective growth of ZnO nanostructure using a patterned ALD ZnO seed layer
WO2004048257A2 (en) Method for forming carbon nanotubes
JP4116033B2 (en) Carbon nanotube matrix growth method
US20020076553A1 (en) Low temperature synthesis of semiconductor fibers
KR100807081B1 (en) Selective growth method of one-dimensional silicon carbide deposition
Kim et al. Synthesis of high-density carbon nanotube films by microwave plasma chemical vapor deposition
KR20090079427A (en) Metal oxide film formation method on carbon nanotubes and carbon nanotube transistor manufacturing method using the same
KR100581005B1 (en) Growth method of silicon carbide nanorods and nanowires using single precursor and thermochemical deposition
JP2007284336A (en) Carbon nanotube growth method and carbon nanotube structure manufacturing method
KR20050010601A (en) Synthesis of ZnO Nano-structured material, and its apparatus
KR101579809B1 (en) Stemlike carbon materials with adhesive wavelike nano coil and a method for making the same carbon materials.
US20120019122A1 (en) Device having aligned carbon nanotube

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20051022

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20061027

Patent event code: PE09021S01D

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20070823

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20080214

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20080218

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20080218

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
G170 Re-publication after modification of scope of protection [patent]
PG1701 Publication of correction
PR1001 Payment of annual fee

Payment date: 20110110

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20111216

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20111216

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20130111

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20150211

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20150211

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20160217

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20160217

Start annual number: 9

End annual number: 9

FPAY Annual fee payment

Payment date: 20170211

Year of fee payment: 10

PR1001 Payment of annual fee

Payment date: 20170211

Start annual number: 10

End annual number: 10

FPAY Annual fee payment

Payment date: 20180205

Year of fee payment: 11

PR1001 Payment of annual fee

Payment date: 20180205

Start annual number: 11

End annual number: 11

FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 12

PR1001 Payment of annual fee

Payment date: 20190103

Start annual number: 12

End annual number: 12

FPAY Annual fee payment

Payment date: 20200203

Year of fee payment: 13

PR1001 Payment of annual fee

Payment date: 20200203

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20210112

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20220210

Start annual number: 15

End annual number: 15

PR1001 Payment of annual fee

Payment date: 20230116

Start annual number: 16

End annual number: 16

PR1001 Payment of annual fee

Payment date: 20240103

Start annual number: 17

End annual number: 17