[go: up one dir, main page]

KR100877921B1 - Manufacturing Method of Galvanized Surface-Treated Steel Sheet Using Conductive Polymer Electrolytic Polymerization - Google Patents

Manufacturing Method of Galvanized Surface-Treated Steel Sheet Using Conductive Polymer Electrolytic Polymerization Download PDF

Info

Publication number
KR100877921B1
KR100877921B1 KR1020070052520A KR20070052520A KR100877921B1 KR 100877921 B1 KR100877921 B1 KR 100877921B1 KR 1020070052520 A KR1020070052520 A KR 1020070052520A KR 20070052520 A KR20070052520 A KR 20070052520A KR 100877921 B1 KR100877921 B1 KR 100877921B1
Authority
KR
South Korea
Prior art keywords
steel sheet
cerium
conductive polymer
polyaniline
electrolytic polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1020070052520A
Other languages
Korean (ko)
Other versions
KR20080105229A (en
Inventor
김종기
박상진
문만빈
나상묵
남궁성
Original Assignee
현대하이스코 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대하이스코 주식회사 filed Critical 현대하이스코 주식회사
Priority to KR1020070052520A priority Critical patent/KR100877921B1/en
Publication of KR20080105229A publication Critical patent/KR20080105229A/en
Application granted granted Critical
Publication of KR100877921B1 publication Critical patent/KR100877921B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

본 발명은 전도성 고분자인 폴리아닐린(polyaniline)을 전해(電解) 중합하여 갈바륨 강판 코팅층 위에 피복처리 하는 표면처리 방법에 관한 것으로, 특히 옥살산(oxalic acid), 인산(phosphoric acid)및 아닐린(aniline)의 혼합액에 세륨(Cerium)을 첨가할 때 더욱 내식성이 우수한 갈바륨 표면처리 강판의 제조방법을 제공한다.The present invention relates to a surface treatment method for electrolytically polymerizing a conductive polymer, polyaniline, and coating the surface of a galvanic steel plate coating layer. More particularly, the present invention relates to a surface treatment method using a mixed solution of oxalic acid, phosphoric acid and aniline There is provided a method for producing a galburized surface-treated steel sheet which is more resistant to corrosion when cerium is added thereto.

갈바륨 강판, 전도성 고분자, 세륨(cerium), 폴리아닐린(polyaniline), 전해중합, 표면처리강판 Galvanic steel sheet, conductive polymer, cerium, polyaniline, electrolytic polymerization, surface treated steel sheet

Description

전도성 고분자 전해(電解) 중합을 이용한 갈바륨 표면처리 강판의 제조방법{Manufacturing process of galvalume surface treated steel sheet using electrochemical polymerization of conducting polymer} BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a galvanic surface-treated steel sheet using electroconductive polymer electrolytic polymerization,

도 1은 본 발명 전해(電解)조건으로 중합된 갈바륨 강판상의 폴리아닐린(polyaniline) 표면 상태를 FE-SEM(배율 10,000배)으로 관찰한 사진FIG. 1 is a photograph of a polyaniline surface state on a galvanic steel plate polymerized under electrolytic (electrolysis) conditions of the present invention under FE-SEM (magnification: 10,000 times)

도 2는 본 발명 전해(電解)조건으로 중합된 갈바륨 강판위의 폴리아닐린(polyaniline)과 그렇지 않은 경우, 그리고 세륨(Ce)을 함유한 경우의 3가지로 나누어 갈바륨 강판의 부식 전위값을 비교한 그래프FIG. 2 is a graph comparing the corrosion potential values of the galvanic steel sheets divided into three types, that is, polyaniline on the galvanic steel sheet polymerized under the electrolytic (electrolysis) conditions of the present invention and the case where it contains cerium (Ce)

본 발명은 가전제품 및 건자재등에 사용되는 Al 55중량%, Zn 43.4중량%, 소량으로 Si을 1.6중량%를 포함하는 갈바륨 강판으로 되는 갈바륨 표면처리강판에 있어서, 상기 갈바륨 강판의 내식성을 우수하게 하기 위하여 전도성 고분자 물질을 전해 중합하는 방법 관련 전해액 조성 및 전해(電解)중합 조건을 중심으로 한 갈바륨 강판의 표면처리 방법에 관한 것이다.The present invention relates to a galvanne surface-treated steel sheet which is made of a galvannealed steel sheet containing 55% by weight of Al, 43.4% by weight of Zn and 1.6% by weight of Si, which are used for household appliances and building materials, The present invention relates to a method of electrolytically polymerizing a conductive polymer material, and more particularly, to a method of treating a surface of a galvannealed steel sheet based on electrolytic solution composition and electrolytic polymerization conditions.

