KR100836361B1 - How to initialize the battery while driving a hybrid vehicle - Google Patents
How to initialize the battery while driving a hybrid vehicle Download PDFInfo
- Publication number
- KR100836361B1 KR100836361B1 KR1020060085070A KR20060085070A KR100836361B1 KR 100836361 B1 KR100836361 B1 KR 100836361B1 KR 1020060085070 A KR1020060085070 A KR 1020060085070A KR 20060085070 A KR20060085070 A KR 20060085070A KR 100836361 B1 KR100836361 B1 KR 100836361B1
- Authority
- KR
- South Korea
- Prior art keywords
- battery
- soc
- driving
- power generation
- charging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/13—Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
- B60W10/26—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/90—Vehicles comprising electric prime movers
- B60Y2200/92—Hybrid vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 하이브리드 차량의 주행 중 배터리 초기화 방법에 관한 것으로, 배터리의 실제적인 SOC와 전류 적산에 따른 SOC 간 오차를 없애도록 주행 중에도 배터리를 초기화(Reset)시켜, 주행중 일 때 수행하는 배터리의 초기화에 따라 SOC의 정확한 산출값을 통하여 안정적인 발전량 제어는 물론 배터리의 과전압 등에 따른 제반 문제를 해소함에 그 목적이 있다.The present invention relates to a method of initializing a battery while driving a hybrid vehicle. The present invention relates to a method of initializing a battery that is performed while driving by resetting the battery while driving so as to eliminate an error between the SOC of the battery and the SOC due to current integration. Therefore, the purpose is to solve the problems caused by overvoltage of the battery as well as stable power generation control through the accurate calculation value of SOC.
상기와 같은 목적을 달성하기 위한 본 발명은, 하이브리드 차량의 주행 중 배터리 초기화 방법이 BMS(3)를 통해 차량이 감속하여 발전 모드로 주행 중일 때 배터리 전압이 상기 배터리의 충전 제한 전압보다 클 때, 발전 모드에서의 배터리를 충전하는 정전압과 일정시간동안 배터리(2)에 정전압 충전을 수행하는 단계; 배터리(2)의 정전압 충전 시 배터리로 입력되고 있는 전류의 크기를 판단해, 연산 SOC의 초기화를 설정하는 배터리로 입력되어야 하는 전류가 배터리로 입력되고 있는 전류보다 큰 경우는 설정된 정전류의 크기에 따른 SOC를 초기화(Reset)를 수행하는 단계; 배터리의 SOC를 초기화(Reset)후 발전량 제어 모드로 전환되는 단계;로 수행되는 것을 특징으로 한다. The present invention for achieving the above object is, when the battery voltage is greater than the charging limit voltage of the battery when the method of initializing the battery while driving the hybrid vehicle is driving in the power generation mode by decelerating through the BMS (3), Performing constant voltage charging on the battery 2 for a predetermined time and a constant voltage for charging the battery in the power generation mode; Determines the magnitude of the current input to the battery during constant voltage charging of the battery 2, and if the current to be input to the battery for setting the initialization of the calculation SOC is greater than the current input to the battery, Performing an SOC reset; And converting the power generation amount control mode after the SOC of the battery is reset.
Description
도 1은 본 발명에 따른 하이브리드 차량의 주행 중 배터리 초기화 방법을 적용한 블록 구성도,1 is a block diagram illustrating a method of initializing a battery while driving a hybrid vehicle according to the present invention;
도 2는 본 발명에 따른 하이브리드 차량의 주행 중 배터리 초기화 방법 흐름도,2 is a flowchart of a battery initialization method while driving a hybrid vehicle according to the present invention;
도 3은 본 발명에 따른 배터리의 정전압 충전 시 시간에 따른 배터리로 입력되고 있는 전류 선도이다.3 is a current diagram input to a battery according to time during constant voltage charging of the battery according to the present invention.
