[go: up one dir, main page]

KR100838483B1 - Gate etching method of semiconductor device - Google Patents

Gate etching method of semiconductor device Download PDF

Info

Publication number
KR100838483B1
KR100838483B1 KR1020060133854A KR20060133854A KR100838483B1 KR 100838483 B1 KR100838483 B1 KR 100838483B1 KR 1020060133854 A KR1020060133854 A KR 1020060133854A KR 20060133854 A KR20060133854 A KR 20060133854A KR 100838483 B1 KR100838483 B1 KR 100838483B1
Authority
KR
South Korea
Prior art keywords
gate
etching
film
oxide film
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020060133854A
Other languages
Korean (ko)
Inventor
김종일
Original Assignee
매그나칩 반도체 유한회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 매그나칩 반도체 유한회사 filed Critical 매그나칩 반도체 유한회사
Priority to KR1020060133854A priority Critical patent/KR100838483B1/en
Application granted granted Critical
Publication of KR100838483B1 publication Critical patent/KR100838483B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/517Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
    • H10D64/518Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers characterised by their lengths or sectional shapes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

본 발명은 반도체 소자의 게이트 식각공정시 실리콘 기판의 손실을 방지할 수 있는 게이트 식각방법을 제공하기 위한 것으로, 이를 위해 본 발명은 게이트 절연막과 게이트 도전막이 형성된 기판을 준비하는 단계와, 상기 게이트 도전막을 식각하여 게이트 패턴을 형성하는 단계와, 상기 게이트 패턴의 일부를 산화시켜 열 산화막을 형성하는 단계와, 상기 열 산화막을 제거하는 단계를 포함하는 반도체 소자의 게이트 식각방법을 제공한다.The present invention is to provide a gate etching method that can prevent the loss of the silicon substrate during the gate etching process of the semiconductor device, the present invention to prepare a substrate formed with a gate insulating film and a gate conductive film, and the gate conductive A method of etching a semiconductor device includes forming a gate pattern by etching a film, oxidizing a portion of the gate pattern to form a thermal oxide film, and removing the thermal oxide film.

Description

반도체 소자의 게이트 식각방법{METHOD FOR ETCHING A GATE IN SEMICONDUCTOR DEVICE}Gate etching method of semiconductor device {METHOD FOR ETCHING A GATE IN SEMICONDUCTOR DEVICE}

도 1a 내지 도 1e는 종래기술에 따른 반도체 소자의 게이트 식각방법을 도시한 공정 단면도.1A to 1E are cross-sectional views illustrating a gate etching method of a semiconductor device according to the related art.

도 2a 내지 도 2d는 본 발명의 실시예에 따른 반도체 소자의 게이트 식각방법을 도시한 공정 단면도.2A to 2D are cross-sectional views illustrating a gate etching method of a semiconductor device in accordance with an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10, 110 : 기판10, 110: substrate

11 : 게이트 산화막11: gate oxide film

12, 112 : 다결정 실리콘막12, 112: polycrystalline silicon film

13, 114 : 감광막 패턴13, 114: photosensitive film pattern

14 : 실리콘산화막14 silicon oxide film

15 : 자연 산화막 15: natural oxide film

113 : 반사 방지막113: antireflection film

115 : 열 산화막115: thermal oxide film

본 발명은 반도체 제조 기술에 관한 것으로, 특히 반도체 소자의 게이트 식각방법, 더욱 상세하게는 다결정 실리콘막으로 이루어진 게이트 식각방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor manufacturing techniques, and more particularly, to a gate etching method of a semiconductor device, and more particularly, a gate etching method comprising a polycrystalline silicon film.

반도체 장치 내에서 구동 소자로 사용되는 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)은 게이트로 통상 다결정 실리콘막을 사용하고 있다. 이러한 게이트는 플라즈마(plasma)화된 반응가스(reaction gas)를 이용한 건식식각공정을 통해 형성되는 바, 제조 공정에 있어서 중요한 요소로 인식되고 있다. A MOSFET (Metal Oxide Semiconductor Field Effect Transistor) used as a driving element in a semiconductor device usually uses a polycrystalline silicon film as its gate. Such a gate is formed through a dry etching process using plasma-reacted reaction gas, which is recognized as an important element in the manufacturing process.

