KR100878447B1 - Welding method using nanoparticles to suppress deformation during welding - Google Patents
Welding method using nanoparticles to suppress deformation during welding Download PDFInfo
- Publication number
- KR100878447B1 KR100878447B1 KR1020070052565A KR20070052565A KR100878447B1 KR 100878447 B1 KR100878447 B1 KR 100878447B1 KR 1020070052565 A KR1020070052565 A KR 1020070052565A KR 20070052565 A KR20070052565 A KR 20070052565A KR 100878447 B1 KR100878447 B1 KR 100878447B1
- Authority
- KR
- South Korea
- Prior art keywords
- welding
- nanoparticles
- thermal conductivity
- present
- thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K31/00—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
- B23K31/003—Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to controlling of welding distortion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/235—Preliminary treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/24—Features related to electrodes
- B23K9/28—Supporting devices for electrodes
- B23K9/29—Supporting devices adapted for making use of shielding means
- B23K9/298—Supporting devices adapted for making use of shielding means the shielding means being a powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/10—Aluminium or alloys thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/08—Non-ferrous metals or alloys
- B23K2103/12—Copper or alloys thereof
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Arc Welding In General (AREA)
Abstract
본 발명은 균열이나 비틀림 등과 같은 변형을 억제하기 위하여 용접시 나노입자를 이용하여 용접하는 방법에 관한 것이다. The present invention relates to a method of welding using nanoparticles during welding in order to suppress deformation such as cracking and torsion.
본 발명은 두 재료의 용접시 용접봉, 용접모재, 용접부위 등에 나노입자를 넣는 새로운 형태의 용접방법을 구현하여 용접시의 열전도율(thermal conductivity)을 줄임으로써, 결국은 열확산율(thermal diffusivity)을 낮춤으로써, 용융 메탈과 용접 메탈 간의 격자매치를 위한 충분한 시간을 확보할 수 있으며, 이에 따라 용접 후 용접구조물의 균열 또는 비틀림 변형을 줄일 수 있는 나노입자를 이용하여 용접하는 방법을 제공한다. The present invention implements a new type of welding method in which nanoparticles are inserted into a welding rod, a welding base material, and a welding part when welding two materials, thereby reducing thermal conductivity during welding, thereby lowering thermal diffusivity. As a result, sufficient time for lattice matching between the molten metal and the weld metal can be secured, and thus, a method of welding using nanoparticles that can reduce cracking or torsional deformation of the weld structure after welding is provided.
본 발명에서 제공하는 용접 방법은 용접시 나타나는 균열 및 비틀림 현상을 억제함으로써, 용접부위의 기계적 강도와 용접구조물의 안정성을 향상시킬 수 있는 등 용접에 쓰이는 모든 기계 부품의 안정성과 내구성을 높일 수 있다. The welding method provided by the present invention can increase the stability and durability of all mechanical parts used for welding by suppressing cracking and torsional phenomena occurring during welding, thereby improving the mechanical strength of the welded portion and the stability of the welded structure.
용접, 용접봉, 비틀림, 균열, 열전도율, 열확산율, 나노입자 Welding, welding rod, torsion, crack, thermal conductivity, thermal diffusivity, nanoparticles
Description
도 1은 일반적인 용접 후 용접면을 보여주는 사진1 is a photograph showing a welding surface after a typical welding
도 2는 본 발명의 일 실시예에 따른 나노입자를 이용하여 용접하는 방법을 보여주는 개략도2 is a schematic view showing a method of welding using nanoparticles according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 나노입자를 이용하여 용접하는 방법에서 용접부위의 열현상을 보여주는 개략도Figure 3 is a schematic diagram showing the thermal phenomenon of the welding portion in the method of welding using nanoparticles according to an embodiment of the present invention.