전도성 고분자인 폴리아닐린(polyaniline)에 관한 연구는 응용분야가 한정되 어 실용화되지 못하였으나, 1993년 독일의 지펠링-케슬러(Zipperling-Kessler) 연구진이 보고한 표면부식 현상을 억제한다는 논문이 나온 이래 고분자 응용 실용화 기술이 크게 발전되고 있고, 이 기술을 이전 받은 미국의 몬산토(MONSANTO)화학(주)에서 항공기 소재 부식에 대한 연구가 중점적으로 진행되고 있으며, 파나오메콘(PANI-OMECON)이라는 패이스트(paste)성 시작품이 생산되고 있다.The study of polyaniline, a conductive polymer, was limited due to limited applications, but since the paper by Zipperling-Kessler of Germany in 1993 reported that surface corrosion was suppressed, The practical application technology has been greatly developed. The research on the aircraft material corrosion has been focused on in the MONSANTO CHEMICAL CO., LTD., Which has transferred this technology, and the PANI-OMECON paste prototypes are being produced.

현재 전도성 고분자에 관한 실용화 및 응용 연구가 진행되고 있는 회사는 많으나, 응용 분야는 주로 전자파 차폐, 광발광 분야등에 집중되어 있을 뿐, 본 발명에서처럼 금속표면의 내식성 향상을 위한 폴리아닐린의 화학적 특성을 응용하려는 분야에서는 오로지 1981년 멩골리(Mengoli)가 최초로 강판에서 폴리아닐린 코팅의 양극합성에 관하여 발표한 내용이 있을 뿐이다. 그러나, 이러한 코팅에 의한 방식은 미세기공에 의해 제한되어 있다. 또한 1984년 무시아니(Musiani)가 전해중합에 의한 내식성 향상 코팅이 가능하다는 보고 정도에 그치고 있다.Currently, there are many companies that are conducting practical application and application studies of conductive polymers, but application fields are concentrated mainly on electromagnetic wave shielding and photoluminescence fields, and the application of the chemical properties of polyaniline for improving the corrosion resistance of metal surfaces as in the present invention Only in 1981 Mengoli published the first report on the anodic synthesis of polyaniline coatings on steel plates. However, the manner of this coating is limited by micropores. It is also reported that Musiani in 1984 is capable of coating corrosion resistance by electrolytic polymerization.

그 후 1985년 드베리(DeBerry)가 부동태화한 강(steel)위에 전착시킨 폴리아닐린(polyaniline)이 금속의 부식보호를 강화시킨다는 것을 발표한 바, 그는 아닐린(aniline)과 과염산(perchloric acid)을 이용하여 스테인레스강에 전기화학적으로 폴리아닐린(polyaniline) 코팅을 행하고, 폴리아닐린(polyaniline)은 산성분위기에서 스테인레스강에 강한 보호 작용을 한다고 하였다. 그러나 부식과정의 복잡함과 많은 변수들의 상호작용 때문에 아직까지 확실한 부식방식 메커니즘이 규명되어 있지 않은 상태이다.Then, in 1985, DeBerry announced that polyaniline electrodeposited on passivated steel enhanced the corrosion protection of metals, and he reported that aniline and perchloric acid And polyaniline was electrochemically coated on stainless steel using polyaniline, and it was said that polyaniline had a strong protective effect on stainless steel in an acidic atmosphere. However, due to the complexity of the corrosion process and the interaction of many variables, the mechanism of the corrosion mechanism has not yet been established.

지금까지 알려진 부식 방지 메커니즘으로는 1)고분자 피막에 의한 산소, 수 분등의 침투 방지 효과, 2)하부 금속과의 계면에 금속 산화 피막 형성, 3)금속 표면에 부착되어 높은 산화 전위를 형성하여 금속에서 산화제로의 전자 이동 억제 등의 세가지 이론이 제시되고 있으며, 일반적으로는 부식발생은 위의 세가지 효과가 동시에 일어나기 때문으로 알려져 있다. 이러한 방식이나 부식분야 제품을 생산하는 회사는 지펠링(Zipperling), 아메리쳄(Americhem), 얼라이드시그널(Allied signal)회사등에 불과한 실정이다.Conventional corrosion inhibition mechanisms include 1) prevention of penetration of oxygen and water by polymer film, 2) formation of metal oxide film at the interface with the underlying metal, and 3) formation of a high oxidation potential by attaching to the metal surface, And the inhibition of electron transfer to oxidants. In general, it is known that corrosion occurs at the same time as the above three effects. Zipperling, Amerhemhem and Allied signal companies are the only companies that produce this type of method and corrosion products.