도 1a 내지 도 1e는 종래기술에 따른 게이트 식각방법을 설명하기 위하여 도시한 공정 단면도이다. 1A to 1E are cross-sectional views illustrating a gate etching method according to the related art.

먼저, 도 1a에 도시된 바와 같이, 실리콘 기판(10) 상부에 소정의 얇은 두께의 게이트 산화막(11)과 다결정 실리콘막(12)을 순차적으로 형성한 다음, 그 상부에 감광막 패턴(13)을 형성한다. First, as shown in FIG. 1A, the gate oxide film 11 and the polycrystalline silicon film 12 having a predetermined thin thickness are sequentially formed on the silicon substrate 10, and then the photoresist pattern 13 is formed on the silicon substrate 10. Form.

이어서, 도 1b에 도시된 바와 같이, 메인(main) 식각공정으로 감광막 패턴(13)을 식각 마스크로 이용한 종말점(End Point detection, EPD) 식각-다결정 실리콘막(12)의 게이트 산화막(11)이 노출될 때까지 실시하는 식각-을 실시하여 다결정 실리콘막(12, 도 1a참조)을 식각한다. 이때, 식각되는 다결정 실리콘막(12A)은 버티컬 프로파일(vertical profile)을 갖는 것이 아니라 테이퍼 프로파일(tapered profile)을 갖는다. 한편, '13A'는 상기 식각공정시 일부가 손실된 감광막 패턴을 나타낸다. Subsequently, as shown in FIG. 1B, the gate oxide film 11 of the end point detection (EPD) etch-polycrystalline silicon film 12 using the photoresist pattern 13 as an etch mask is subjected to a main etching process. The polycrystalline silicon film 12 (see Fig. 1A) is etched by etching until it is exposed. At this time, the etched polycrystalline silicon film 12A does not have a vertical profile but has a tapered profile. On the other hand, '13A' represents a photoresist pattern which is partially lost during the etching process.

이어서, 도 1c에 도시된 바와 같이, 테이퍼 프로파일을 갖는 다결정 실리콘막(12A)을 버티컬 프로파일을 갖는 다결정 실리콘막(12B)으로 만들기 위해 과도(over) 식각공정을 실시한다. 이러한 과도 식각과정에서 플라즈마 식각가스에 포함된 O2 플라즈마에 의해 실리콘 기판(10) 상에 플라즈마 산화(plasma oxidation) 현상이 발생하고, 이로 인해 실리콘 기판(10)의 상에는 일정 두께로 실리콘산화막(SiO2, 14)이 형성된다. Subsequently, as shown in FIG. 1C, an over etching process is performed to make the polycrystalline silicon film 12A having the tapered profile into the polycrystalline silicon film 12B having the vertical profile. In the transient etching process, plasma oxidation occurs on the silicon substrate 10 by the O 2 plasma included in the plasma etching gas. Thus, a silicon oxide film (SiO) is formed on the silicon substrate 10 at a predetermined thickness. 2 , 14) are formed.

이어서, 도 1d에 도시된 바와 같이, 감광막 패턴(13A, 도 1c참조)을 제거한 후 세정공정을 실시한다. 이때, 실리콘 기판(10) 상에 형성된 실리콘산화막(14, 도 1c참조) 또한 제거된다. '11A'는 게이트 산화막 패턴을 나타낸다. Subsequently, as shown in FIG. 1D, the photoresist pattern 13A (see FIG. 1C) is removed and then a cleaning process is performed. At this time, the silicon oxide film 14 (see FIG. 1C) formed on the silicon substrate 10 is also removed. '11A' represents a gate oxide film pattern.