<도면의 주요부분에 대한 부호의 설명> <Description of the symbols for the main parts of the drawings>
1 : 발전시스템 2 : 배터리1: power generation system 2: battery
3 : BMS 4 : SOC 오차검출부3: BMS 4: SOC error detection unit
5 : 정전압충전부 6 : SOC 리세트부5: constant voltage charging part 6: SOC reset part
본 발명은 하이브리드 차량의 배터리에 관한 것으로, 보다 상세하게는 차량 의 주행 중 배터리를 초기화(Reset)하는 방법에 관한 것이다.The present invention relates to a battery of a hybrid vehicle, and more particularly, to a method for resetting the battery while driving the vehicle.
일반적으로 내연기관 자동차에 의한 대기 오염을 줄이기 위한 환경 친화적인 하이브리드(Hybrid) 자동차는 내연기관인 엔진과 전기 모터를 사용하는 방식으로, 각각의 주행상황에 대응하여 내연기관의 연비가 가장 높게 운전되도록 제어되고 제동 시와 감속 시에 모터가 발전기로 작동하여 회생 제동 에너지를 전기 에너지로 회수하여 배터리를 충전시켜, 가솔린 엔진에 비해 연비 향상을 이룰 수 있으며 시내 구간에서 엔진을 작동하지 않은 상태에서 배터리의 전압만으로 주행할 수 있게 된다.In general, an environmentally friendly hybrid vehicle for reducing air pollution by an internal combustion engine vehicle uses an engine and an electric motor, which are internal combustion engines, so that the fuel economy of the internal combustion engine is driven to the highest in response to each driving situation. When braking and decelerating, the motor operates as a generator to recover the regenerative braking energy as electrical energy to charge the battery, resulting in improved fuel economy compared to gasoline engines. You can drive alone.
이와 같이, 하이브리드 차량에 있어 배터리는 차량을 구동시키는 구동모터가 소모하는 파워와 더불어 배터리의 충전 상태에 따라 발전량을 결정하는 주요한 요소로소, 이때 발전량은 통상적으로 발전량을 결정하는 GCU(Generator Control Unit)가 BMS(Battery Management System)와 MCU(Motor Control Unit)에서 정보를 받아 결정하게 됨은 물론이다.As described above, in a hybrid vehicle, a battery is a major factor that determines the amount of power generated according to the state of charge of the battery together with the power consumed by the driving motor for driving the vehicle. ) Is determined by receiving information from the battery management system (BMS) and the motor control unit (MCU).
이때, BMS의 주요기능은 배터리의 SOC(State Of Charge) 예측과 만(Full) 충전 감지, 각 셀 모듈간 전압의 균형 유지, 배터리의 SOC에 따른 최대 충전 및 방전 전압의 제어, 안전 관리 및 냉각 제어 등을 수행하게 되며, 이는 차량의 품질을 결정하는 주요한 부품인 배터리 수명의 조기 단축을 방지하면서 차량 제어수단이 총합제어를 수행할 때 배터리의 SOC 정보를 참조할 수 있도록 하게 된다.At this time, the main functions of the BMS are to predict the state of charge (SOC) of the battery and to detect the full charge, to balance the voltage between each cell module, to control the maximum charge and discharge voltage according to the SOC of the battery, safety management and cooling The control is performed, which prevents early shortening of the battery life, which is a major component for determining the quality of the vehicle, and allows the vehicle control means to refer to the SOC information of the battery when performing the total control.
여기서, 배터리의 SOC(State Of Charge)에 대한 정확한 산출이 매우 중요한데 이는, 일반적으로 배터리는 일정한 주기마다 만 충전이 수행되지 않고, 일정한 SOC 영역에서 지속적인 사용이 요구되는 특성에 따르는데, 이로 인해 여러 요인으로 인하여 배터리의 SOC의 동작 범위를 초과하는 경우에는, 배터리의 수명 단축과 차량 에너지 효율 감소뿐만 아니라 시스템 동작 전압을 초과하는 경우가 발생하는 현상이 있게 된다.In this case, accurate calculation of the state of charge (SOC) of the battery is very important. In general, the battery is not charged only at regular cycles, but is required to be continuously used in a constant SOC region. If the SOC exceeds the operating range of the SOC due to the factor, there is a phenomenon that the system operating voltage is exceeded as well as shortening the battery life and reducing the vehicle energy efficiency.