한편, 냉연강판 위에 옥살산(oxalic acid)과 아닐린(aniline) 혼합액을 전해 중합하여 내식성을 가진 전도성 고분자인 폴리아닐린(polyaniline) 피막을 생성 시키는 기술이 있긴 하나 크로메이트 처리 강판을 대체하기에는 그 내식성이 매우 떨어진다는 단점이 있다. 일반적으로 갈바륨강판은 알루미늄(Al) 55중량%, 아연 43중량%, 그리고 소량의 Si을 합금도금한 고 알루미늄(Al)-아연(Zn) 합금강판을 말하는데, 종래 이 갈바륨 강판에 대한 전도성 고분자의 전해중합에 대한 연구는 전혀 되어 있지 않은 실정이다.On the other hand, there is a technique of electrolytically polymerizing a mixture of oxalic acid and aniline on a cold-rolled steel sheet to produce a corrosion-resistant conductive polyaniline film, but the corrosion resistance thereof is very poor to replace the chromate- There are disadvantages. Generally, a galburized steel sheet refers to a high-aluminum (Al) -Zn (Zn) alloy steel sheet in which aluminum (Al) is 55 wt%, zinc is 43 wt%, and a small amount of Si is alloyed. There is no research on electrolytic polymerization at all.

따라서 본 발명의 목적은 상기와 같은 문제점을 해결하고, 전도성 고분자를 이용하여 금속표면의 내식성 향상을 도모하기 위해 제안된 것으로서, 특히 갈바륨 강판에 대한 전도성 고분자의 전해중합 기술을 제공하기 위한 것이다. 특히, 본 발명 갈바륨 코팅층은 예컨데 Zn-Al 도금층 위에 옥살산(oxalic acid), 인산(phosphoric acid) 및 아닐린(aniline)을 혼합한 용액을 이용하거나, 나아가 세륨(cerium)을 첨가한 후 전해중합 하여 전도성 고분자 물질인 폴리아닐린(polyaniline)의 코팅층을 형성 시켜줌으로써 갈바륨 강판의 내식성을 향상시킬 수 있는 표면처리 방법을 제공하는데 있다.SUMMARY OF THE INVENTION Accordingly, the present invention has been made to solve the above-mentioned problems and to provide an electrolytic polymerization technique of a conductive polymer for a galvarium steel sheet, in particular, to improve the corrosion resistance of a metal surface using the conductive polymer. Particularly, the galvarium coating layer of the present invention can be formed by, for example, using a solution prepared by mixing oxalic acid, phosphoric acid, and aniline on a Zn-Al plating layer, or by further adding cerium thereto, And to provide a surface treatment method capable of improving the corrosion resistance of a galvarium steel sheet by forming a coating layer of polyaniline which is a high molecular substance.

본 발명은 특히 그 중에서도 가전제품 및 건재등에 사용되어지는 갈바륨 강판위에 옥살산(oxalic acid), 인산(phosphoric acid)및 아닐린(aniline)을 혼합한 용액에 내식성 향상의 효과를 얻을 수 있는 세륨(Cerium)을 첨가, 전해(電解) 중합하여 갈바륨 강판상에 우수한 내식성을 갖게 하는 전도성 고분자 피막인 폴리아닐린(polyaniline)을 얇게 형성시키는 기술을 제공하기 위한 것이다.In particular, the present invention relates to a cerium (Cerium) compound capable of obtaining an effect of improving corrosion resistance on a solution of oxalic acid, phosphoric acid and aniline mixed on a galvanic steel sheet used for household appliances and building materials, (Polyaniline), which is an electroconductive polymer film which is electrolytically polymerized to have excellent corrosion resistance on a galvanic steel sheet.

위와 같은 목적을 달성하기 위해 본 발명은 세륨(cerium) 함유 전도성 고분자 전해(電解) 중합을 이용한 갈바륨 강판 표면처리 방법 제공에 요지가 있다. 즉, 옥살산(oxalic acid), 인산(phosphoric acid) 및 아닐린(aniline)을 혼합한 용액에 세륨(cerium)을 몰(M)비로 혼합하되, 옥살산(oxalic acid) 0.1M~2.0M : 인산(phosphoric acid) 0.01M~1.0M : 아닐린(aniline) 0.2M~1.0M 비율로 혼합하고, 혼합된 40~80℃의 전해액에 0.001M~0.5M의 세륨(cerium)을 첨가하며, 이에 0.1~100 쿠울롬(Coulomb)의 전기량으로 전해(電解) 중합하여 갈바륨 강판상에 0.5~100㎛ 두께의 전도성 고분자 피막인 폴리아닐린(polyaniline)을 전해(電解) 중합시키는 것을 특징으로 한다.In order to accomplish the above object, the present invention provides a method for surface treatment of a galvanic steel sheet using cerium-containing conductive polymer electrolytic polymerization. That is, cerium is mixed in a molar ratio of oxalic acid, phosphoric acid and aniline in a molar ratio of oxalic acid 0.1M to 2.0M phosphoric acid (cerium) is added to the electrolytic solution at 40 to 80 ° C., and 0.1 to 100 m 2 of cerium is added thereto. Electrolytic polymerization is carried out using an electric charge of Coulomb to electrolytically polymerize polyaniline, which is a conductive polymer film having a thickness of 0.5 to 100 탆, on the galvanic steel sheet.