도 4는 나노입자가 고체의 열전도율을 낮출 수 있다는 사실을 보여준 연구결과로서, In0 .53Ga0 .47As 합금과 ErAs 나노입자를 넣은 In0 .53Ga0 .47As 합금의 열전도율을 나타내는 그래프 Figure 4 represents the thermal conductivity of the nanoparticles as claimed findings that it is possible to lower the thermal conductivity of the solid, In 0 .53 Ga 0 .47 As alloy and In 0 .53 Ga 0 .47 As alloy nanoparticles into a ErAs graph
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
10 : 용접봉 20 : 전극10: electrode 20: electrode
30 : 모재 40 : 용융 메탈30: base material 40: molten metal
50 : 나노입자 60 : 합금원자50: nanoparticle 60: alloy atom
본 발명은 용접시 변형을 억제하기 위해 나노입자를 이용하여 용접하는 방법에 관한 것으로서, 더욱 상세하게는 용접시 나노입자를 사용하여 열전도율을 줄임으로써, 결국은 열확산율을 낮추어 줌으로써, 균열 또는 비틀림 변형을 줄일 수 있는 용접방법에 관한 것이다. The present invention relates to a method of welding using nanoparticles to suppress deformation during welding, and more particularly, by reducing the thermal conductivity by using nanoparticles during welding, and eventually lowering the thermal diffusion rate, crack or torsional deformation It relates to a welding method that can reduce the.
일반적으로 같은 종류 또는 다른 종류의 금속재료를 접합하는 방법으로는 크게 나누어 융접법과 압접법이 있다.Generally, as a method of joining metal materials of the same type or different types, there are largely divided welding methods and welding methods.
이 중에서 융접법은 접합부에 금속재료를 가열.용융시켜 서로 다른 두 재료의 원자 결합을 재배열하여 결합시키는 방법으로 아크용접, 가스용접, 테르밋용접 등이 있다.Among them, the welding method is a method in which a metal material is heated and melted at a joint to rearrange and bond atomic bonds of two different materials, such as arc welding, gas welding, and thermite welding.
아크용접의 가장 대표적인 TIG(Tungsten Inert Gas)용접은 용융점이 가장 높은 텅스텐 전극과 모재 사이에 아크를 일으키고, 용접 중 산화,질화를 막기위해 Ar 가스로 용접부를 보호하는 용접이다. The most representative TIG (Tungsten Inert Gas) welding of arc welding is arc welding between the tungsten electrode and the base metal with the highest melting point, and welding to protect the welding part with Ar gas to prevent oxidation and nitriding during welding.
위와 같은 TIG용접 등을 포함하는 보통의 용접시 용접면에는 균열이 많이 발생한다. In the normal welding including the TIG welding as described above, a lot of cracks are generated on the welding surface.
예를 들면, 도 1은 용접면의 단면을 나타내는 사진들로서, 여기서는 용접봉(Filler wire, Filler metal;용가재) 1100을 사용하였다. For example, FIG. 1 is a photograph showing a cross section of a welding surface. Here, a welding wire 1 (Filler wire, filler metal) is used.
사진 A 내지 D에서와 같이 용접면에 균열이 발생한 것을 볼 수 있으며, 특히 사진 D의 경우 용접면에 균열이 많이 발생한 것을 볼 수 있다. It can be seen that the cracks generated in the weld surface as shown in the picture A to D, in particular, in the case of the picture D can be seen that a lot of cracks generated on the weld surface.
주된 이유로는 용융된 메탈이 급격하게 식으면서 용접되는 메탈과의 격자매치(Lattice match)가 될 시간이 충분하지 않게 되면서 균열이나 비틀림이 발생하게 되는 것이다. The main reason is that the molten metal cools rapidly and there is not enough time to become a lattice match with the welded metal, causing cracks and twists.
즉, 용접시 용접봉의 높은 열확산율로 인해 격자가 서로 매치될 수 있는 시간이 충분하지 않게 되면서 균열 또는 비틀림 변형이 일어나게 되고, 결국 용접부위에 대한 기계적 강도나 안정성을 떨어뜨리는 결과를 초래하게 된다. In other words, due to the high thermal diffusivity of the electrode during welding, the time for the lattice to match each other is insufficient, resulting in cracking or torsional deformation, resulting in a decrease in the mechanical strength or stability of the weld.