이에 따라, 배터리의 SOC의 정확한 추정을 위한 산출이 매우 중요하지만, 통상적으로 전류 적산을 통한 배터리 SOC를 추정하는 방식을 통하는 경우 여러 요인 예를 들어, 전류 센서에서 검출되는 아날로그 신호를 디지털 신호로 변환하는 과정을 통한 전류량의 누적 오차와, 배터리의 내부 저항에 의한 자가 방전과 배터리 온도 효율에 의한 영향에 따른 오차가 발생될 수밖에 없으며, 이에 따라 배터리의 SOC 산출 시 발생되는 오차로 인해 배터리 상태를 반영한 정확한 산출 값을 결정하기가 용이하지 않은 한계가 있게 된다.Accordingly, the calculation for accurate estimation of the SOC of the battery is very important, but in general through the method of estimating the battery SOC through the integration of current, a number of factors, for example, convert the analog signal detected by the current sensor into a digital signal Accumulation error of the amount of current through the process, and due to the effect of the self-discharge due to the internal resistance of the battery and the effect of the temperature efficiency of the battery will be generated, thereby reflecting the battery state due to the error generated when calculating the SOC of the battery There is a limit that is not easy to determine the correct calculation value.
이에 본 발명은 상기와 같은 점을 감안하여 발명된 것으로, 배터리의 실제적인 SOC와 전류 적산에 따른 SOC 간 오차를 없애도록 주행 중에도 배터리를 초기화(Reset)시켜, 주행중 일 때 수행하는 배터리의 초기화에 따라 SOC의 정확한 산출값을 통하여 안정적인 발전량 제어는 물론 배터리의 과전압 등에 따른 제반 문제를 해소함에 그 목적이 있다.Accordingly, the present invention has been invented in view of the above, and resets the battery even while driving so as to eliminate an error between the SOC of the battery and the SOC due to current integration. Therefore, the purpose is to solve the problems caused by overvoltage of the battery as well as stable power generation control through the accurate calculation value of SOC.
상기와 같은 목적을 달성하기 위한 본 발명은, 하이브리드 차량의 주행 중 배터리 초기화 방법이 The present invention for achieving the above object, the battery initialization method of the hybrid vehicle driving
BMS(3)를 통해 차량이 감속하여 발전 모드로 주행 중일 때 배터리 전압이 상기 배터리의 충전 제한 전압보다 큰 값인지 여부를 판단하는 단계;Determining whether the battery voltage is greater than the charging limit voltage of the battery when the vehicle decelerates through the BMS 3 and is driving in the power generation mode;
배터리 전압이 배터리의 충전 제한 전압보다 큰 값일 때 발전시스템(1)의 오동작이 발생하지 않는 경우, 발전 모드에서의 배터리를 충전하는 정전압과 일정시간동안 배터리(2)에 대한 정전압 충전을 수행하는 단계;If the malfunction of the
배터리(2)의 정전압 충전 시 배터리로 입력되고 있는 전류의 크기를 판단하는 단계;Determining a magnitude of a current input to the battery when the
배터리를 충전시키는 정전류 값이 배터리로 입력되고 있는 전류보다 큰 경우는 설정된 정전류의 크기에 따른 SOC를 초기화(Reset)를 수행하는 단계;If the constant current value for charging the battery is greater than the current being input to the battery, resetting the SOC according to the set constant current size;
배터리의 SOC를 초기화(Reset)후 발전량 제어 모드로 전환되는 단계;Resetting the SOC of the battery to a power generation amount control mode;
로 수행되는 것을 특징으로 한다.Characterized in that performed.