이어서, 도 1e에 도시된 바와 같이, 실리콘산화막(14, 도 1c참조)이 제거된 후 노출되는 실리콘 기판(10) 상에는 자연 산화막(native oxide, 15)이 형성되게 된다. Subsequently, as shown in FIG. 1E, a native oxide layer 15 is formed on the exposed silicon substrate 10 after the silicon oxide layer 14 (see FIG. 1C) is removed.

상기에서 설명한 바와 같이, 종래기술에 따른 게이트 식각방법에서는 안정적인 버티컬 프로파일을 갖는 게이트를 형성하기 위하여 메인 식각공정 후 과도 식각공정을 필수적으로 실시한다. 그러나, 과도 식각과정에서 플라즈마 산화 현상에 의해 실리콘 기판의 일부가 산화되고, 이렇게 산화된 부위는 후속 세정공정에 의해 제거되어 기판의 손실을 초래한다. 이러한 기판 손실은 후속 공정을 통해 소스 및 드레인 영역이 형성될 액티브(active) 영역을 얇게 만들어 결과적으로 게이트 채널 제어가 어렵고, 동시에 트랜지스터의 구동 전류가 감소하여 소자 특성을 열화시킨다. As described above, in the gate etching method according to the related art, the transient etching process after the main etching process is essentially performed to form a gate having a stable vertical profile. However, part of the silicon substrate is oxidized by the plasma oxidation phenomenon during the excessive etching process, and the oxidized portion is removed by the subsequent cleaning process, resulting in loss of the substrate. This substrate loss makes the active region where the source and drain regions are to be formed through a subsequent process becomes difficult to control the gate channel, and at the same time, the driving current of the transistor is reduced, thereby degrading device characteristics.

따라서, 본 발명은 상기한 종래기술의 문제점을 해결하기 위해 제안된 것으로서, 반도체 소자의 게이트 식각공정시 실리콘 기판의 손실을 방지할 수 있는 게이트 식각방법을 제공하는데 그 목적이 있다. Accordingly, an object of the present invention is to provide a gate etching method capable of preventing a loss of a silicon substrate during a gate etching process of a semiconductor device.

상기한 본 발명의 목적을 달성하기 위한 일 측면에 따른 본 발명은, 게이트 절연막과 게이트 도전막이 형성된 기판을 준비하는 단계와, 상기 게이트 도전막을 식각하여 게이트 패턴을 형성하는 단계와, 상기 게이트 패턴의 일부를 산화시켜 열 산화막을 형성하는 단계와, 상기 열 산화막을 제거하는 단계를 포함하는 반도체 소자의 게이트 식각방법을 제공한다.According to an aspect of the present invention, there is provided a method including preparing a substrate on which a gate insulating film and a gate conductive film are formed, forming a gate pattern by etching the gate conductive film, and forming a gate pattern. It provides a gate etching method of a semiconductor device comprising the step of oxidizing a portion to form a thermal oxide film, and removing the thermal oxide film.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부한 도면을 참조하여 설명한다. 또한, 도면들에 있어서, 층 및 영역들의 두께는 명확성을 기하기 위하여 과장되어진 것이며, 층이 다 른 층 또는 기판 "상"에 있다고 언급되어지는 경우에 그것은 다른 층 또는 기판 상에 직접 형성될 수 있거나, 또는 그들 사이에 제3의 층이 개재될 수도 있다. 또한 명세서 전체에 걸쳐서 동일한 도면번호(참조번호)로 표시된 부분은 동일한 요소들을 나타낸다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. In addition, in the drawings, the thicknesses of layers and regions are exaggerated for clarity and may be formed directly on other layers or substrates when referred to as being on another layer or substrate. Or a third layer may be interposed therebetween. In addition, parts denoted by the same reference numerals (reference numbers) throughout the specification represent the same elements.

실시예Example

도 2a 내지 도 2d는 본 발명의 실시예에 따른 반도체 소자의 게이트 식각방법을 설명하기 위하여 도시한 공정 단면도이다. 2A through 2D are cross-sectional views illustrating a gate etching method of a semiconductor device in accordance with an embodiment of the present invention.