따라서, 본 발명은 이와 같은 점을 감안하여 안출한 것으로서, 본 발명의 목적은 두 재료의 용접시 용접봉, 용접모재, 용접부위 등에 나노입자를 넣는 새로운 형태의 용접방법을 구현하여 용접시의 열전도율을 줄임으로써, 결국은 열확산율을 낮춤으로써, 용융 메탈과 용접 메탈 간의 격자매치를 위한 충분한 시간을 확보할 수 있으며, 이에 따라 균열 또는 비틀림 변형을 줄일 수 있는 나노입자를 이용하여 용접하는 방법을 제공하는데 있다. Accordingly, the present invention has been made in view of the above, and an object of the present invention is to implement a new type of welding method in which nanoparticles are put in a welding rod, a welding base material, and a welding part when welding two materials, thereby improving thermal conductivity during welding. By reducing, eventually lowering the thermal diffusion rate, a sufficient time for lattice matching between the molten metal and the weld metal can be obtained, thus providing a method of welding using nanoparticles that can reduce cracking or torsional deformation. have.
상기 목적을 달성하기 위한 본 발명은 두 재료의 용접시 나노입자를 넣어 용융 메탈 속의 나노입자가 에너지 캐리어(포논, 전자)를 산란시켜서 열전도율을 줄임으로써, 결국은 열확산율을 낮출 수 있도록 한 것을 특징으로 한다. The present invention for achieving the above object is to put the nanoparticles when welding two materials, the nanoparticles in the molten metal scatters the energy carriers (phonon, electrons) to reduce the thermal conductivity, it is possible to eventually lower the thermal diffusion rate It is done.
또한, 본 발명은 나노입자를 용접봉에 넣거나, 또는 용접 모재의 용접부위에 넣거나, 또는 용접 모재에 넣어 용접하는 것을 특징으로 한다. In addition, the present invention is characterized in that the nanoparticles are put in a welding rod, or put in a welding portion of a welding base material, or put in a welding base material to weld.
이하, 첨부한 도면을 참조하여 본 발명의 일 실시예에 따른 나노입자를 이용하여 용접하는 방법에 대해 상세히 설명하면 다음과 같다. Hereinafter, a method of welding using nanoparticles according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명의 일 실시예에 따른 나노입자를 이용하여 용접하는 방법을 보여주는 개략도이다. Figure 2 is a schematic diagram showing a method for welding using nanoparticles according to an embodiment of the present invention.
본 발명에서 제공하는 나노입자를 이용하여 용접하는 방법은 아크용접, 가스용접, 테르밋용접 등과 같이 모재의 녹는점 보다 높은 온도에서 행해지는 다양한 형태의 용접방법에 적용할 수 있으며, 본 발명의 일 실시예에서는 TIG(Tungsten Inert Gas)용접시 나노입자를 이용하여 방법을 예로 들어 설명한다. The welding method using the nanoparticles provided in the present invention can be applied to various types of welding methods performed at temperatures higher than the melting point of the base material, such as arc welding, gas welding, thermite welding, and the like. In the example, a method using nanoparticles for Tungsten Inert Gas (TIG) welding will be described as an example.
본 발명의 용접 방법은 녹지 않는 나노입자를 이용하여 금속의 용융부위를 서서히 냉각되도록 함으로써, 균열이나 비틀림 등과 같은 변형을 줄일 수 있는 방법이다. The welding method of the present invention is a method that can reduce the deformation, such as cracks and twisting by gradually cooling the molten portion of the metal by using insoluble nanoparticles.
이를 위하여, 도 2에 도시한 바와 같이, 용접 대상이 되는 모재(30)와, 예를 들면 알루미늄 합금, 또는 구리 합금과, 용접작업을 수행하는 전극(20)과, 용융부위에 융착되는 용접봉(10)이 구비되고, 아크발생과 함께 용접이 진행된다. To this end, as shown in FIG. 2, the
여기서, 미설명 부호 40은 용융 메탈을 나타낸다. Here,
이와 같은 용접시 나노입자를 넣어 이용하는 형태는 나노입자를 용접봉에 넣어 이용하는 형태, 나노입자를 용접 모재의 용접부위에 넣어 이용하는 형태, 나노입자를 용접 모재에 넣어 이용하는 형태가 될 수 있다. The form of using the nano-particles during welding may be a form of using the nano-particles in the electrode, the form of the nano-particles in the welding site of the welding base material, the nano-particles in the welding base material.
이렇게 용접시 나노입자를 넣어 이용함으로써 용융된 부분, 예를 들면 용융 메탈 부분의 열확산율을 획기적으로 낮출 수 있고, 결국 기존 용접시의 문제점인 과도한 잔류 열응력으로 인해 균열이 발생하거나 비틀림 변형이 생기는 것을 줄일 수 있다. By inserting and using nanoparticles during welding, the thermal diffusion rate of the molten portion, for example, the molten metal portion, can be dramatically lowered. Consequently, cracks or torsional deformations occur due to excessive residual thermal stress, which is a problem of conventional welding. Can be reduced.
예를 들면, 보통 용융된 메탈이 식는데 걸리는 시간은 아래의 식으로 계산할 수 있다. For example, the time taken for the molten metal to cool down can be calculated by the following equation.
t = √l2/α = √l2/k/ρcp t = √l 2 / α = √l 2 / k / ρc p
여기서, l는 용융된 부위의 길이이고, α는 열확산율(m2/s)이다. Where l is the length of the molten site and α is the thermal diffusivity (m 2 / s).
열확산율은 열전도율(k)을 열용량(Heat capacity)으로 나눈 값이다. The thermal diffusion rate is a value obtained by dividing the thermal conductivity k by the heat capacity.
나노입자를 넣음으로써 물질의 열전도율을 낮출 수 있음을 본 발명자에 의해서 실험적, 이론적으로 제시된 바 있다. It has been suggested experimentally and theoretically by the present inventors that nanoparticles can be added to lower the thermal conductivity of materials.
본 발명은 이러한 선행연구에서 착안하여서 열확산율을 낮추어 용접시 열응력, 비틀림을 줄이고자 한다. The present invention aims to reduce thermal stress and torsion during welding by lowering the thermal diffusivity by focusing on these prior studies.
따라서, 위의 식에서 볼 수 있듯이 열전도율을 낮추게 되면 열확산율이 낮아지므로 용융된 부분이 천천히 식게 될 수 있고, 결국 격자가 서로 매치할 수 있는 시간이 충분하게 되므로 균열이 줄어들게 되는 것이다. Therefore, as can be seen in the above equation, if the thermal conductivity is lowered, the thermal diffusion rate is lowered, so that the molten portion cools down slowly, and eventually the lattice is enough time to match each other, so that the cracks are reduced.
이를 조금 더 상세히 설명하면, 도 3에 도시한 바와 같이, 여기서는 용접시 나노입자를 넣었을 경우에 일어나는 열현상을 보여주고 있으며, 용융되는 부위에 온도차이가 있을 경우(HOT→COLD) 용융되는 부위에서는 포논(Phonon;음향양자)이라 는 열에너지 캐리어가 발생하고, 이럴 경우에 나노입자(50)나 합금원자(60)는 포논을 산란시켜서 용융되는 부위의 열전도율을 낮추어 줌으로써, 열확산율을 줄일 수 있다. If this is described in more detail, as shown in Figure 3, here shows the thermal phenomenon that occurs when the nanoparticles are inserted during welding, when there is a temperature difference in the site of melting (HOT → COLD) at the site of melting A thermal energy carrier called a phonon (phonon) is generated, and in this case, the
예를 들면, 열전도율을 다음과 같은 식으로 표현된다. For example, the thermal conductivity is expressed by the following equation.
k = 1/3Cvvlk = 1 / 3C v vl
여기서, Cv는 열용량, v는 음속도, 그리고 l은 평균자유행로이다. Where C v is the heat capacity, v is the speed of sound, and l is the mean free path.
나노입자가 포논을 산란시킴으로써, 포논의 평균자유행로가 짧아진다. As the nanoparticles scatter the phonons, the average free path of the phonons is shortened.
열전도율을 자유행로에 비례하므로, 열전도율이 낮아지고 결국은 열확산율이 낮아지게 된다. Since the thermal conductivity is proportional to the free path, the thermal conductivity is lowered and eventually the thermal diffusion rate is lowered.
그러므로, 균열 또는 비틀림 변형의 원인인 용융되는 부위의 높은 열전도율을 낮추어 줌으로써, 결국은 열확산율을 낮추어서 균열 또는 비틀림 변형을 줄일 수 있는 것이다. Therefore, by lowering the high thermal conductivity of the molten portion that causes cracking or torsional deformation, it is possible to reduce the cracking or torsional deformation by lowering the thermal diffusion rate.
본 발명의 일 실시예에 따른 용접방법에서 나노입자는 용접봉이나 용접모재와 다른 물질이기만 하면 어느 것이든 상관없이 적용할 수 있으며, 보통은 작은 사이즈를 가지는 나노입자가 바람직하다. In the welding method according to an embodiment of the present invention, the nanoparticles may be applied to any one as long as the material is different from a welding rod or a welding base material, and nanoparticles having a small size are preferable.
또한, 본 발명의 일 실시예에 따른 용접방법에서는 용접봉, 용접모재보다 높은 녹는점을 가진 나노입자를 적용함으로써, 용접시 용접봉이나 용접모재에 섞여 있어도 녹지 않게 된다. In addition, in the welding method according to an embodiment of the present invention, by applying nanoparticles having a higher melting point than a welding rod and a welding base material, the welding method does not melt even when mixed with the welding rod or the welding base material.
예를 들면, 모재가 알루미늄이라고 할 때, 알루미늄의 녹는점은 대략적으로 500~600℃ 정도가 된다. For example, when a base material is aluminum, melting | fusing point of aluminum will be about 500-600 degreeC.
그러므로, 녹는점이 높은 세라믹 계열의 나노입자를 넣으면, 용접시 녹지 않게 된다. Therefore, when the ceramic nanoparticles having a high melting point are inserted, they do not melt during welding.
한편, 나노입자를 적용하기 위하여, 용접봉에는 분말야금을 이용하여서 제작시 나노입자를 첨가하여서 같이 제작할 수 있고, 용접부위에는 용접시 나노입자가 포함된 용액을 부위에 같이 넣어줄 수 있으며, 용접모재에는 용접하기 전, 미리 나노입자를 부위에 넣은 후 용접을 할 수 있다. On the other hand, in order to apply nanoparticles, by using powder metallurgy in the welding rod can be produced by adding nanoparticles when manufacturing, the welding part can be put together with the solution containing nanoparticles in the welding, Before welding, the nanoparticles can be put in the site before welding.
이때, 나노입자의 농도는 1~10% 정도가 적당할 것이다. At this time, the concentration of the nanoparticles may be about 1 to 10%.
도 4는 나노입자가 고체의 열전도율을 낮출 수 있다는 사실을 보여준 연구결과로서, In0 .53Ga0 .47As 합금과 ErAs 나노입자를 넣은 In0 .53Ga0 .47As 합금의 열전도율을 나타내는 그래프이다. Figure 4 represents the thermal conductivity of the nanoparticles as claimed findings that it is possible to lower the thermal conductivity of the solid, In 0 .53 Ga 0 .47 As alloy and In 0 .53 Ga 0 .47 As alloy nanoparticles into a ErAs It is a graph.
도 4에 도시한 바와 같이, 여기서는 In0 .53Ga0 .47As alloy에 나노입자, 예를 들면 ErAs 입자를 넣은 것에 대한 열전도율과 전기적 성질을 측정한 데이터를 보여준다.4, the data herein shows the measured thermal conductivity and electrical properties for being placed for example ErAs particles of nanoparticles, for example, the In 0 .53 Ga 0 .47 As alloy .
위와 같이 나노입자를 고체에 넣음으로써 전기적 성질은 그대로 유지하면서, 열전도율을 변화시킬 수 있다는 것을 알 수 있다. It can be seen that by putting the nanoparticles in the solid as described above, the thermal conductivity can be changed while maintaining the electrical properties.
(a)에서는 나노입자(이 경우는 ErAs 나노입자)를 넣은 물질과 넣지 않은 물질의 열전도율을 비교하였다.In (a), the thermal conductivity of the materials with and without nanoparticles (in this case, ErAs nanoparticles) was compared.
(a)에서 점은 실험데이타를, 선은 이론적 해석을 나타낸다.In (a), points represent experimental data and lines represent theoretical analysis.
도면에서 볼 수 있는 바와 같이 나노입자를 넣음으로써 열전도율은 상온에서 2배 정도 낮아졌다. As can be seen in the figure, the thermal conductivity was lowered by about two times at room temperature by adding nanoparticles.
이 경우 나노입자의 농도는 0.3%밖에 되지 않는다. In this case, the concentration of nanoparticles is only 0.3%.
(b)에서는 열처리 특성(normalized properties)을 보여준다. (b) shows the normalized properties.
ErAs 나노입자를 넣은 In0 .53Ga0 .47As alloy의 응용분야는 열전반도체이다.Application of the nanoparticles loaded ErAs In 0 .53 Ga 0 .47 As alloy is a thermoelectric semiconductor.
열전반도체의 성능은 열전성능지수(Thermoelectric figure of merit), ZT = (S2σT)/k로 나타낼 수 있다.The performance of thermoelectric semiconductors can be expressed by the thermoelectric figure of merit, ZT = (S 2 σT) / k.
열전반도체의 성능을 높이기 위해서는 ZT를 높여야 한다.In order to improve the performance of thermoelectric semiconductors, ZT should be increased.
여기서, (S2σ)는 power factor라고 해서, 열전반도체의 전기적인 성질을 나타낸다. Here, (S 2 sigma) is a power factor, and represents an electrical property of the thermoelectric semiconductor.
(b)에서 보듯이, 열전도율은 거의 반 정도 감소하였으나, 전기적 성질인 power factor는 거의 변하지 않았고, (a)의 TEM 그림에서 볼 수 있듯이 고체의 결정구조는 변하지 않았다.As shown in (b), the thermal conductivity decreased by almost half, but the electrical power factor was almost unchanged, and the crystal structure of the solid did not change as shown in the TEM diagram of (a).
그 결과, ZT는 두 배로 증가하였다. As a result, ZT doubled.
즉, 전기적 성질과 결정구조를 유지하면서 열전도율은 2배 정도 낮출 수 있음을 보여준 것이다.In other words, the thermal conductivity can be reduced by 2 times while maintaining the electrical properties and crystal structure.
이상에서 설명한 바와 같이 본 발명은 용접시 나노입자를 사용하여 열전도율 을 낮춤으로써 열확산율을 획기적으로 낮출 수 있도록 함으로써, 용접부위의 기계적 강도를 높일 수 있고 용접구조물의 안정성을 확보할 수 있는 등 자동차나 선박 등과 같이 용접이 쓰이는 모든 기계부품의 안정성과 내구성을 크게 향상시킬 수 있는 효과가 있다. As described above, the present invention can significantly lower the thermal diffusivity by lowering the thermal conductivity using nanoparticles during welding, thereby increasing the mechanical strength of the welded portion and ensuring the stability of the welded structure. There is an effect that can greatly improve the stability and durability of all mechanical parts used for welding, such as ships.
Claims (4)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020070052565A KR100878447B1 (en) | 2007-05-30 | 2007-05-30 | Welding method using nanoparticles to suppress deformation during welding |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020070052565A KR100878447B1 (en) | 2007-05-30 | 2007-05-30 | Welding method using nanoparticles to suppress deformation during welding |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| KR20080105250A KR20080105250A (en) | 2008-12-04 |
| KR100878447B1 true KR100878447B1 (en) | 2009-01-13 |
Family
ID=40366569
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| KR1020070052565A Expired - Fee Related KR100878447B1 (en) | 2007-05-30 | 2007-05-30 | Welding method using nanoparticles to suppress deformation during welding |
Country Status (1)
| Country | Link |
|---|---|
| KR (1) | KR100878447B1 (en) |
Families Citing this family (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10030292B2 (en) | 2014-05-26 | 2018-07-24 | Hrl Laboratories, Llc | Hydride-coated microparticles and methods for making the same |
| US10648082B1 (en) | 2014-09-21 | 2020-05-12 | Hrl Laboratories, Llc | Metal-coated reactive powders and methods for making the same |
| EP3297788B1 (en) * | 2015-05-22 | 2019-02-27 | Berndorf Band GmbH | Method for producing an endless belt comprising at least one weld seam |
| US10682699B2 (en) | 2015-07-15 | 2020-06-16 | Hrl Laboratories, Llc | Semi-passive control of solidification in powdered materials |
| US10865464B2 (en) | 2016-11-16 | 2020-12-15 | Hrl Laboratories, Llc | Materials and methods for producing metal nanocomposites, and metal nanocomposites obtained therefrom |
| US11396687B2 (en) | 2017-08-03 | 2022-07-26 | Hrl Laboratories, Llc | Feedstocks for additive manufacturing, and methods of using the same |
| US11286543B2 (en) | 2017-02-01 | 2022-03-29 | Hrl Laboratories, Llc | Aluminum alloy components from additive manufacturing |
| US12012646B1 (en) | 2017-02-01 | 2024-06-18 | Hrl Laboratories, Llc | Additively manufacturing components containing nickel alloys, and feedstocks for producing the same |
| US11998978B1 (en) | 2017-02-01 | 2024-06-04 | Hrl Laboratories, Llc | Thermoplastic-encapsulated functionalized metal or metal alloy powders |
| US20190032175A1 (en) | 2017-02-01 | 2019-01-31 | Hrl Laboratories, Llc | Aluminum alloys with grain refiners, and methods for making and using the same |
| US11578389B2 (en) | 2017-02-01 | 2023-02-14 | Hrl Laboratories, Llc | Aluminum alloy feedstocks for additive manufacturing |
| US11779894B2 (en) | 2017-02-01 | 2023-10-10 | Hrl Laboratories, Llc | Systems and methods for nanofunctionalization of powders |
| US11117193B2 (en) | 2017-02-01 | 2021-09-14 | Hrl Laboratories, Llc | Additive manufacturing with nanofunctionalized precursors |
| US11674204B2 (en) | 2017-02-01 | 2023-06-13 | Hrl Laboratories, Llc | Aluminum alloy feedstocks for additive manufacturing |
| US11052460B2 (en) | 2017-02-01 | 2021-07-06 | Hrl Laboratories, Llc | Methods for nanofunctionalization of powders, and nanofunctionalized materials produced therefrom |
| US10960497B2 (en) | 2017-02-01 | 2021-03-30 | Hrl Laboratories, Llc | Nanoparticle composite welding filler materials, and methods for producing the same |
| US12421576B2 (en) | 2017-02-01 | 2025-09-23 | Hrl Laboratories, Llc | Aluminum-chromium-zirconium alloys |
| US20190040503A1 (en) | 2017-08-03 | 2019-02-07 | Hrl Laboratories, Llc | Feedstocks for additive manufacturing, and methods of using the same |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20020061584A (en) * | 2002-07-09 | 2002-07-24 | 나노기술개발(주) | The brazing process on the low temperature between ceramics and metal using nano composite particles |
| JP2004107728A (en) | 2002-09-18 | 2004-04-08 | Ebara Corp | Joining material and joining method |
| JP2005197334A (en) | 2004-01-05 | 2005-07-21 | Seiko Epson Corp | Member joining structure and joining method |
| JP2007044754A (en) | 2005-08-12 | 2007-02-22 | Fuji Electric Device Technology Co Ltd | Metal plate joining method |
-
2007
- 2007-05-30 KR KR1020070052565A patent/KR100878447B1/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20020061584A (en) * | 2002-07-09 | 2002-07-24 | 나노기술개발(주) | The brazing process on the low temperature between ceramics and metal using nano composite particles |
| JP2004107728A (en) | 2002-09-18 | 2004-04-08 | Ebara Corp | Joining material and joining method |
| JP2005197334A (en) | 2004-01-05 | 2005-07-21 | Seiko Epson Corp | Member joining structure and joining method |
| JP2007044754A (en) | 2005-08-12 | 2007-02-22 | Fuji Electric Device Technology Co Ltd | Metal plate joining method |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20080105250A (en) | 2008-12-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR100878447B1 (en) | Welding method using nanoparticles to suppress deformation during welding | |
| Feng | Microstructure and properties of Cu/Al joints brazed with Zn–Al filler metals | |
| JP6649889B2 (en) | Aluminum alloy brazing sheet | |
| US2739375A (en) | Joining of non-metallic materials and brazing filler rods therefor | |
| JP5008969B2 (en) | Alloy for liquid phase diffusion bonding | |
| JP6128211B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
| JP2019527145A (en) | SnBiSb low-temperature lead-free solder | |
| CN104339097A (en) | Brazing filler metal, its use and combination with flux, method of joining metal parts by brazing | |
| JP6860484B2 (en) | Brazing alloy | |
| CN103249519B (en) | Pb-free solder alloy with Zn as the main component | |
| WO2007094507A1 (en) | Cr-Cu ALLOY, PROCESS FOR PRODUCING THE SAME, HEAT SINK FOR SEMICONDUCTOR, AND HEAT DISSIPATING COMPONENT FOR SEMICONDUCTOR | |
| CN101600535B (en) | Low-silver and non-silver filler metals and alloys and corresponding joining systems and methods | |
| CN105127534B (en) | Brazing connecting method for tungsten-based powder alloy die | |
| US20130199763A1 (en) | Manufacturing Method Of Heat Exchanger, And Heat Exchanger Manufactured By Such Manufacturing Method | |
| JP6317123B2 (en) | Thermoelectric element, thermoelectric module, and method of manufacturing thermoelectric element | |
| KR102227534B1 (en) | A ductile boron bearing nickel based welding material | |
| JP2013116473A (en) | Method for manufacturing heat sink, and the heat sink | |
| TWI589713B (en) | Copper bonding wire with angstrom () thick surface oxide layer | |
| Xu et al. | Optimization of resistance spot welding on the assembly of refractory alloy 50Mo–50Re thin sheet | |
| JP5408589B2 (en) | Solder alloy and manufacturing method thereof | |
| Li et al. | Abnormal accumulation of intermetallic compound at cathode in a SnAg3. 0Cu0. 5 lap joint during electromigration | |
| JP6426883B2 (en) | Method of manufacturing joined body excellent in corrosion resistance | |
| TW201943859A (en) | Silver brazing material and joining method using the silver brazing material | |
| JPS6120694A (en) | Bonding wire | |
| JP2017511753A (en) | Brazing and soldering alloy wire |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A201 | Request for examination | ||
| PA0109 | Patent application |
St.27 status event code: A-0-1-A10-A12-nap-PA0109 |
|
| PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
| D13-X000 | Search requested |
St.27 status event code: A-1-2-D10-D13-srh-X000 |
|
| D14-X000 | Search report completed |
St.27 status event code: A-1-2-D10-D14-srh-X000 |
|
| E902 | Notification of reason for refusal | ||
| PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
| PG1501 | Laying open of application |
St.27 status event code: A-1-1-Q10-Q12-nap-PG1501 |
|
| P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
| P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
| E701 | Decision to grant or registration of patent right | ||
| PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
| GRNT | Written decision to grant | ||
| PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
| PR1002 | Payment of registration fee |
St.27 status event code: A-2-2-U10-U11-oth-PR1002 Fee payment year number: 1 |
|
| PG1601 | Publication of registration |
St.27 status event code: A-4-4-Q10-Q13-nap-PG1601 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 4 |
|
| FPAY | Annual fee payment |
Payment date: 20130108 Year of fee payment: 5 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 5 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |
|
| FPAY | Annual fee payment |
Payment date: 20140108 Year of fee payment: 6 |
|
| PR1001 | Payment of annual fee |
St.27 status event code: A-4-4-U10-U11-oth-PR1001 Fee payment year number: 6 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| LAPS | Lapse due to unpaid annual fee | ||
| PC1903 | Unpaid annual fee |
St.27 status event code: A-4-4-U10-U13-oth-PC1903 Not in force date: 20150108 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE |
|
| PC1903 | Unpaid annual fee |
St.27 status event code: N-4-6-H10-H13-oth-PC1903 Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 20150108 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
| R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
| PN2301 | Change of applicant |
St.27 status event code: A-5-5-R10-R13-asn-PN2301 St.27 status event code: A-5-5-R10-R11-asn-PN2301 |