이하 본 발명의 실시예를 첨부된 예시도면을 참조로 상세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 하이브리드 차량의 주행 중 배터리 초기화 방법을 적용한 블록 구성도이고, 도 2는 본 발명에 따른 하이브리드 차량의 주행 중 배터리 초기화 방법 흐름도를 도시한 것으로, 본 발명의 배터리 충전은 발전시스템(1)에서 배터리(2)로 이어지는 회로 상에 BMS(3)가, 배터리(2)의 설정된 SOC(State of Charge)에 대한 오차 정도를 검출하는 SOC 오차검출부(4)와, 상기 SOC 오차검출부(4)를 통한 신호에 따라 배터리(2)를 충전하는 절차를 수행하는 정전압충전부(5) 및 상기 SOC 오차검출부(4)를 통한 신호에 따라 주행중인 차량의 배터리(2)의 SOC 상태를 초기화하는 SOC 리세트부(6)로 구성되어진다.1 is a block diagram illustrating a method of initializing a battery while driving a hybrid vehicle according to the present invention, and FIG. 2 is a flowchart illustrating a method of initializing a battery while driving a hybrid vehicle according to the present invention. On the circuit leading from the
이때, 상기 SOC 오차검출부(4)는 전류 적산에 의한 연산과정에서 누적되는 SOC 오차와, 배터리의 실제적인 잔존 SOC 간에 발생되는 차이를 검출하게 된다. At this time, the SOC
여기서, 상기 배터리의 실제적인 잔존 SOC는 차량에서 직접 검출하기 어려우므로, 배터리 충전 시 발생하는 과전압을 통해 SOC를 검출하게 됨은 물론이다.Here, since the actual remaining SOC of the battery is difficult to detect directly in the vehicle, the SOC is detected through the overvoltage generated when the battery is charged.
이와 같은 BMS(3)의 회로 구성에 따라 배터리의 SOC를 항상 오차 범위내로 유지하게 되는데, 즉 도 2에 도시된 바와 같이 차량이 감속하여 발전 모드로 주행 중일 때 BMS(3)는 배터리 전압이 배터리의 충전 제한 전압보다 큰 값인지 여부를 판단하게 된다.According to the circuit configuration of the BMS 3, the SOC of the battery is always maintained within an error range, that is, as shown in FIG. 2, when the vehicle decelerates and runs in a power generation mode, the BMS 3 has a battery voltage. It is determined whether the value is greater than the charging limit voltage of.
이어, 배터리 전압이 배터리의 충전 제한 전압보다 큰 값으로 판단된 경우 통상적으로, 배터리 과전압은 차량 발전시스템(1)의 오 동작과 SOC의 연산 오차에 따른 적산을 통해 발생되므로, 발전시스템(1)에 대한 고장 진단을 수행해 고장여부를 판별하게 된다.Subsequently, when the battery voltage is determined to be greater than the charge limit voltage of the battery, the battery overvoltage is typically generated through the integration of the malfunction of the vehicle
이후, 발전시스템(1)의 오동작에 따른 고장인 경우, 차량의 제어기간 통신을 통해 실시간 오동작 유무를 진단하면서 정상화 조치를 수행해 다시 발전 모드로 전환하게 되는 반면, 상기 발전시스템(1)이 정상적인 경우는 배터리 전압이 배터리의 충전 제한 전압보다 큰 값인 SOC 오차 상황에 따라, BMS(3)는 정전압충전부(5)를 통해 발전 모드에서의 배터리를 충전하는 정전압과 일정시간(도 3에서 배터리로 입력되고 있는 전류가 A, B, C 포인트가 될 때까지 배터리에 충전하는 시간)동안 배터리(2)에 대한 정전압 충전을 수행하게 된다.Subsequently, in the case of a failure due to a malfunction of the
이때, 정전압이란 배터리 제조사에서 권고하는 과전압이 발생되지 않는 충전 전압이며, 일정시간이란 정전압 충전 시 배터리로 입력되고 있는 전류의 과도한 변화가 발생하지 않는 충전시간을 의미한다.In this case, the constant voltage is a charging voltage that does not generate an overvoltage recommended by the battery manufacturer, and the constant time means a charging time in which an excessive change of the current input to the battery does not occur during constant voltage charging.