먼저, 도 2a에 도시된 바와 같이, 실리콘 기판(110) 상부에 게이트 절연막으로 산화막(111)을 형성한다. 이때, 게이트 산화막(111)은 습식산화 또는 건식산화공정을 이용하여 실리콘산화막(SiO2)으로 형성하며, 그 두께는 10~30Å 정도가 되도록 형성한다. First, as shown in FIG. 2A, an oxide film 111 is formed as a gate insulating film on the silicon substrate 110. At this time, the gate oxide film 111 is formed of a silicon oxide film (SiO 2 ) by using a wet oxidation or dry oxidation process, the thickness is formed to be about 10 ~ 30Å.

이어서, 게이트 산화막(111) 상부에 다결정 실리콘막(112)을 증착한다. 이때, 다결정 실리콘막(112)은 SiH4를 소스 가스로 이용한 LPCVD(Low Pressure Chemical Vapor Deposition) 공정을 이용하여 1000~2000Å 정도의 두께로 증착한다. Next, a polycrystalline silicon film 112 is deposited on the gate oxide film 111. At this time, the polycrystalline silicon film 112 is deposited to a thickness of about 1000 ~ 2000Å by using a low pressure chemical vapor deposition (LPCVD) process using SiH 4 as the source gas.

이어서, 다결정 실리콘막(112) 상에 반사 방지막(Bottom Anti-Reflective Coating)(113)을 형성한다. Next, a bottom anti-reflective coating 113 is formed on the polycrystalline silicon film 112.

이어서, 반사 방지막(113) 상에 감광막을 도포한 후 포토 마스크(photo mask)를 이용한 노광공정 및 현상공정을 순차적으로 실시하여 감광막 패턴(114)을 형성한다. Subsequently, after the photoresist is coated on the antireflection film 113, an exposure process and a development process using a photo mask are sequentially performed to form the photoresist pattern 114.

이어서, 도 2b에 도시된 바와 같이, 메인 식각공정으로 감광막 패턴(114)을 식각 마스크로 이용한 종말점 식각을 실시하여 다결정 실리콘막(112, 도 2a참조)을 식각한다. 이때, 메인 식각공정은 RIE(Reactive Ion Etching) 또는 MERIE(Magnetically Enhanced Reactive Ion Etching) 장비를 이용하여 Cl2 또는 HBr 및 O2를 이용하여 실시한다. 예컨대, HBr의 유량은 100sccm으로 하고, O2의 유량은 4sccm으로 하며, 50mTorr 이하의 압력, 250W 이상의 소스 파워, 150W 이하의 바이어스 파워로 한다. 한편, '112A'는 다결정 실리콘막 패턴이고, '113A'는 반사 방지막 패턴을 나타내며, '114A'는 상기 메인 식각공정시 일부가 손실된 감광막 패턴을 나타낸다.Subsequently, as shown in FIG. 2B, an end point etching using the photoresist pattern 114 as an etching mask is performed by the main etching process to etch the polycrystalline silicon film 112 (see FIG. 2A). In this case, the main etching process is performed using Cl 2 or HBr and O 2 using Reactive Ion Etching (RIE) or Magnetically Enhanced Reactive Ion Etching (MERIE). For example, the flow rate of HBr is 100 sccm, the flow rate of O 2 is 4 sccm, and the pressure is 50 mTorr or less, the source power of 250 W or more, and the bias power of 150 W or less. Meanwhile, '112A' represents a polycrystalline silicon film pattern, '113A' represents an antireflection film pattern, and '114A' represents a photoresist film pattern partially lost in the main etching process.

이어서, 상기 메인 식각공정시 발생된 파티클(particle) 등과 같은 이물질을 제거하기 위하여 세정공정을 실시할 수도 있다.Subsequently, a cleaning process may be performed to remove foreign substances such as particles generated during the main etching process.

이어서, 도 2c에 도시된 바와 같이, 테이퍼 프로파일을 갖는 다결정 실리콘막(112A)을 버티컬 프로파일을 갖는 다결정 실리콘막(112B, 도 2d참조)으로 만들기 위해 과도 식각공정을 실시하는 것이 아니라 열 산화공정(thermal oxidation) 공정을 실시하여 열 산화막(115)을 형성한다. 이때, 열 산화공정은 1000~1100℃ 정도의 온도에서 실시하여 열 산화막(115)이 50~100Å 정도의 두께를 가질 때까지 실시한다. Subsequently, as shown in FIG. 2C, a thermal oxidation process (rather than an excessive etching process) is performed to make the polycrystalline silicon film 112A having the taper profile into the polycrystalline silicon film 112B having the vertical profile (see FIG. 2D). A thermal oxidation film 115 is formed by performing a thermal oxidation process. At this time, the thermal oxidation process is carried out at a temperature of about 1000 ~ 1100 ℃ until the thermal oxide film 115 has a thickness of about 50 ~ 100Å.

이어서, 도 2d에 도시된 바와 같이, DHF(Dilute HF, 50(또는 49):1의 비율로 H20로 희석된 HF) 또는 BOE(Bufferd Oxide Etchant) 용액을 이용하여 열 산화막(115)을 제거한다. 이로써, 버티컬 프로파일을 갖는 다결정 실리콘막(112B)이 형성된다. Subsequently, as shown in FIG. 2D, the thermal oxide film 115 is formed using DHF (Dilute HF, HF diluted with H 2 0 at a ratio of 50 (or 49): 1) or BOE (Buffered Oxide Etchant) solution. Remove As a result, a polycrystalline silicon film 112B having a vertical profile is formed.

한편, 열 산화막(115) 제거공정시 게이트 산화막(111)의 손실이 최소화도록 공정을 제어하는 것이 바람직하며, 이때, 공정 제어가 어려운 경우 게이트 산화막(111)의 일부를 질화처리하여 열 산화막(115)과의 식각 선택비를 갖도록 할 수도 있다. On the other hand, during the thermal oxide film 115 removal process, it is preferable to control the process to minimize the loss of the gate oxide film 111. In this case, if the process control is difficult, the thermal oxide film 115 is nitrided by nitriding a part of the gate oxide film 111. You can also have an etching selectivity with

상기에서 설명한 바와 같이, 본 발명의 기술적 사상은 바람직한 실시예에서 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주의하여야 한다. 특히, 본 발명의 실시예에서는 게이트 물질로 다결정 실리콘막을 일례로 설명하였으나, 다결정 실리콘막 대신에 반도체 분야에서 사용되는 전극 물질은 모두 사용할 수 있다. 또한, 본 발명은 이 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예들이 가능함을 이해할 수 있을 것이다.As described above, although the technical spirit of the present invention has been described in detail in the preferred embodiments, it should be noted that the above-described embodiments are for the purpose of description and not of limitation. In particular, although the polycrystalline silicon film is described as an example in the embodiment of the present invention, any electrode material used in the semiconductor field may be used instead of the polycrystalline silicon film. In addition, it will be understood by those skilled in the art that various embodiments are possible within the scope of the technical idea of the present invention.

이상에서 설명한 바와 같이, 본 발명에 의하면, 다음과 같은 효과들을 얻을 수 있다.As described above, according to the present invention, the following effects can be obtained.

첫째, 본 발명에 의하면, 다결정 실리콘막을 메인 식각공정을 통해 식각한 후 형성된 테이퍼 프로파일 부분을 열 산화공정을 통해 산화시킨 다음 세정공정으로 제거함으로써 종래기술에서와 같은 실리콘 기판의 손실없이 버티컬 프로파일을 갖는 게이트를 형성할 수 있으며, 이를 통해 후속 소스 및 드레인 영역이 형성될 액티브(active) 영역을 두께를 확보할 수 있어 결과적으로 게이트 채널 제어가 쉬운 동시에 트랜지스터의 구동 전류를 증가시켜 소자 특성을 개선시킬 수 있다. First, according to the present invention, a tapered profile portion formed after etching a polycrystalline silicon film through a main etching process is oxidized through a thermal oxidation process and then removed by a cleaning process, thereby having a vertical profile without loss of a silicon substrate as in the prior art. The gate can be formed, which makes it possible to secure the thickness of the active region where subsequent source and drain regions will be formed. As a result, gate channel control is easy and the driving current of the transistor can be increased to improve device characteristics. have.

둘째, 본 발명에 의하면, 열 산화공정과 세정공정을 통해 다결정 실리콘막을 일정 두께만큼 감소시킴으로써 게이트의 선폭을 감소시킬 수 있다.Second, according to the present invention, the line width of the gate can be reduced by reducing the polycrystalline silicon film by a predetermined thickness through a thermal oxidation process and a cleaning process.

Claims (8)

게이트 절연막과 게이트 도전막이 형성된 기판을 준비하는 단계;Preparing a substrate on which a gate insulating film and a gate conductive film are formed; 상기 게이트 도전막을 식각하여 게이트 패턴을 형성하는 단계;Etching the gate conductive layer to form a gate pattern; 상기 게이트 패턴의 일부를 산화시켜 열 산화막을 형성하는 단계; 및Oxidizing a portion of the gate pattern to form a thermal oxide film; And 상기 열 산화막을 제거하는 단계를 포함하되, Removing the thermal oxide film, 상기 열 산화막을 형성하는 단계는 상기 게이트 패턴을 형성하는 단계 후 상기 게이트 패턴이 테이퍼 프로파일을 갖는 부분이 모두 산화되도록 실시하는 반도체 소자의 게이트 식각방법.The forming of the thermal oxide layer may include performing etching so that all of the portions having the tapered profile of the gate pattern are oxidized after the forming of the gate pattern. 제 1 항에 있어서, The method of claim 1, 상기 게이트 패턴을 형성하는 단계는 상기 기판이 손실되지 않도록 실시하는 반도체 소자의 게이트 식각방법.The forming of the gate pattern may be performed so that the substrate is not lost. 제 1 항에 있어서, The method of claim 1, 상기 게이트 패턴을 형성하는 단계는 상기 게이트 절연막이 노출될 때까지 실시하는 반도체 소자의 게이트 식각방법.And forming the gate pattern until the gate insulating layer is exposed. 제 1 항에 있어서, The method of claim 1, 상기 게이트 도전막은 다결정 실리콘막으로 형성하는 반도체 소자의 게이트 식각방법.And the gate conductive layer is formed of a polycrystalline silicon layer. 제 1 항에 있어서, The method of claim 1, 상기 열 산화막을 형성하는 단계는 1000~1100℃의 온도에서 실시하는 반도체 소자의 게이트 식각방법.Forming the thermal oxide film is a gate etching method of a semiconductor device performed at a temperature of 1000 ~ 1100 ℃. 제 1 항 또는 제 5 항에 있어서, The method according to claim 1 or 5, 상기 열 산화막은 50~100Å의 두께로 형성하는 반도체 소자의 게이트 식각방법.The thermal oxide film is a gate etching method of a semiconductor device to form a thickness of 50 ~ 100Å. 삭제delete 제 1 항에 있어서, The method of claim 1, 상기 열 산화막을 제거하는 공정은 DHF(Dilute HF) 또는 BOE(Buffered Oxide Etchant) 용액을 이용하여 실시하는 반도체 소자의 게이트 식각방법.Removing the thermal oxide film is a gate etching method of a semiconductor device using a dilute HF (DHF) or buffered oxide etchant (BOE) solution.
KR1020060133854A 2006-12-26 2006-12-26 Gate etching method of semiconductor device Expired - Fee Related KR100838483B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060133854A KR100838483B1 (en) 2006-12-26 2006-12-26 Gate etching method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060133854A KR100838483B1 (en) 2006-12-26 2006-12-26 Gate etching method of semiconductor device

Publications (1)

Publication Number Publication Date
KR100838483B1 true KR100838483B1 (en) 2008-06-16

Family

ID=39771450

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060133854A Expired - Fee Related KR100838483B1 (en) 2006-12-26 2006-12-26 Gate etching method of semiconductor device

Country Status (1)

Country Link
KR (1) KR100838483B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980080423A (en) * 1997-03-18 1998-11-25 니시무로타이조 Method for manufacturing semiconductor device and device for manufacturing semiconductor
KR20030054911A (en) * 2001-12-26 2003-07-02 주식회사 하이닉스반도체 Method of forming a gate in semiconductor device
KR20040059877A (en) * 2002-12-30 2004-07-06 주식회사 하이닉스반도체 Method for fabrication of semiconductor device using gate-reoxidation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980080423A (en) * 1997-03-18 1998-11-25 니시무로타이조 Method for manufacturing semiconductor device and device for manufacturing semiconductor
KR20030054911A (en) * 2001-12-26 2003-07-02 주식회사 하이닉스반도체 Method of forming a gate in semiconductor device
KR20040059877A (en) * 2002-12-30 2004-07-06 주식회사 하이닉스반도체 Method for fabrication of semiconductor device using gate-reoxidation

Similar Documents

Publication Publication Date Title
US6902969B2 (en) Process for forming dual metal gate structures
JP2004152784A (en) Method for manufacturing fine pattern and method for manufacturing semiconductor device
JP2004031944A (en) Forming method of very narrow width transistor gate element by photolithography
JP3165047B2 (en) Dry etching method for polycide film
KR20120091453A (en) Method for manufacturing a semiconductor device
JP2009071306A (en) Method for forming micropattern in semiconductor device
CN102446724B (en) Method for manufacturing gate electrode
JP2004006902A (en) Semiconductor device and method of manufacturing the same
KR100355691B1 (en) Method for manufacturing III-V group semiconductor structure
JP2008502141A (en) Gate stack and gate stack etching sequence for metal gate integration
JP2004356575A (en) Manufacturing method of semiconductor device
KR100390825B1 (en) Method for fabricating contact semiconductor device
KR100838483B1 (en) Gate etching method of semiconductor device
JP4082280B2 (en) Semiconductor device and manufacturing method thereof
KR100567530B1 (en) Oxide film formation method of semiconductor device
US6989331B2 (en) Hard mask removal
US7078160B2 (en) Selective surface exposure, cleans, and conditioning of the germanium film in a Ge photodetector
KR100571629B1 (en) Semiconductor device manufacturing method
KR100877878B1 (en) Method for manufacturing semiconductor device
KR101037690B1 (en) Method for fabricating semiconductor device
TWI267914B (en) Method of manufacturing semiconductor device
JP2008135765A (en) Semiconductor device
JP2009170729A (en) Method of manufacturing semiconductor device
KR100691943B1 (en) Manufacturing Method of Semiconductor Device
KR100265849B1 (en) A method for fabricating MOSFET

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

E13-X000 Pre-grant limitation requested

St.27 status event code: A-2-3-E10-E13-lim-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

FPAY Annual fee payment

Payment date: 20130524

Year of fee payment: 6

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

FPAY Annual fee payment

Payment date: 20140519

Year of fee payment: 7

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

FPAY Annual fee payment

Payment date: 20150518

Year of fee payment: 8

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 8

FPAY Annual fee payment

Payment date: 20160518

Year of fee payment: 9

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 9

FPAY Annual fee payment

Payment date: 20170529

Year of fee payment: 10

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 10

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

FPAY Annual fee payment

Payment date: 20180517

Year of fee payment: 11

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 11

FPAY Annual fee payment

Payment date: 20190516

Year of fee payment: 12

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 12

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 13

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R14-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20210610

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20210610

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000