여기에서, 옥살산(oxalic acid)과 인산(phosphoric acid)및 아닐린 첨가량의 경우 각각의 하한치인 0.1M, 0.01M, 0.2M 미만 첨가시 육각 기둥 형태의 옥살산염 피막등이 형성되어 내식성을 떨어뜨린다.In the case of addition of oxalic acid, phosphoric acid and aniline, the addition of less than 0.1M, 0.01M, and 0.2M, which are the lower limits, results in formation of a hexagonal columnar oxalate film and the like, which degrades the corrosion resistance.

그리고, 각각의 상한치인 2.0M, 1.0M, 1.0M 초과하여 첨가할 경우 높은 과전압으로 인해 폴리아닐린이 전해(電解) 중합되지 않으므로 혼합비를 위와 같이 한정하였다.When the upper limit values of 2.0M, 1.0M, and 1.0M were added, the polyaniline was not electrolytically polymerized due to a high overvoltage, so that the mixing ratio was limited as described above.

본 발명은 Ce를 첨가하지 않은 전해액에서의 갈바륨 강판위에 전도성 고분자를 전해 중합하는 전해액 및 조건(방법)을 포함한다. 또한, 본 발명은 여기에 Ce을 첨가하는데, Ce을 첨가하는 이유는 Ce가 갈바륨 강판 위에서 Ce+4 산화 상태와 Ce+3 산화 상태의 혼합물 형태로 존재, 피막을 형성하여 내식성을 향상시켜주기 때문이다. The present invention includes an electrolytic solution and conditions (method) for electrolytically polymerizing a conductive polymer on a galvanic steel sheet in an electrolyte solution not containing Ce. In addition, Ce is added to the present invention because Ce is present on a galburized steel sheet in the form of a mixture of Ce +4 and Ce +3 oxidation states to improve the corrosion resistance to be.

세륨(cerium) 첨가시 첨가량이 0.001M 미만이면 세륨(cerium)을 첨가하지 않은 폴리아닐린(polyaniline)에 비해 내식성 향상이 미미하다. 또한 0.5M 초과일 경우 세륨(cerium) 첨가로 인해 얻을 수 있는 내식성의 일정 한계에 도달하는 경향이 보여 그 이상을 첨가 한다는 것은 첨가 효과 포화로 경제적이지 못하기 때문에 첨가량을 0.5M 이하로 한정하였다.When the addition amount of cerium is less than 0.001M, the improvement of corrosion resistance is less than that of polyaniline not containing cerium. In addition, when the content exceeds 0.5M, the corrosion resistance obtained by cerium addition tends to reach a certain limit, so that addition of more than 0.5M is not economical due to addition effect saturation, so the addition amount is limited to 0.5M or less.

한편, 전해 중합시 전기량과 관련하여 하한치인 0.1 쿠울롬(coulomb) 미만에서 작업하면, 전도성 고분자인 폴리아닐린(polyaniline) 형성이 이루어지지 않으며, 상한치인 100 쿠울롬을 초과하면 피막이 조악하게 형성되어 내식성을 저하시킨다. On the other hand, when working at a lower limit of 0.1 Coulomb, the conductive polymer, polyaniline, can not be formed. When the upper limit of 100 koulom is exceeded, the coating film becomes coarse and corrosion resistance .

본 발명의 구체적 특징 및 이점을 아래와 같이 보다 구체적으로 설명한다.Specific features and advantages of the present invention will be described in more detail as follows.

본 발명은 전술한 바와 같이 기존의 냉연강판에 옥살산과 아닐린의 혼합액을 이용하여 전도성 고분자 피막을 형성시켜 내식성을 향상시켜주는 기술과는 달리 가전제품 및 건재로 사용되어지는 갈바륨 강판의 내식성을 우수하게 하기 위하여 전도성 고분자인 폴리아닐린(polyaniline)을 옥살산(oxalic acid), 인산(phosphoric acid) 및 아닐린(aniline)의 혼합액에 갈바륨 강판의 Al 성분과 부동태 피막을 형성시키고 내식성을 향상시켜주는 세륨(Ce)을 첨가, 전해(電解) 중합하여 얇은 전도성 고분자를 형성시켜주는 기술을 제공하는 것을 요지로 한다.As described above, unlike a technique for improving the corrosion resistance by forming a conductive polymer film using a mixed solution of oxalic acid and aniline in a conventional cold-rolled steel sheet as described above, the galvannealed steel sheet used for home appliances and construction materials has excellent corrosion resistance The polyaniline, a conductive polymer, is mixed with oxalic acid, phosphoric acid, and aniline to form a barrier layer of Al and a cerium (Ce) (Electrolytic) polymerization to form a thin conductive polymer.

본 발명에서 특히 세륨(Ce)을 첨가하는 이유는 내식성 향상의 측면에서는 세륨(Ce)의 경우 예컨데, 알루미늄(Al) 강판의 화성처리(conversion coating)시 산화물 형태의 얇은 막인 부동태 피막을 형성시켜 내식성을 향상시키기 때문이다. 즉, 이와같은 메카니즘을 응용하면 세륨(Ce)이 갈바륨 강판의 표면 코팅층의 특징인 Zn-Al 성분계의 알루미늄(Al)과의 부동태 피막을 형성시켜 내식성을 향상시켜 주게 된다.The reason for adding cerium (Ce) in the present invention in particular is that in the case of cerium (Ce) from the viewpoint of improving the corrosion resistance, a passive film, for example, a thin oxide film is formed during conversion coating of an aluminum (Al) . That is, by applying such a mechanism, cerium (Ce) forms a passive film with Zn-Al component aluminum (Al), which is a feature of the surface coating layer of the galvarium steel sheet, to improve the corrosion resistance.

또한, Ce함유 고분자 폴리아닐린(polyaniline)이 고분자인데도 전도성을 띄는 이유는 질소(N) 원자들의 단일 결합과 이중 결합이 번갈아 반복되는 사슬 구조를 하고 있어서, 전자가 어느 정도 자유롭게 움직일 수 있기 때문에 전도성을 띈다. 그리고 보통의 경우 전해(電解) 중합된 폴리아닐린(Polyaniline)의 전도도는 100S/cm 이었다.In addition, although the polyaniline containing a polymer is a polymer, the reason for its conductivity is that it has a chain structure in which single bonds and double bonds of nitrogen (N) atoms are alternately repeated and electrons can move freely to some extent, . In general, the conductivity of electrolytically polymerized polyaniline was 10 0 S / cm.

이와 같이 중합된 폴리아닐린은 하기 그림에서와 같이 산화상태에 따라 류코에메랄딘(leucoemeraldine), 에메랄딘 염기(emeraldine base), 에메랄딘 염(emeraldine salt), 페르니그라닐린 타입(perniganiline type)으로 나뉘며 에메랄딘 염 타입의 것(emeraldine salt type)만이 전도성을 띈다.The polyaniline thus polymerized is divided into leucoemeraldine, emeraldine base, emeraldine salt and perniganiline type depending on the oxidation state as shown in the following figure, Only the emeraldine salt type is conductive.

Figure 112007039576113-pat00001
Figure 112007039576113-pat00001

이러한 본 발명 세륨 함유 전도성 고분자 전해중합을 이용한 내식성 표면처리방법에 대해 아래에 일 실시예를 들어 보다 상세히 설명하고자 한다.The corrosion-resistant surface treatment method using cerium-containing conductive polymer electrolytic polymerization according to the present invention will be described in more detail with reference to the following examples.

[실시예][Example]

옥살산(oxalic acid), 인산(phosphoric acid) 및 아닐린(aniline)을 몰 비 1.0M:0.2M:0.4M로 혼합하였다. 혼합된 40~80℃의 전해액에 0.05M의 세륨(cerium)을 첨가하고, 가열장치(hot plater)를 이용하여 온도를 60℃로 유지하면서 100㎃/㎠로 정전류 전해를 실시하였다. 이 때의 조건은 다음과 같았다.Oxalic acid, phosphoric acid and aniline were mixed in a molar ratio of 1.0M: 0.2M: 0.4M. 0.05 M cerium was added to the mixed electrolyte at 40 to 80 캜 and constant current electrolysis was carried out at 100 mA / cm 2 while maintaining the temperature at 60 캜 using a hot plater. The conditions at this time were as follows.

1) 음극 : 갈바륨 강판(10㎜×20㎜)1) Cathode: Galvarium steel plate (10 mm x 20 mm)

2) 양극 : 백금판(Pt, 10㎜×20㎜)2) Positive electrode: platinum plate (Pt, 10 mm x 20 mm)

3) 전류밀도 : 100㎃/㎠3) Current density: 100 mA / cm 2

4) 전해조 : 음극실과 양극실이 유리필터로 분리된 500㎖ 용량의 유리전해조4) Electrolyte bath: A 500 ml capacity glass electrolytic cell in which the cathode chamber and the anode chamber were separated by a glass filter

먼저 갈바륨 강판을 10㎜×20㎜로 절단한 후 비코팅면은 절연 테이프로 절연시켜서 시편을 제작하였다.First, the galvarium steel sheet was cut into a size of 10 mm × 20 mm, and the uncoated surface was insulated with an insulating tape to prepare a test piece.

내식성을 평가하기 위하여 EG&G社 포텐시오스태트(potentiostat) / 갈바노스태트(galvanostat) Model 263A를 사용하였고, 기준전극(reference electrode)은 KCl SCE(KCL Saturated Counter Electrode)를 사용하여 3.5wt% NaCl 부식용액(corrosion solution)에서 동전위 모드(potentiodynamic mode)를 이용하여 부식전위를 측정하였다.To evaluate the corrosion resistance, a potentiostat / galvanostat Model 263A from EG & G was used, and a reference electrode was treated with 3.5 wt% NaCl corroded with KCl (KCl Saturated Counter Electrode) The corrosion potential was measured in a corrosion solution using a potentiodynamic mode.

그 결과를 도 2에 그래프로 도시하였다. 도 2에서 볼 수 있는 바와 같이 본 발명 강판제품의 내식성(A), 무처리 갈바륨 강판의 내식성(C), 그리고 Ce 을 함유하지 않은 옥살산/인산/아닐린 전해액에서 중합된 폴리아닐린의 내식성(B)을 각각 전기화학적으로 측정한 그림이 나타나 있다. 상기 그래프로서 내식성 상대 비교가 가능하다. 여기에서 보통의 갈바륨 강판(C)의 부식 전위값은 -1,301㎷였고, 세륨(cerium)을 첨가한 전해액에서 전해(電解) 중합된 폴리아닐린(polyaniline) 피막강판(A)의 부식 전위값은 -973㎷로서, 이는 갈바륨 강판보다 약 300㎷이상 귀한 방향으로 이동하여 내식성이 향상 되었음을 알 수 있다. 도 2는 상기 조건에서 전해(電解) 중합된 갈바륨 강판위의 폴리아닐린(polyaniline)과 갈바륨 강판의 부식 전위값을 비교한 그래프이다.The results are shown graphically in Fig. 2, the corrosion resistance (A) of the inventive steel sheet product, the corrosion resistance (C) of the untreated galvanic steel sheet, and the corrosion resistance (B) of the polyaniline polymerized in the oxalic acid / phosphoric acid / aniline electrolyte solution containing no Ce Electrochemically measured images are shown. Corrosion resistance relative comparison is possible as the graph. The corrosion potential of the normal galvanic steel sheet (C) was -1,301 고, and the corrosion potential of the polyaniline-coated steel sheet (A) electrolytically polymerized in the electrolyte containing cerium was -973 As a result, it can be seen that the corrosion resistance is improved by moving in the direction of about 300 귀 or more from the galburized steel sheet. FIG. 2 is a graph comparing the corrosion potential values of the polyaniline and the galvanic steel sheet on the galvanic steel sheet electrolytically polymerized under the above conditions.

도 1은 상기 조건에서 전해(電解) 중합된 갈바륨 강판위의 폴리아닐린(polyaniline)의 표면상태를 FE-SEM(배율 10,000배)으로 관찰한 사진이다. 여기에서 나타나 있는 갈바륨 강판위의 폴리아닐린의 표면상태를 보면 5㎛이하, 통상 2~3㎛ 두께의 로드타입(rod type)의 폴리아닐린이 네트워크 구조를 이루면서 적층되므로써 갈바륨 강판이 이것으로 피복되어 있는 형상이 나타나 있다.FIG. 1 is a photograph of the surface state of polyaniline on an electrolytically polymerized galvanic steel sheet under FE-SEM (magnification: 10,000 times). In view of the surface state of the polyaniline on the galvanic steel sheet, a rod type polyaniline having a thickness of 5 탆 or less, typically 2 to 3 탆, is laminated while forming a network structure so that the shape of the galvanic steel sheet is covered with the polyaniline Is shown.

본 발명 제품을 전기화학적인 방법으로 내식성 테스트를 한 결과 도 2에서와 같이 폴리아닐린(polyaniline)을 전해(電解) 중합했을 경우, 무처리 갈바륨 강판에 비해 내식성이 향상, 부식전위가 높은 것을 통해 내식성이 향상 되었음을 확인할 수 있었다.When the product of the present invention was subjected to corrosion resistance test by an electrochemical method, when the electrolytic (electrolytic) polymerization of polyaniline was performed as in FIG. 2, the corrosion resistance was improved compared with the untreated galvanic steel sheet, .

본 발명은 세륨(Cerium) 함유 전도성 고분자 전해(電解) 중합을 이용한 갈바륨 표면처리방법으로 가전제품 및 건자재로 사용되는 갈바륨 강판에 옥살산(Oxalic acid), 인산(Phosphoric acid)및 아닐린(aniline)을 혼합한 용액에, 특히 갈바륨 코팅층의 Al과 결합, 부동태 피막을 형성시켜 내식성을 향상 시킬 수 있는 세륨(cerium)을 첨가함으로써, 전해(電解) 중합이 가능하게 하여 강판상에 전도성 고분자 피막을 얇게 형성시켜주면서도 내식성을 향상시킬 수 있게 되었다.The present invention relates to a galburized surface treatment method using electrolytic polymerization of a conductive polymer containing cerium, which comprises mixing a galvarium steel sheet used as a home appliance and a building material with oxalic acid, phosphoric acid and aniline (Electrolytic) polymerization is possible by adding cerium which can bond with Al of a galvalume coating layer and form a passive film and improve corrosion resistance in one solution, thereby forming a thin conductive polymer film on the steel sheet It is possible to improve the corrosion resistance.

Claims (3)

Al 55중량%, Zn 43.4중량%, 소량으로 Si를 1.6중량%를 포함하는 갈바륨강판으로 되는 상기 표면처리강판의 제조방법에 있어서,A method for producing a surface treated steel sheet comprising a galburized steel sheet containing 55% by weight of Al, 43.4% by weight of Zn and 1.6% by weight of Si in a small amount, 갈바륨 강판에 폴리아닐린(polyaniline)을 전해(電解) 중합할 성분인 옥살산(oxalic acid)과 인산(phosphoric acid) 및 아닐린(aniline)을 몰(M)비로 혼합하되, 옥살산(oxalic acid) 0.1~2.0M : 인산(phosphoric acid) 0.01~1.0M : 아닐린(aniline) 0.2~1.0M 비율로 혼합한 전해액에 세륨(Ce)을 첨가하고,The molar ratio of oxalic acid, phosphoric acid and aniline, which is a component to electrolytically polymerize polyaniline to galvarium steel, is 0.1 to 2.0 M oxalic acid, : Phosphoric acid 0.01 to 1.0 M: aniline 0.2 to 1.0 M Cerium (Ce) was added to the electrolyte solution, 상기 세륨은 갈바륨 강판위에서 Ce+4 산화상태와 Ce+3 산화상태의 혼합물 형태로 존재하여 내식성이 향상된 피막을 형성하고, 세륨(Cerium) 첨가량을 0.001M~0.5M의 범위로 첨가함으로써 이루어지는 세륨 전도성 고분자 전해중합을 이용하여 갈바륨 강판상에 폴리아닐린 피막을 전해중합시키는 것을 특징으로 하는 세륨 전도성 고분자 전해중합을 이용한 갈바륨 표면처리강판의 제조방법.The cerium is present in the form of a mixture of Ce +4 and Ce + 3 oxidation states on a galburized steel plate to form a film having improved corrosion resistance, and a cerium conductive A method for producing a galburized surface-treated steel sheet using a cerium conductive polymer electrolytic polymerization, which comprises electrolytically polymerizing a polyaniline film on a galvanic steel sheet using polymer electrolytic polymerization. 삭제delete 제 1 항에 있어서, 상기 갈바륨 강판 코팅층에서 0.1~100쿠울롬(coulomb)의 전기량으로 Al과 Ce이 전해중합되어 강판상에 전도성 고분자의 얇은 부동태 피막을 형성시켜 내식성을 증가시키도록 한 세륨 전도성 고분자 전해중합을 이용한 갈바륨 표면처리강판의 제조방법.The cerium conductive polymer according to claim 1, wherein the galvanneal coating layer is formed by electrolytically polymerizing Al and Ce in an electric quantity of 0.1 to 100 coulombs to form a thin passivation film of the conductive polymer on the steel sheet to increase the corrosion resistance. (Preparation method of galvanized surface treated steel sheet by electrolytic polymerization).
KR1020070052520A 2007-05-30 2007-05-30 Manufacturing Method of Galvanized Surface-Treated Steel Sheet Using Conductive Polymer Electrolytic Polymerization Expired - Fee Related KR100877921B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070052520A KR100877921B1 (en) 2007-05-30 2007-05-30 Manufacturing Method of Galvanized Surface-Treated Steel Sheet Using Conductive Polymer Electrolytic Polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070052520A KR100877921B1 (en) 2007-05-30 2007-05-30 Manufacturing Method of Galvanized Surface-Treated Steel Sheet Using Conductive Polymer Electrolytic Polymerization

Publications (2)

Publication Number Publication Date
KR20080105229A KR20080105229A (en) 2008-12-04
KR100877921B1 true KR100877921B1 (en) 2009-01-12

Family

ID=40366549

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070052520A Expired - Fee Related KR100877921B1 (en) 2007-05-30 2007-05-30 Manufacturing Method of Galvanized Surface-Treated Steel Sheet Using Conductive Polymer Electrolytic Polymerization

Country Status (1)

Country Link
KR (1) KR100877921B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102045881B1 (en) 2016-09-28 2019-11-19 주식회사 포스코 Solution composition for surface treating of steel sheet, steel sheet using the same, and manufacturing method of the same
KR102043504B1 (en) * 2017-09-26 2019-11-11 현대제철 주식회사 Manufacturing method for zinc alloy electroplated steel sheet using conducting polymer and zinc alloy electroplated steel thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970011016A (en) * 1995-08-28 1997-03-27 에모토 간지 Organic coated steel sheet and manufacturing method thereof
KR970021241A (en) * 1995-10-05 1997-05-28 슈틀러, 라아베 Organic coating material having an electrolytic polymerization film containing chromium and a method of manufacturing the same
KR20040031481A (en) * 2002-10-07 2004-04-13 주식회사 포스코 A Post-Treatment Method of Cold Rolled Steel Sheets with Improved Corrosion Resistance
KR20050109758A (en) * 2004-05-17 2005-11-22 윤정모 The method of rustless surface treatment from the by-product of molybdate content conduction a macromolecule

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970011016A (en) * 1995-08-28 1997-03-27 에모토 간지 Organic coated steel sheet and manufacturing method thereof
KR970021241A (en) * 1995-10-05 1997-05-28 슈틀러, 라아베 Organic coating material having an electrolytic polymerization film containing chromium and a method of manufacturing the same
KR20040031481A (en) * 2002-10-07 2004-04-13 주식회사 포스코 A Post-Treatment Method of Cold Rolled Steel Sheets with Improved Corrosion Resistance
KR20050109758A (en) * 2004-05-17 2005-11-22 윤정모 The method of rustless surface treatment from the by-product of molybdate content conduction a macromolecule

Also Published As

Publication number Publication date
KR20080105229A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
Hosseini et al. Enhancement of corrosion resistance of polypyrrole using metal oxide nanoparticles: potentiodynamic and electrochemical impedance spectroscopy study
Deshpande et al. Conducting polymers for corrosion protection: a review
Mengoli et al. Anodic synthesis of polyaniline coatings onto Fe sheets
US6328874B1 (en) Anodically formed intrinsically conductive polymer-aluminum oxide composite as a coating on aluminum
Ferreira et al. Synthesis and characterization of polypyrrole/TiO2 composites on mild steel
Zhang et al. Studies on the formation process and anti-corrosion performance of polypyrrole film deposited on the surface of Q235 steel by an electrochemical method
Garcia et al. Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell
Shabani-Nooshabadi et al. Electropolymerized polyaniline coatings on aluminum alloy 3004 and their corrosion protection performance
Fenelon et al. The electropolymerization of pyrrole at a CuNi electrode: corrosion protection properties
Abaci et al. Characterization and corrosion protection properties of composite material (PANI+ TiO2) coatings on A304 stainless steel
Kaliyannan et al. Polymer coatings for corrosive protection
Huerta-Vilca et al. Aspects of polyaniline electrodeposition on aluminium
KR100877921B1 (en) Manufacturing Method of Galvanized Surface-Treated Steel Sheet Using Conductive Polymer Electrolytic Polymerization
JP3967796B2 (en) Surface-treated metal material
CN103642365A (en) Aluminium alloy corrosion self-repair intelligent coating for boats and preparation method thereof
Lehr et al. Influence of sodium bis (2-ethylhexyl) sulfosuccinate (AOT) on zinc electrodeposition
CN105111434A (en) Aniline copolymer and graphene composite as well as preparation method and application thereof
Ozyilmaz et al. Different copolymer films on ZnFeCo particles: Synthesis and anticorrosion properties
Zor et al. Electrochemical synthesis of polypyrrole on aluminium in different anions and corrosion protection of aluminium
Shah et al. Corrosion protection properties of polyaniline–polypyrrole composite coatings on Al 2024
Suzuki et al. Mechanism of corrosion protection at cut edge of Zn-11% Al-3% Mg-0.2% Si coated steel sheets
Naresh et al. Conducting polymer coatings for corrosion resistance in electronic materials
KR101223879B1 (en) Electroplating solution composition and method for manufacturing coating using the same
Filazi et al. PANi/PPy and PANi Films on ZnNi alloy coated carbon steel; Electrochemical syntheses and corrosion performances
ÖZYILMAZ et al. The formation of passive layers on zinc based platings

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

D13-X000 Search requested

St.27 status event code: A-1-2-D10-D13-srh-X000

D14-X000 Search report completed

St.27 status event code: A-1-2-D10-D14-srh-X000

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

E13-X000 Pre-grant limitation requested

St.27 status event code: A-2-3-E10-E13-lim-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

P14-X000 Amendment of ip right document requested

St.27 status event code: A-5-5-P10-P14-nap-X000

P16-X000 Ip right document amended

St.27 status event code: A-5-5-P10-P16-nap-X000

Q16-X000 A copy of ip right certificate issued

St.27 status event code: A-4-4-Q10-Q16-nap-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R14-asn-PN2301

FPAY Annual fee payment

Payment date: 20140630

Year of fee payment: 6

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20150106

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20150106

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000