이어, 배터리(2)의 정전압 충전 시 연산 SOC의 초기화를 설정하는 배터리로 입력되어야 하는 전류(이하, 일정 전류)가 배터리로 입력되고 있는 전류보다 큰지 여부를 판단하게 되는데, 이와 같은 배터리로 입력되고 있는 전류는 도 3에 도시된 바와 같이 배터리의 초기 SOC 값이 서로 다른 상태에서 정전압 충전을 수행할 경우, 정전압 충전이 일정시간 경과됨에 따라 배터리로 입력되고 있는 전류가 점진적으로 줄어들면서 0(영)A로 수렴하게 되는 특징을 갖게 된다.Subsequently, it is determined whether a current (hereinafter, referred to as a constant current) to be input to the battery for setting the initialization of the calculation SOC is greater than the current being input to the battery when the
이후, 정전압 충전에 따른 일정 전류가 배터리로 입력되고 있는 전류보다 큰 경우는 배터리로 입력되고 있는 전류의 크기에 따라 SOC를 초기화(Reset)하게 되는데 즉, 배터리로 입력되고 있는 전류가 20A일 때 초기 SOC는 90%이며, 배터리로 입력되고 있는 전류가 10A일 때 초기 SOC는 95%이고, 배터리로 입력되고 있는 전류가 0(영)A일 때 초기 SOC는 100%로 산정되어진다. After that, when the constant current according to the constant voltage charging is greater than the current input to the battery, the SOC is reset according to the magnitude of the current being input into the battery. That is, when the current input to the battery is 20A, The SOC is 90%, the initial SOC is 95% when the current input to the battery is 10A, and the initial SOC is calculated as 100% when the current input to the battery is 0 (zero) A.
이와 같이, 배터리로 입력되고 있는 전류에 따라 산출되는 SOC 값을 결정하여 즉, 배터리로 입력되고 있는 전류가 20A나 10A 또는 0(영)A중 하나를 선택해 배터리의 SOC를 초기화(Reset)시킨 후, 이어 발전량 제어 모드로 전환되면서 반복적인 SOC 초기화 과정을 수행하게 된다.In this way, the SOC value calculated according to the current input to the battery is determined, that is, the current input into the battery is selected from 20A, 10A, or 0 (zero) A to reset the SOC of the battery. After that, the SOC initialization process is repeated as the power generation control mode is changed.
이상 설명한 바와 같이 본 발명에 의하면, 배터리 충전을 위한 배터리로 입력되고 있는 전류의 수렴 전류 특성을 이용하여, 정전압 충전 시 배터리로 입력되고 있는 전류의 특정 값을 SOC 초기화 기준 값으로 정하게 됨에 따라 배터리의 전류 적산 오차의 누적에 따른 SOC의 오차를 제거해, 항상 정확한 SOC 상태를 관리할 수 있는 효과가 있게 된다.As described above, according to the present invention, a specific value of the current input to the battery during constant voltage charging is determined as the SOC initialization reference value by using the convergence current characteristic of the current input to the battery for battery charging. The SOC error due to the accumulation of the current integration error is eliminated, so that an accurate SOC state can be managed at all times.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020060085070A KR100836361B1 (en) | 2006-09-05 | 2006-09-05 | How to initialize the battery while driving a hybrid vehicle |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020060085070A KR100836361B1 (en) | 2006-09-05 | 2006-09-05 | How to initialize the battery while driving a hybrid vehicle |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20080021901A KR20080021901A (en) | 2008-03-10 |
| KR100836361B1 true KR100836361B1 (en) | 2008-06-09 |
Family
ID=39396080
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020060085070A Expired - Fee Related KR100836361B1 (en) | 2006-09-05 | 2006-09-05 | How to initialize the battery while driving a hybrid vehicle |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR100836361B1 (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115122931B (en) * | 2022-06-21 | 2024-12-31 | 中国第一汽车股份有限公司 | Battery charging method, device and computer readable storage medium |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20030050125A (en) * | 2001-12-18 | 2003-06-25 | 현대자동차주식회사 | Method for battery state of charge reset in hybrid electric vehicle |
| JP2004222433A (en) | 2003-01-16 | 2004-08-05 | Hitachi Unisia Automotive Ltd | Control device for hybrid vehicle |
-
2006
- 2006-09-05 KR KR1020060085070A patent/KR100836361B1/en not_active Expired - Fee Related
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20030050125A (en) * | 2001-12-18 | 2003-06-25 | 현대자동차주식회사 | Method for battery state of charge reset in hybrid electric vehicle |
| JP2004222433A (en) | 2003-01-16 | 2004-08-05 | Hitachi Unisia Automotive Ltd | Control device for hybrid vehicle |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20080021901A (en) | 2008-03-10 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN109863058B (en) | Model predictive battery power limit estimation system and method | |
| JP4116609B2 (en) | Power supply control device, electric vehicle and battery control unit | |
| US7800345B2 (en) | Battery management system and method of operating same | |
| CN104237795B (en) | Imbalance detection by measuring multiple cells with the same voltage sensor | |
| KR101223735B1 (en) | Battery management system and control method thereof | |
| US20110198920A1 (en) | Vehicle power supply apparatus | |
| KR101498760B1 (en) | Apparatus and method of estimating state of charging for battery, and battery management system using the same | |
| JP6250164B2 (en) | Method and apparatus for balancing an energy storage system | |
| WO2008065910A1 (en) | Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program | |
| JP5741389B2 (en) | A method for estimating a full charge capacity of a power storage device and a power storage system. | |
| CN105471020B (en) | Circuit and method for battery cell leakage detection | |
| KR101779941B1 (en) | Apparatus and method of measuring for a state of charge of a battery | |
| JP2008099538A (en) | Automotive battery management system | |
| JP4806558B2 (en) | Secondary battery control device and secondary battery deterioration judgment method | |
| CN101141016A (en) | Battery management system and method | |
| WO2008053969A1 (en) | Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium containing abnormality detecting program for storage element is recorded | |
| KR101887442B1 (en) | Diagnosis apparatus of insulation resistance measurement circuit | |
| KR101474401B1 (en) | Apparatus and method for estimating battery state and battery pack using it | |
| JP6186248B2 (en) | Inverter abnormality determination device | |
| US20170136914A1 (en) | Systems and methods for visualizing battery data | |
| KR100906872B1 (en) | Battery performance compensation and SOC initialization method of hybrid vehicle | |
| JP4680783B2 (en) | Secondary battery state detection device, state detection method, and state detection program | |
| KR101630409B1 (en) | Apparatus and method for estimating battery state and battery pack using it | |
| KR100836361B1 (en) | How to initialize the battery while driving a hybrid vehicle | |
| JP6435679B2 (en) | Lead storage battery deterioration determination device and lead storage battery deterioration determination method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-3-3-R10-R18-oth-X000 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| FPAY | Annual fee payment |
Payment date: 20130531 Year of fee payment: 6 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
| FPAY | Annual fee payment |
Payment date: 20140529 Year of fee payment: 7 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 7 |
|
| FPAY | Annual fee payment |
Payment date: 20150529 Year of fee payment: 8 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 8 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 9 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 10 |
|
| FPAY | Annual fee payment |
Payment date: 20180530 Year of fee payment: 11 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 11 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| LAPS | Lapse due to unpaid annual fee | ||
| PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20190603 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20190603 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |